Advances in PD-1 signaling inhibition-based nano-delivery programs for tumor remedy | Journal of Nanobiotechnology


  • Zhang QY, Wang FX, Jia KK, Kong LD. Pure product interventions for chemotherapy and radiotherapy-induced negative effects. Entrance Pharmacol. 2018;9:1253.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in most cancers. Most cancers Drug Resistance. 2019;2:141–60.

    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zhang XD, Wang C, Wang JQ, Hu QY, Langworthy B, Ye YQ, Solar WJ, Lin J, Wang TF, Nice J, Cheng H, Dotti G, Huang P, Gu Z. PD-1 blockade mobile vesicles for most cancers immunotherapy. Adv Mater. 2018;30:8.


    Google Scholar
     

  • Farkona S, Diamandis EP, Blasutig IM. Most cancers immunotherapy: the start of the top of most cancers? BMC Med. 2016;14:73.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Mellman I, Coukos G, Dranoff G. Most cancers immunotherapy comes of age. Nature. 2011;480:480–9.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ishida Y, Agata Y, Shibahara Ok, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell demise. EMBO J. 1992;11:3887–95.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Patsoukis N, Wang Q, Strauss L, Boussiotis VA. Revisiting the PD-1 pathway. Sci Adv. 2020;6:eabd2712.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and SHP-2 affiliate with immunoreceptor tyrosine-based change motif of programmed demise 1 upon major human Tcell stimulation, however solely receptor ligation prevents T cell activation. J Immunol. 2004;173:945.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okazaki T, Honjo T. The PD-1–PD-L pathway in immunological tolerance. Traits Immunol. 2006;27:195–201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marasco M, Berteotti A, Weyershaeuser J, Thorausch N, Sikorska J, Krausze J, Brandt HJ, Kirkpatrick J, Rios P, Schamel WW, Köhn M, Carlomagno T. Molecular mechanism of SHP2 activation by PD-1 stimulation. Sci Adv. 2020;6:eaay4458.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Seidel JA, Otsuka A, Kabashima Ok. Anti-PD-1 and Anti-CTLA-4 therapies in most cancers: mechanisms of motion, efficacy, and limitations. Entrance Oncol. 2018;8:86.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, Mccracken MN, Gupta R, Tsai JM, Sinha R, Corey D, Ring AM, Connolly AJ, Weissman IL. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495–9.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ruan J, Ouyang M, Zhang W, Luo Y, Zhou D. The impact of PD-1 expression on tumor-associated macrophage in T cell lymphoma. Clin Transl Oncol. 2021;23:1134–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bally APR, Lu P, Tang Y, Austin JW, Scharer CD, Ahmed R, Boss JM. NF-κB regulates PD-1 expression in macrophages. J Immunol. 2015;194:4545.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Cheng Y, Xu Y, Wang Z, Du X, Li C, Peng J, Gao L, Liang X, Ma C. Elevated expression of programmed cell demise protein 1 on NK cells inhibits NK-cell-mediated anti-tumor perform and signifies poor prognosis in digestive cancers. Oncogene. 2017;36:6143–53.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Vari F, Arpon D, Keane C, Hertzberg MS, Talaulikar D, Jain S, Cui Q, Han E, Tobin J, Chicken R, Cross D, Hernandez A, Gould C, Birch S, Gandhi MK. Immune evasion by way of PD-1/PD-L1 on NK cells and monocyte/macrophages is extra distinguished in Hodgkin lymphoma than DLBCL. Blood. 2018;131:1809–19.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lim TS, Chew V, Sieow JL, Goh S, Yeong JPS, Quickly AL, Ricciardi-Castagnoli P. PD-1 expression on dendritic cells suppresses CD8+ T cell perform and antitumor immunity. OncoImmunology. 2016;5:e1085146.

    Article 
    PubMed 

    Google Scholar
     

  • Aksoylar HI, Boussiotis VA. PD-1(+) T(reg) cells: a foe in most cancers immunotherapy? Nat Immunol. 2020;21:1311–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie M, Huang X, Ye X, Qian W. Prognostic and clinicopathological significance of PD-1/PD-L1 expression within the tumor microenvironment and neoplastic cells for lymphoma. Int Immunopharmacol. 2019;77:105999.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kleffel S, Posch C, Barthel SR, Mueller H, Schlapbach C, Guenova E, Elco CP, Lee N, Juneja VR, Zhan Q, Lian CG, Thomi R, Hoetzenecker W, Cozzio A, Dummer R, Mihm MC, Flaherty KT, Frank MH, Murphy GF, Sharpe AH, Kupper TS, Schatton T. Melanoma Cell-intrinsic PD-1 receptor capabilities promote tumor progress. Cell. 2015;162:1242–56.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zhao Y, Harrison DL, Tune Y, Ji J, Huang J, Hui E. Antigen-presenting cell-intrinsic PD-1 neutralizes PD-L1 in cis to attenuate PD-1 signaling in T cells. Cell Rep. 2018;24:379-390.e6.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Mehrfeld C, Zenner S, Kornek M, Lukacs-Kornek V. The contribution of non-professional antigen-presenting cells to immunity and tolerance within the liver. Entrance Immunol. 2018;9:635.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Rugamba A, Kang DY, Sp N, Jo ES, Lee J-M, Bae SW, Jang Ok-J. Silibinin regulates tumor development and tumorsphere formation by suppressing PD-L1 expression in non-small cell lung most cancers (NSCLC) cells. Cells. 2021;10:1632.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Botti G, Fratangelo F, Cerrone M, Liguori G, Cantile M, Anniciello AM, Scala S, D’alterio C, Trimarco C, Ianaro A, Cirino G, Caracò C, Colombino M, Palmieri G, Pepe S, Ascierto PA, Sabbatino F, Scognamiglio G. COX-2 expression positively correlates with PD-L1 expression in human melanoma cells. J Transl Med. 2017;15:46.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Carlsson J, Sundqvist P, Kosuta V, Fält A, Giunchi F, Fiorentino M, Davidsson SJ. PD-L1 expression is related to poor prognosis in renal cell carcinoma. Appl Immunohistochem Mol Morphol. 2020;28:213–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen C, Guo Q, Fu H, Yu J, Wang L, Solar Y, Zhang J, Duan Y. Asynchronous blockade of PD-L1 and CD155 by polymeric nanoparticles inhibits triple-negative breast most cancers development and metastasis. Biomaterials. 2021;275:120988.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruan S, Xie R, Qin L, Yu M, Xiao W, Hu C, Yu W, Qian Z, Ouyang L, He Q, Gao H. Aggregable nanoparticles-enabled chemotherapy and autophagy inhibition mixed with anti-PD-L1 antibody for improved glioma remedy. Nano Lett. 2019;19:8318–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye Q, Lin Y, Li R, Wang H, Dong C. Latest advances of nanodrug supply system within the remedy of hematologic malignancies. Semin Most cancers Biol. 2022;86:607–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guan L, Zhang Z, Gao T, Fu S, Mu W, Liang S, Liu Y, Chu Q, Fang Y, Liu Y. Depleting tumor infiltrating B cells to spice up antitumor immunity with tumor immune-microenvironment reshaped hybrid nanocage. ACS Nano. 2022;16:4263–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Solar T, Jiang C. Nanodrug supply programs for ferroptosis-based most cancers remedy. J Management Launch. 2022;344:289–301.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bejarano L, Jordāo MJC, Joyce JA. Therapeutic concentrating on of the tumor microenvironment. Most cancers Discov. 2021;11:933–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arneth B. Tumor microenvironment. Medicina. 2020;56:15.

    Article 

    Google Scholar
     

  • Quaranta V, Schmid MC. Macrophage-mediated subversion of anti-Tumour immunity. Cells. 2019;8:747.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Chen W, Wang J, Jia L, Liu J, Tian Y. Attenuation of the programmed cell death-1 pathway will increase the M1 polarization of macrophages induced by zymosan. Cell Demise Dis. 2016;7:e2115.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hanafy MS, Hufnagel S, Trementozzi AN, Sakran W, Stachowiak JC, Koleng JJ, Cui Z. PD-1 siRNA-encapsulated stable lipid nanoparticles downregulate PD-1 expression by macrophages and inhibit tumor progress. AAPS PharmSciTech. 2021;22:60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Concha-Benavente F, Kansy B, Moskovitz J, Moy J, Chandran U, Ferris RL. PD-L1 mediates dysfunction in activated PD-1+ NK cells in head and neck most cancers sufferers. Most cancers Immunol Res. 2018;6:1548.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Pesce S, Greppi M, Grossi F, Del Zotto G, Moretta L, Sivori S, Genova C, Marcenaro E. PD/1-PD-Ls checkpoint: perception on the potential position of NK cells. Entrance Immunol. 2019;10:1242.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Makowska A, Meier S, Shen L, Busson P, Baloche V, Kontny U. Anti-PD-1 antibody will increase NK cell cytotoxicity in the direction of nasopharyngeal carcinoma cells within the context of chemotherapy-induced upregulation of PD-1 and PD-L1. Most cancers Immunol Immunother. 2021;70:323–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou YF, Tune SS, Tian MX, Tang Z, Wang H, Fang Y, Qu WF, Jiang XF, Tao CY, Huang R, Zhou PY, Zhu SG, Zhou J, Fan J, Liu WR, Shi YH. Cystathionine β-synthase mediated PRRX2/IL-6/STAT3 inactivation suppresses Tregs infiltration and induces apoptosis to inhibit HCC carcinogenesis. J Immunother Most cancers. 2021;9:e003031.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kamada T, Togashi Y, Tay C, Ha D, Sasaki A, Nakamura Y, Sato E, Fukuoka S, Tada Y, Tanaka A, Morikawa H, Kawazoe A, Kinoshita T, Shitara Ok, Sakaguchi S, Nishikawa H. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of most cancers. Proc Natl Acad Sci. 2019;116:9999.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Dyck L, Wilk MM, Raverdeau M, Misiak A, Boon L, Mills KHG. Anti-PD-1 inhibits Foxp3+ Treg cell conversion and unleashes intratumoural effector T cells thereby enhancing the efficacy of a most cancers vaccine in a mouse mannequin. Most cancers Immunol Immunother. 2016;65:1491–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumagai S, Togashi Y, Kamada T, Sugiyama E, Nishinakamura H, Takeuchi Y, Vitaly Ok, Itahashi Ok, Maeda Y, Matsui S, Shibahara T, Yamashita Y, Irie T, Tsuge A, Fukuoka S, Kawazoe A, Udagawa H, Kirita Ok, Aokage Ok, Ishii G, Kuwata T, Nakama Ok, Kawazu M, Ueno T, Yamazaki N, Goto Ok, Tsuboi M, Mano H, Doi T, Shitara Ok, Nishikawa H. The PD-1 expression steadiness between effector and regulatory T cells predicts the medical efficacy of PD-1 blockade therapies. Nat Immunol. 2020;21:1346–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karyampudi L, Lamichhane P, Krempski J, Kalli KR, Behrens MD, Vargas DM, Hartmann LC, Janco JMT, Dong H, Hedin KE. PD-1 blunts the perform of ovarian tumor–infiltrating dendritic cells by inactivating NF-κB. Most cancers Res. 2016;76:239–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Versteven M, Van Den Bergh JMJ, Marcq E, Smits ELJ, Van Tendeloo VFI, Hobo W, Lion E. Dendritic cells and programmed death-1 blockade: a three way partnership to fight most cancers. Entrance Immunol. 2018;9:394.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Iraolagoitia XLR, Spallanzani RG, Torres NI, Araya RE, Ziblat A, Domaica CI, Sierra JM, Nuñez SY, Secchiari F, Gajewski TF, Zwirner NW, Fuertes MB. NK Cells restrain spontaneous antitumor CD8+ T cell priming by way of PD-1/PD-L1 interactions with dendritic cells. J Immunol. 2016;197:953.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stoycheva D, Simsek H, Weber W, Hauser AE, Klotzsch E. Exterior cues to drive B cell perform in the direction of immunotherapy. Acta Biomater. 2021;133:222–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar X, Zhang T, Li M, Yin L, Xue J. Immunosuppressive B cells expressing PD-1/PD-L1 in stable tumors: a mini overview. QJM-Int J Med. 2022;115:507–12.

    Article 
    CAS 

    Google Scholar
     

  • Wang X, Wang G, Wang Z, Liu B, Han N, Li J, Lu C, Liu X, Zhang Q, Yang Q, Wang G. PD-1-expressing B cells suppress CD4+ and CD8+ T cells by way of PD-1/PD-L1-dependent pathway. Mol Immunol. 2019;109:20–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cremolini C, Vitale E, Rastaldo R, Giachino C. Superior nanotechnology for enhancing immune checkpoint blockade remedy. Nanomaterials. 2021;11:661.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade remedy for most cancers: an summary of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018;62:29–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh S, Hassan D, Aldawsari HM, Molugulu N, Shukla R, Kesharwani P. Immune checkpoint inhibitors: a promising anticancer remedy. Drug Discov Immediately. 2020;25:223–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang E, Pelosof L, Lemery S, Gong Y, Goldberg KB, Farrell AT, Keegan P, Veeraraghavan J, Wei G, Blumenthal GM, Amiri-Kordestani L, Singh H, Fashoyin-Aje L, Gormley N, Kluetz PG, Pazdur R, Beaver JA, Theoret MR. Systematic overview of PD-1/PD-L1 inhibitors in oncology: from personalised drugs to public well being. Oncologist. 2021;26:e1786–99.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Boohaker RJ, Sambandam V, Segura I, Miller J, Suto M, Xu B. Rational design and growth of a peptide inhibitor for the PD-1/PD-L1 interplay. Most cancers Lett. 2018;434:11–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu X, Meng Y, Liu L, Gong G, Zhang H, Hou Y, Liu C, Wu D, Qin M. Insights into non-peptide small-molecule inhibitors of the PD-1/PD-L1 interplay: growth and perspective. Bioorg Med Chem. 2021;33:116038.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan Z, Tian Y, Chen Z, Liu L, Zhou Q, He J, Coleman J, Dong C, Li N, Huang J, Xu C, Zhang Z, Gao S, Zhou P, Ding Ok, Chen L. Blocking interplay between SHP2 and PD-1 denotes a novel alternative for creating PD-1 inhibitors. EMBO Mol Med. 2020;12:e11571.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zhao T, Wei T, Guo J, Wang Y, Shi X, Guo S, Jia X, Jia H, Feng Z. PD-1-siRNA delivered by attenuated Salmonella enhances the antimelanoma impact of pimozide. Cell Demise Dis. 2019;10:164.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Naidoo J, Web page DB, Li BT, Connell LC, Schindler Ok, Lacouture ME, Postow MA, Wolchok JD. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26:2375–91.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Improvement of PD-1 and PD-L1 inhibitors as a type of most cancers immunotherapy: a complete overview of registration trials and future issues. J Immunother Most cancers. 2018;6:8.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Huang Y, Chen Y, Zhou S, Chen L, Wang J, Pei Y, Xu M, Feng J, Jiang T, Liang Ok, Liu S, Tune Q, Jiang G, Gu X, Zhang Q, Gao X, Chen J. Twin-mechanism based mostly CTLs infiltration enhancement initiated by nano-sapper potentiates immunotherapy in opposition to immune-excluded tumors. Nat Commun. 2020;11:622.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Oliver AJ, Davey AS, Keam SP, Mardiana S, Chan JD, Von Scheidt B, Beavis PA, Home IG, Van Audernaerde JRM, Darcy PK, Kershaw MH, Slaney CY. Tissue-specific tumor microenvironments affect responses to immunotherapies. Clinl Transl Immunol. 2019;8:e1094.


    Google Scholar
     

  • Ito M, Mimura Ok, Nakajima S, Saito Ok, Min AKT, Okayama H, Saito M, Momma T, Saze Z, Ohtsuka M, Yamamoto T, Kono Ok. Immune escape mechanism behind resistance to anti-PD-1 remedy in gastrointestinal tract metastasis in malignant melanoma sufferers with a number of metastases. Most cancers Immunol Immunother. 2022;71:2293–300.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hugo W, Zaretsky JM, Solar L, Tune C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, Seja E, Lomeli S, Kong X, Kelley MC, Sosman JA, Johnson DB, Ribas A, Lo RS. Genomic and transcriptomic options of response to anti-PD-1 remedy in metastatic melanoma. Cell. 2016;165:35–44.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Abril-Rodriguez G, Ribas A. SnapShot: immune checkpoint inhibitors. Most cancers Cell. 2017;31:848-848.e1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang X, Gao C, Cui L, Wang S, Wang J, Dai Z. Self-assembly of an amphiphilic janus camptothecin–floxuridine conjugate into liposome-like nanocapsules for extra efficacious mixture chemotherapy in most cancers. Adv Mater. 2017;29:1703135.

    Article 

    Google Scholar
     

  • Liu X, Jiang J, Chan R, Ji Y, Lu J, Liao YP, Okene M, Lin J, Lin P, Chang CH. Improved efficacy and decreased toxicity utilizing a custom-designed irinotecan-delivering silicasome for orthotopic colon most cancers. ACS Nano. 2018;13:38–53.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Gao Y, Ouyang Z, Yang C, Tune C, Jiang C, Tune S, Shen M, Shi X. Overcoming T cell exhaustion by way of immune checkpoint modulation with a dendrimer-based hybrid nanocomplex. Adv Healthc Mater. 2021;10:2100833.

    Article 
    CAS 

    Google Scholar
     

  • Tripathi PK, Tripathi S. Dendrimers for anticancer drug supply. In: Chauhan AS, Kulhari H, editors. Pharmaceutical functions of dendrimers. Amsterdam: Elsevier; 2020. p. 131–50.

    Chapter 

    Google Scholar
     

  • Liu C, Wan T, Wang H, Zhang S, Ping Y, Cheng YJ. A boronic acid–wealthy dendrimer with sturdy and unprecedented effectivity for cytosolic protein supply and CRISPR-Cas9 gene enhancing. Sci Adv. 2019;5:eaaw8922.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Manzano M, Vallet-Regí MJ. Mesoporous silica nanoparticles for drug supply. Adv Funct Mater. 2020;30:1902634.

    Article 
    CAS 

    Google Scholar
     

  • Sztandera Ok, Gorzkiewicz M, Klajnert-Maculewicz BJMP. Gold nanoparticles in most cancers remedy. Mol Pharm. 2018;16:1–23.

    Article 
    PubMed 

    Google Scholar
     

  • Geng Z, Wang L, Liu Ok, Liu J, Tan WJ. Enhancing anti-PD-1 immunotherapy by nanomicelles self-assembled from multivalent aptamer drug conjugates. Angew Chem Int. 2021;133:15587–93.

    Article 

    Google Scholar
     

  • Zhou Z, Du C, Zhang Q, Yu G, Zhang F, Chen X. Beautiful vesicular nanomedicine by paclitaxel mediated co-assembly with camptothecin prodrug. Angew Chem Int Ed. 2021;60:21033–9.

    Article 
    CAS 

    Google Scholar
     

  • Yan S, Luo Z, Li Z, Wang Y, Tao J, Gong C, Liu X. Enhancing most cancers immunotherapy outcomes utilizing biomaterials. Angew Chem Int Ed. 2020;59:17332–43.

    Article 
    CAS 

    Google Scholar
     

  • Gmeiner WH, Ghosh S. Nanotechnology for most cancers remedy. Nanotechnol Rev. 2014;3:111–22.

    Article 
    CAS 

    Google Scholar
     

  • Li G, Tune YZ, Huang ZJ, Chen Ok, Chen DW, Deng YQ. Novel, nano-sized, liposome-encapsulated polyamidoamine dendrimer derivatives facilitate tumour concentrating on by overcoming the polyethylene glycol dilemma and integrin saturation impediment. J Drug Goal. 2017;25:734–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu WL, Zou MZ, Liu T, Zeng JY, Li X, Yu WY, Li CX, Ye JJ, Tune W, Feng J, Zhang XZ. Cytomembrane nanovaccines present therapeutic results by mimicking tumor cells and antigen presenting cells. Nat Commun. 2019;10:3199.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Nguyen PV, Allard-Vannier E, Chourpa I, Hervé-Aubert Ok. Nanomedicines functionalized with anti-EGFR ligands for energetic concentrating on in most cancers remedy: organic technique, design and high quality management. Int J Pharm. 2021;605:120795.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xuan M, Shao J, Dai L, Li J, He Q. Macrophage cell membrane camouflaged Au nanoshells for in vivo extended circulation life and enhanced most cancers photothermal remedy. ACS Appl Mater Interfaces. 2016;8:9610–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su Z, Xiao Z, Wang Y, Huang J, An Y, Wang X, Shuai X. Codelivery of anti-PD-1 antibody and paclitaxel with matrix metalloproteinase and pH dual-sensitive micelles for enhanced tumor chemoimmunotherapy. Small. 2020;16:1906832.

    Article 
    CAS 

    Google Scholar
     

  • Chen Q, Chen G, Chen J, Shen J, Zhang X, Wang J, Chan A, Gu Z. Bioresponsive protein complicated of aPD1 and aCD47 antibodies for enhanced immunotherapy. Nano Lett. 2019;19:4879–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanaei M-J, Pourbagheri-Sigaroodi A, Kaveh V, Sheikholeslami SA, Salari S, Bashash D. The applying of nano-medicine to beat the challenges associated to immune checkpoint blockades in most cancers immunotherapy: latest advances and alternatives. Crit Rev Oncol Hemat. 2021;157:103160.

    Article 

    Google Scholar
     

  • Zhang B, Zhou YL, Chen X, Wang Z, Wang Q, Ju F, Ren S, Xu R, Xue Q, Wu Q. Efficacy and security of CTLA-4 inhibitors mixed with PD-1 inhibitors or chemotherapy in sufferers with superior melanoma. Int Immunopharmacol. 2019;68:131–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu Y, Peng Y, Zhao S, Mou J, Zeng L, Jiang X, Yang C, Huang C, Li Y, Lu Y, Wu M, Yang Y, Kong T, Lai Q, Wu Y, Yao Y, Wang Y, Gou L, Yang J. Mixture foretinib and anti-PD-1 antibody immunotherapy for colorectal carcinoma. Entrance Cell Dev Biol. 2021;9:689727.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Maharjan R, Choi JU, Kweon S, Pangeni R, Lee NK, Park SJ, Chang KY, Park JW, Byun Y. A novel oral metronomic chemotherapy provokes tumor particular immunity leading to colon most cancers eradication together with anti-PD-1 remedy. Biomaterials. 2022;281:121334.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang XY, Wu XL, Li ZD, Jiang LJ, Lo WS, Chen GM, Gu YJ, Wong WT. Biomimetic anti-PD-1 peptide-loaded 2D FePSe3 nanosheets for environment friendly photothermal and enhanced immune remedy with multimodal MR/PA/thermal imaging. Adv Sci. 2021;8:15.

    Article 

    Google Scholar
     

  • Bertol BC, Bales ES, Calhoun JD, Mayberry A, Ledezma ML, Sams SB, Orlicky DJ, Donadi EA, Haugen BR, French JD. Lenvatinib plus anti-PD-1 mixture remedy for superior cancers: defining mechanisms of resistance in an inducible transgenic mannequin of thyroid most cancers. Thyroid. 2021;32:153–63.

    Article 

    Google Scholar
     

  • Wu L, Wang W, Tian J, Qi C, Cai Z, Yan W, Xuan S, Shang AJB. Mixture remedy with Nab-paclitaxel and the interleukin-15 fused with anti-human serum albumin nanobody as a synergistic remedy for colorectal most cancers. Bioengineered. 2022;13:1942–51.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ordikhani F, Uehara M, Kasinath V, Dai L, Eskandari SK, Bahmani B, Yonar M, Azzi JR, Haik Y, Sage PT, Murphy GF, Annabi N, Schatton T, Guleria I, Abdi R. Focusing on antigen-presenting cells by anti-PD-1 nanoparticles augments antitumor immunity. JCI Perception. 2018;3:17.

    Article 

    Google Scholar
     

  • Tao H, Cheng L, Liu L, Wang H, Jiang Z, Qiang X, Xing L, Xu Y, Cai X, Yao J, Wang M, Qiu Z. A PD-1 peptide antagonist displays potent anti-tumor and immune regulatory exercise. Most cancers Lett. 2020;493:91–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Killock D. Macrophages hijack anti-PD-1 remedy. Nat Rev Clin Oncol. 2017;14:394–394.

    PubMed 

    Google Scholar
     

  • Barati M, Mirzavi F, Nikpoor AR, Sankian M, Namdar Ahmadabad H, Soleimani A, Mashreghi M, Tavakol Afshar J, Mohammadi M, Jaafari MR. Enhanced antitumor immune response in melanoma tumor mannequin by anti-PD-1 small interference RNA encapsulated in nanoliposomes. Most cancers Gene Ther. 2022;29:814–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Y, Gu W, Li L, Chen C, Xu ZP. Enhancing PD-1 gene silence in T lymphocytes by evaluating the supply efficiency of two inorganic nanoparticle platforms. Nanomaterials. 2019;9:159.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hodi FS, Chiarion-Sileni V, Gonzalez R, Grob J-J, Rutkowski P, Cowey CL, Lao CD, Schadendorf D, Wagstaff J, Dummer R, Ferrucci PF, Smylie M, Hill A, Hogg D, Marquez-Rodas I, Jiang J, Rizzo J, Larkin J, Wolchok JD. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in superior melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, section 3 trial. Lancet Oncol. 2018;19:1480–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Liu D, Liu J, Han Y, Xu H, Leng X, Kong D, Liu L. Hybrid spherical nucleotide nanoparticles can improve the synergistic anti-tumor impact of CTLA-4 and PD-1 blockades. Biomater Sci. 2020;8:4757–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwak SY, Lee S, Han HD, Chang S, Kim KP, Ahn HJ. PLGA nanoparticles codelivering siRNAs in opposition to programmed cell demise protein-1 and its ligand gene for suppression of colon tumor progress. Mol Pharm. 2019;16:4940–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu YH, Gu WY, Li J, Chen C, Xu ZP. Silencing PD-1 and PD-L1 with nanoparticle-delivered small interfering RNA will increase cytotoxicity of tumor-infiltrating lymphocytes. Nanomedicine. 2019;14:955–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mi Y, Smith CC, Yang F, Qi Y, Roche KC, Serody JS, Vincent BG, Wang AZ. A twin immunotherapy nanoparticle improves T-cell activation and most cancers immunotherapy. Adv Mater. 2018;30:1706098.

    Article 

    Google Scholar
     

  • Fu Y, Huang Y, Li P, Wang L, Tang Z, Liu X, Bian X, Wu S, Wang X, Zhu B, Yu Y, Jiang J, Li C. Bodily- and chemical-dually ROS-responsive nano-in-gel platforms with sequential launch of OX40 agonist and PD-1 Inhibitor for augmented mixture immunotherapy. Nano Lett. 2023;23:1424–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beavis PA, Milenkovski N, Henderson MA, John LB, Allard B, Loi S, Kershaw MH, Stagg J, Darcy PK. Adenosine receptor 2A blockade will increase the efficacy of anti–PD-1 by way of enhanced antitumor T-cell responses. Most cancers Immunol Res. 2015;3:506.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karoon Kiani F, Izadi S, Ansari Dezfouli E, Ebrahimi F, Mohammadi M, Chalajour H, Mortazavi Bulus M, Nasr Esfahani M, Karpisheh V, Mahmoud Salehi Khesht A, Abbaszadeh-Goudarzi Ok, Soleimani A, Gholizadeh Navashenaq J, Ahmadi M, Hassannia H, Hojjat-Farsangi M, Shahmohammadi Farid S, Hashemi V, Jadidi-Niaragh F. Simultaneous silencing of the A2aR and PD-1 immune checkpoints by siRNA-loaded nanoparticles enhances the immunotherapeutic potential of dendritic cell vaccine in tumor experimental fashions. Life Sci. 2022;288:120166.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao Z, Su Z, Han S, Huang J, Lin L, Shuai X. Twin pH-sensitive nanodrug blocks PD-1 immune checkpoint and makes use of T cells to ship NF-κB inhibitor for antitumor immunotherapy. Sci Adv. 2020;6:eaay7785.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ruan H, Hu Q, Wen D, Chen Q, Chen G, Lu Y, Wang J, Cheng H, Lu W, Gu Z. A Twin-bioresponsive drug-delivery depot for mixture of epigenetic modulation and immune checkpoint blockade. Adv Mater. 2019;31:1806957.

    Article 

    Google Scholar
     

  • Ye Y, Wang J, Hu Q, Hochu GM, Xin H, Wang C, Gu Z. Synergistic transcutaneous immunotherapy enhances antitumor immune responses by way of supply of checkpoint inhibitors. ACS Nano. 2016;10:8956–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmid D, Park CG, Hartl CA, Subedi N, Cartwright AN, Puerto RB, Zheng Y, Maiarana J, Freeman GJ, Wucherpfennig KW, Irvine DJ, Goldberg MS. T cell-targeting nanoparticles focus supply of immunotherapy to enhance antitumor immunity. Nat Commun. 2017;8:1747.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Duan X, Chan C, Lin W. Nanoparticle-mediated immunogenic cell demise permits and potentiates most cancers immunotherapy. Angew Chem Int Ed. 2019;58:670–80.

    Article 
    CAS 

    Google Scholar
     

  • Lan XM, Zhu WY, Huang XS, Yu YJ, Xiao HH, Jin LJ, Pu JYJ, Xie X, She JC, Lui VWY, Chen HJ, Su YX. Microneedles loaded with anti-PD-1-cisplatin nanoparticles for synergistic most cancers immuno-chemotherapy. Nanoscale. 2020;12:18885–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gai S, Yang G, Yang P, He F, Lin J, Jin D, Xing B. Latest advances in practical nanomaterials for gentle–triggered most cancers remedy. Nano Immediately. 2018;19:146–87.

    Article 
    CAS 

    Google Scholar
     

  • Doughty ACV, Hoover AR, Layton E, Murray CK, Howard EW, Chen WR. Nanomaterial functions in photothermal remedy for most cancers. Supplies. 2019;12:779.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zhang N, Tune J, Liu Y, Liu MZ, Zhang L, Sheng DL, Deng LM, Yi HJ, Wu M, Zheng YY, Wang ZG, Yang Z. Photothermal remedy mediated by phase-transformation nanoparticles facilitates supply of anti-PD1 antibody and synergizes with antitumor immunotherapy for melanoma. J Management Launch. 2019;306:15–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo LH, Zhu CQ, Yin H, Jiang MS, Zhang JL, Qin B, Luo ZY, Yuan XL, Yang J, Li W, Du YZ, You J. Laser Immunotherapy together with perdurable PD-1 blocking for the remedy of metastatic tumors. ACS Nano. 2018;12:7647–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao T, Zhang Z, Liang S, Fu S, Mu W, Guan L, Liu Y, Chu Q, Fang Y, Liu Y, Zhang N. Reshaping antitumor immunity with chemo-photothermal built-in nanoplatform to enhance checkpoint blockade-based vancer remedy. Adv Funct Mater. 2021;31:2100437.

    Article 
    CAS 

    Google Scholar
     

  • Zhang F, Li F, Lu G-H, Nie W, Zhang L, Lv Y, Bao W, Gao X, Wei W, Pu Ok, Xie H-Y. Engineering magnetosomes for ferroptosis/immunomodulation synergism in most cancers. ACS Nano. 2019;13:5662–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z. Present approaches of nanomedicines out there and varied stage of medical translation. Acta Pharm Sin B. 2022;12:3028–48.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles