Inhaled nano-based therapeutics for pulmonary fibrosis: current advances and future prospects | Journal of Nanobiotechnology


  • Wynn TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med. 2011;208:1339–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lederer DJ, Martinez FJ. Idiopathic pulmonary fibrosis. N Engl J Med. 2018;378:1811–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ballester B, Milara J, Cortijo J. Idiopathic pulmonary fibrosis and lung most cancers: mechanisms and molecular targets. Int J Mol Sci. 2019;20:593.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng Z, Worry MW, Choi YS, Wooden FM, Allahham A, Mutsaers SE, Prêle CM. The extracellular matrix and mechanotransduction in pulmonary fibrosis. Int J Biochem Cell B. 2020;126:105802.

    Article 
    CAS 

    Google Scholar
     

  • Martinez FJ, Collard HR, Pardo A, Raghu G, Richeldi L, Selman M, Swigris JJ, Taniguchi H, Wells AU. Idiopathic pulmonary fibrosis. Nat Rev Dis Primers. 2017;3:1–19.

    Article 

    Google Scholar
     

  • Assad N, Sood A, Campen MJ, Zychowski KE. Steel-induced pulmonary fibrosis. Curr Environ Well being Rep. 2018;5:486–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sgalla G, Iovene B, Calvello M, Ori M, Varone F, Richeldi L. Idiopathic pulmonary fibrosis: pathogenesis and administration. Respirs Res. 2018;19:1–18.


    Google Scholar
     

  • Vianello A, Guarnieri G, Braccioni F, Lococo S, Molena B, Cecchetto A, Giraudo C, De Marchi LB, Caminati M, Senna G. The pathogenesis, epidemiology and biomarkers of susceptibility of pulmonary fibrosis in COVID-19 survivors. Clin Chem Lab Med. 2022;60:307–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang C, Wu Z, Li JW, Tan Okay, Yang W, Zhao H, Wang GQ. Discharge might not be the top of therapy: Take note of pulmonary fibrosis attributable to extreme COVID-19. J Med Virol. 2021;93:1378–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ryan N, Meskell P. The expertise of individuals with idiopathic pulmonary fibrosis dwelling by means of the COVID-19 pandemic. J Adv Nurs. 2022;78(7):2232–44.

    Article 
    PubMed 

    Google Scholar
     

  • Carvalho LV, da Silva SC, Fontes JL, Cardoso L, Salomar M, Duarte-Neto AN, Figueira C, Brito R, Mesquita B, de Freitas LA. COVID-19 past DAD: persisting microcirculation thrombosis, hidden infections, and early pulmonary fibrosis as remaining challenges of the illness. Hum Pathol Rep. 2022;27:300607.

    Article 

    Google Scholar
     

  • Covvey JR, Mancl EE. Latest proof for pharmacological therapy of idiopathic pulmonary fibrosis. Ann Pharmacother. 2014;48:1611–9.

    Article 
    PubMed 

    Google Scholar
     

  • Skibba M, Drelich A, Poellmann M, Hong S, Brasier AR. Nanoapproaches to modifying epigenetics of epithelial mesenchymal transition for therapy of pulmonary fibrosis. Entrance Pharmacol. 2020;11:607689.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Homma S, Bando M, Azuma A, Sakamoto S, Sugino Okay, Ishii Y, Izumi S, Inase N, Inoue Y, Ebina M. Japanese guideline for the therapy of idiopathic pulmonary fibrosis. Respir Investig. 2018;56:268–91.

    Article 
    PubMed 

    Google Scholar
     

  • Kato M, Sasaki S, Nakamura T, Kurokawa Okay, Yamada T, Ochi Y, Ihara H, Takahashi F, Takahashi Okay. Gastrointestinal adversarial results of nintedanib and the related threat elements in sufferers with idiopathic pulmonary fibrosis. Sci Rep-UK. 2019;9:1–9.


    Google Scholar
     

  • Hanta I, Cilli A, Sevinc C. The effectiveness, security, and tolerability of Pirfenidone in idiopathic pulmonary fibrosis: a retrospective research. Adv Ther. 2019;36:1126–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghumman M, Dhamecha D, Gonsalves A, Fortier L, Sorkhdini P, Zhou Y, Menon JU. Rising drug supply methods for idiopathic pulmonary fibrosis therapy. Eur J Pharm Biopharm. 2021;164:1–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galli JA, Pandya A, Vega-Olivo M, Dass C, Zhao H, Criner GJ. Pirfenidone and nintedanib for pulmonary fibrosis in medical observe: tolerability and adversarial drug reactions. Respirology. 2017;22:1171–8.

    Article 
    PubMed 

    Google Scholar
     

  • Mu W, Chu Q, Liu Y, Zhang N. A overview on nano-based drug supply system for most cancers chemoimmunotherapy. Nano-Micro Lett. 2020;12:1–24.

    Article 
    CAS 

    Google Scholar
     

  • Thubelihle Ndebele R, Yao Q, Shi Y-N, Zhai Y-Y, Xu H-L, Lu C-T, Zhao Y-Z. Progress within the software of nano-and micro-based drug supply programs in pulmonary drug supply. BIO Integr. 2022;13:71–83.

    Article 

    Google Scholar
     

  • Zhou Z, et al. Rational design of most cancers nanomedicine: nanoproperty integration and synchronization. Adv Mater. 2017;29:1606628.

    Article 

    Google Scholar
     

  • Bai X, Zhao G, Chen Q, Li Z, Gao M, Ho W, Xu X, Zhang XQ. Inhaled siRNA nanoparticles focusing on IL11 inhibit lung fibrosis and enhance pulmonary operate post-bleomycin problem. Sci Adv. 2022;8:eabn7162.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camelo A, Dunmore R, Sleeman MA, Clarke DL. The epithelium in idiopathic pulmonary fibrosis: breaking the barrier. Entrance Pharmacol. 2014;4:173.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang JM, Robertson SH, Wang Z, He M, Virgincar RS, Schrank GM, Smigla RM, O’Riordan TG, Sundy J, Ebner L. Utilizing hyperpolarized 129Xe MRI to quantify regional fuel switch in idiopathic pulmonary fibrosis. Thorax. 2018;73:21–8.

    Article 
    PubMed 

    Google Scholar
     

  • Fulaz S, Vitale S, Quinn L, Casey E. Nanoparticle–biofilm interactions: the position of the EPS matrix. Tendencies Microbiol. 2019;27:915–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Q, Zhang X, Xue J, Chai J, Qin L, Guan J, Zhang X, Mao S. Exploring the intrinsic micro−/nanoparticle measurement on their in vivo destiny after lung supply. J Controll Launch. 2022;347:435–48.

    Article 
    CAS 

    Google Scholar
     

  • Praphawatvet T, Peters JI, Williams RO III. Inhaled nanoparticles—an up to date overview. Int J Pharmaceut. 2020;587:119671.

    Article 
    CAS 

    Google Scholar
     

  • Zhao J, Qin L, Track R, Su J, Yuan Y, Zhang X, Mao S. Elucidating inhaled liposome floor cost on its interplay with organic limitations within the lung. Eur J Pharm Biopharma. 2022;172:101–11.

    Article 
    CAS 

    Google Scholar
     

  • Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: affect of polymer construction on cell viability and hemolysis. Biomaterials. 2003;24:1121–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murali S, Mangotra A. NanoToxicity—a hen’s eye view of toxicological facets. 2018.

  • Asati S, Sahu A, Jain A. Nanotoxicity: the darkish aspect of nanoformulations. Curr Nanotoxicity Prev. 2021;1:6–25.

    Article 

    Google Scholar
     

  • Wei Y, Zhao L. Passive lung-targeted drug supply programs through intravenous administration. Pharm Dev Technol. 2014;19:129–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molina-Molina M. The way forward for pharmacological therapy in idiopathic pulmonary fibrosis. Arch Bronconeumol. 2019;55:642–7.

    Article 
    PubMed 

    Google Scholar
     

  • George PM, Patterson CM, Reed AK, Thillai M. Lung transplantation for idiopathic pulmonary fibrosis. Lancet Resp Med. 2019;7:271–82.

    Article 

    Google Scholar
     

  • Kuzmov A, Minko T. Nanotechnology approaches for inhalation therapy of lung illnesses. J Controll Launch. 2015;219:500–18.

    Article 
    CAS 

    Google Scholar
     

  • Akçan R, Aydogan HC, Yildirim MŞ, Taştekin B, Sağlam N. Nanotoxicity: a problem for future medication. Turk J Med Sci. 2020;50:1180–96.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaber M, Medhat W, Hany M, Saher N, Fang J-Y, Elzoghby A. Protein-lipid nanohybrids as rising platforms for drug and gene supply: challenges and outcomes. J Controll Launch. 2017;254:75–91.

    Article 
    CAS 

    Google Scholar
     

  • Unida S, Ito Y, Onodera R, Tahara Okay, Takeuchi H. Inhalation properties of water-soluble drug loaded liposomes atomized by nebulizer. Asian J Pharm Sci. 2016;11:205–6.

    Article 

    Google Scholar
     

  • Rudokas M, Najlah M, Alhnan MA, Elhissi A. Liposome supply programs for inhalation: a vital overview highlighting formulation points and anticancer functions. Med Prin Pract. 2016;25:60–72.

    Article 

    Google Scholar
     

  • Ivanova V, Garbuzenko OB, Reuhl KR, Reimer DC, Pozharov VP, Minko T. Inhalation therapy of pulmonary fibrosis by liposomal prostaglandin E2. Eur J Pharm Biopharm. 2013;84:335–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lammers T, Sofias AM, Van der Meel R, Schiffelers R, Storm G, Tacke F, Koschmieder S, Brümmendorf TH, Kiessling F, Metselaar JM. Dexamethasone nanomedicines for COVID-19. Nat Nanotechnol. 2020;15:622–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murthy P, Shaibie NA, Lim CL, Ling APK, Chye SM, Koh RY. An summary of natural medicines for idiopathic pulmonary fibrosis. Processes. 2022;10:1131.

    Article 
    CAS 

    Google Scholar
     

  • Jiang L, Li Y, Yu J, Wang J, Ju J, Dai J. A dry powder inhalable formulation of salvianolic acids for the therapy of pulmonary fibrosis: security, lung deposition, and pharmacokinetic research. Drug Deliv Transl Res. 2021;11:1958–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chennakesavulu S, Mishra A, Sudheer A, Sowmya C, Reddy CS, Bhargav E. Pulmonary supply of liposomal dry powder inhaler formulation for efficient therapy of idiopathic pulmonary fibrosis. Asian J Pharm Sci. 2018;13:91–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kotta S, Aldawsari HM, Badr-Eldin SM, Binmahfouz LS, Bakhaidar RB, Sreeharsha N, Nair AB, Ramnarayanan C. Aerosol supply of surfactant liposomes for administration of pulmonary fibrosis: an strategy supporting pulmonary mechanics. Pharmaceutics. 2021;13(11):1851.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Zhu W, Cai X, Chen M. Atomized paclitaxel liposome inhalation therapy of bleomycin-induced pulmonary fibrosis in rats. Genet Mol Res. 2016;15:1–11.

    Article 

    Google Scholar
     

  • Pandolfi L, Frangipane V, Bocca C, Marengo A, Tarro Genta E, Bozzini S, Morosini M, D’Amato M, Vitulo S, Monti M. Hyaluronic acid-decorated liposomes as modern focused supply system for lung fibrotic cells. Molecules. 2019;24(18):3291.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Zhang L, Wu G-R, Zhou Q, Yue H, Rao L-Z, Yuan T, Mo B, Wang F-X, Chen L-M. MBD2 serves as a viable goal in opposition to pulmonary fibrosis by inhibiting macrophage M2 program. Sci Adv. 2021;7:eabb6075.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knop Okay, Hoogenboom R, Fischer D, Schubert US. Poly (ethylene glycol) in drug supply: professionals and cons in addition to potential options. Angew Chem Int Ed. 2010;49:6288–308.

    Article 
    CAS 

    Google Scholar
     

  • Togami Okay, Maruta Y, Nanbu M, Tada H, Chono S. Extended distribution of aerosolized PEGylated liposomes within the lungs of mice with bleomycin-induced pulmonary fibrosis. Drug Dev Ind Pharm. 2020;46:1873–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug supply. Biomed Pharmacother. 2018;103:598–613.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garbuzenko OB, Ivanova V, Kholodovych V, Reimer DC, Reuhl KR, Yurkow E, Adler D, Minko T. Combinatorial therapy of idiopathic pulmonary fibrosis utilizing nanoparticles with prostaglandin E and siRNA (s). Nanomed-Nanotechnol. 2017;13:1983–92.

    Article 
    CAS 

    Google Scholar
     

  • Keum H, Kim J, Yoo D, Kim TW, Website positioning C, Kim D, Jon S. Biomimetic lipid nanocomplexes incorporating STAT3-inhibiting peptides successfully infiltrate the lung barrier and ameliorate pulmonary fibrosis. J Controll Launch. 2021;332:160–70.

    Article 
    CAS 

    Google Scholar
     

  • Weber S, Zimmer A, Pardeike J. Strong lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary software: a overview of the state-of-the-art. Eur J Pharm Biopharm. 2014;86:7–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pardeike J, Weber S, Zarfl HP, Pagitz M, Zimmer A. Itraconazole-loaded nanostructured lipid carriers (NLC) for pulmonary therapy of aspergillosis in falcons. Eur J Pharm Biopharm. 2016;108:269–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiwari R, Pathak Okay. Nanostructured lipid provider versus strong lipid nanoparticles of simvastatin: comparative evaluation of traits, pharmacokinetics and tissue uptake. Int J Pharmaceut. 2011;415:232–43.

    Article 
    CAS 

    Google Scholar
     

  • Patil-Gadhe A, Kyadarkunte A, Patole M, Pokharkar V. Montelukast-loaded nanostructured lipid carriers: Half II pulmonary drug supply and in vitro–in vivo aerosol efficiency. Eur J Pharm Biopharm. 2014;88:169–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Estanqueiro M, Amaral MH, Conceição J, Lobo JMS. Nanotechnological carriers for most cancers chemotherapy: the state-of-the-art. Colloids Surf B. 2015;126:631–48.

    Article 
    CAS 

    Google Scholar
     

  • Dinh P-UC, Paudel D, Brochu H, Popowski KD, Gracieux MC, Cores J, Huang Okay, Hensley MT, Harrell E, Vandergriff AC. Inhalation of lung spheroid cell secretome and exosomes promotes lung restore in pulmonary fibrosis. Nat Commun. 2020;11:1–14.

    Article 

    Google Scholar
     

  • Li Z, Wang Z, Dinh P-UC, Zhu D, Popowski KD, Lutz H, Hu S, Lewis MG, Cook dinner A, Andersen H. Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung damage in a non-human primate mannequin of COVID-19. Nat Nanotechnol. 2021;16:942–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdelaziz HM, Gaber M, Abd-Elwakil MM, Mabrouk MT, Elgohary MM, Kamel NM, Kabary DM, Freag MS, Samaha MW, Mortada SM. Inhalable particulate drug supply programs for lung most cancers remedy: nanoparticles, microparticles, nanocomposites and nanoaggregates. J Controll Launch. 2018;269:374–92.

    Article 
    CAS 

    Google Scholar
     

  • Sharifi-Rad J, Quispe C, Butnariu M, Rotariu LS, Sytar O, Sestito S, Rapposelli S, Akram M, Iqbal M, Krishna A. Chitosan nanoparticles as a promising instrument in nanomedicine with specific emphasis on oncological therapy. Most cancers Cell Int. 2021;21:1–21.

    Article 

    Google Scholar
     

  • Mohammed MA, Syeda JT, Wasan KM, Wasan EK. An summary of chitosan nanoparticles and its software in non-parenteral drug supply. Pharmaceutics. 2017;9(4):53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rashidipour M, Rasoulian B, Maleki A, Davari B, Pajouhi N, Mohammadi E. Pectin/chitosan/tripolyphosphate encapsulation protects the rat lung from fibrosis and apoptosis induced by paraquat inhalation. Pestic Biochem Phys. 2021;178: 104919.

    Article 
    CAS 

    Google Scholar
     

  • Zhang G, Mo S, Fang B, Zeng R, Wang J, Tu M, Zhao J. Pulmonary supply of therapeutic proteins primarily based on zwitterionic chitosan-based nanocarriers for therapy on bleomycin-induced pulmonary fibrosis. Int J Biol Macromol. 2019;133:58–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable managed drug supply provider. Polymers. 2011;3:1377–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee C, Website positioning J, Hwang HS, Lee S, Lee ES, Lee EH, Choi H-G, Youn YS. Therapy of bleomycin-induced pulmonary fibrosis by inhaled tacrolimus-loaded chitosan-coated poly (lactic-co-glycolic acid) nanoparticles. Biomed Pharmacother. 2016;78:226–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elkomy MH, Khallaf RA, Mahmoud MO, Sayed RR, El-Kalaawy AM, Abdel-Razik A-RH, Aboud HM. Intratracheally inhalable nifedipine-loaded chitosan-PLGA nanocomposites as a promising nanoplatform for lung focusing on: snowballed safety through regulation of TGF-β/β-catenin pathway in bleomycin-induced pulmonary fibrosis. Prescribed drugs. 2021;14(12):1225.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gulati S, Luckhardt TR. Up to date analysis of the security, efficacy and tolerability of pirfenidone within the therapy of idiopathic pulmonary fibrosis. Drug Healthc Affected person. 2020;12:85–94.

    Article 
    CAS 

    Google Scholar
     

  • Trivedi R, Redente EF, Thakur A, Riches DW, Kompella UB. Native supply of biodegradable pirfenidone nanoparticles ameliorates bleomycin-induced pulmonary fibrosis in mice. Nanotechnology. 2012;23:505101.

    Article 
    PubMed 

    Google Scholar
     

  • Li F, Dai H, Geng J, Xu X. Inhibiting CXCR4/CXCL12 axis attenuates lung fibrosis each in vitro and in vivo. Eur Respir Soc. 2012.

  • Xu J, Mora A, Shim H, Stecenko A, Brigham KL, Rojas M. Function of the SDF-1/CXCR4 axis within the pathogenesis of lung damage and fibrosis. Am J Resp Cell Mol. 2007;37:291–9.

    Article 
    CAS 

    Google Scholar
     

  • Shu H-KG, Yoon Y, Hong S, Xu Okay, Gao H, Hao C, Torres-Gonzalez E, Nayra C, Rojas M, Shim H. Inhibition of the CXCL12/CXCR4-axis as preventive remedy for radiation-induced pulmonary fibrosis. PLoS ONE. 2013;8(11):e79768.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding L, Zhu C, Yu F, Wu P, Chen G, Ullah A, Wang Okay, Solar M, Li J, Oupický D. Pulmonary supply of polyplexes for mixed PAI-1 gene silencing and CXCR4 inhibition to deal with lung fibrosis. Nanomed-Nanotechnol. 2018;14:1765–76.

    CAS 

    Google Scholar
     

  • Website positioning J, Lee C, Hwang HS, Kim B, Lee ES, Oh KT, Lim J-L, Choi H-G, Youn YS. Therapeutic benefit of inhaled tacrolimus-bound albumin nanoparticles in a bleomycin-induced pulmonary fibrosis mouse mannequin. Pulm Pharmacol Ther. 2016;36:53–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang R, Jing W, Chen C, Zhang S, Mohamed M, Solar P, Wang G, You W, Yang Z, Zhang J. Inhaled mRNA nanoformulation with biogenic ribosomal protein reverses established pulmonary fibrosis in a bleomycin-induced murine mannequin. Adv Mater. 2022;32(14):e2107506.

    Article 

    Google Scholar
     

  • Rabinow BE. Nanosuspensions in drug supply. Nat Rev Drug Discov. 2004;3:785–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su W, Liang Y, Meng Z, Chen X, Lu M, Han X, Deng X, Zhang Q, Zhu H, Fu T. Inhalation of tetrandrine-hydroxypropyl-β-cyclodextrin inclusion complexes for pulmonary fibrosis therapy. Mol Pharmaceut. 2020;17:1596–607.

    Article 
    CAS 

    Google Scholar
     

  • Wang Okay, Lei Y, Xia D, Xu P, Zhu T, Jiang Z, Ma Y. Neutrophil membranes coated, antibiotic agent loaded nanoparticles focusing on to the lung irritation. Colloids Surf B. 2020;188:110755.

    Article 
    CAS 

    Google Scholar
     

  • Card JW, Zeldin DC, Bonner JC, Nestmann ER. Pulmonary functions and toxicity of engineered nanoparticles. Am J Physiol-Lung C. 2008;295:L400–11.

    Article 
    CAS 

    Google Scholar
     

  • Vartiainen V, Raula J, Bimbo LM, Viinamäki J, Backman JT, Ugur N, Kauppinen E, Sutinen E, Joensuu E, Koli Okay. Pulmonary administration of a dry powder formulation of the antifibrotic drug tilorone reduces silica-induced lung fibrosis in mice. Int J Pharmaceut. 2018;544:121–8.

    Article 
    CAS 

    Google Scholar
     

  • Hemmati AA, Karampour NS, Dahanzadeh S, Sharif B, Makhmalzadeh AR, Ghafourian M. The protecting results of nebulized nano-curcumin in opposition to bleomycin-induced pulmonary fibrosis in rats. Jundishapur J Nat Pharma Prod. 2021;16:e106961.

    CAS 

    Google Scholar
     

  • Zhou Y, Zhen M, Ma H, Li J, Shu C, Wang C. Inhalable gadofullerenol/[70] fullerenol as high-efficiency ROS scavengers for pulmonary fibrosis remedy. Nanomed-Nanotechnol. 2018;14:1361–9.

    Article 
    CAS 

    Google Scholar
     

  • Ko W-C, Wang S-J, Hsiao C-Y, Hung C-T, Hsu Y-J, Chang D-C, Hung C-F. Pharmacological position of functionalized gold nanoparticles in illness functions. Molecules. 2022;27:1551.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Codullo V, Cova E, Pandolfi L, Breda S, Morosini M, Frangipane V, Malatesta M, Calderan L, Cagnone M, Pacini C. Imatinib-loaded gold nanoparticles inhibit proliferation of fibroblasts and macrophages from systemic sclerosis sufferers and ameliorate experimental bleomycin-induced lung fibrosis. J Controll Launch. 2019;310:198–208.

    Article 
    CAS 

    Google Scholar
     

  • Pandolfi L, Fusco R, Frangipane V, D’Amico R, Giustra M, Bozzini S, Morosini M, D’Amato M, Cova E, Ferrario G. Loading Imatinib inside focused nanoparticles to stop Bronchiolitis Obliterans Syndrome. Sci Rep-UK. 2020;10:1–10.


    Google Scholar
     

  • Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, Dixon B, Chen P. Biocompatibility of hydrogel-based scaffolds for tissue engineering functions. Biotechnol Adv. 2017;35:530–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Mooney DJ. Designing hydrogels for managed drug supply. Nat Rev Mater. 2016;1:1–17.

    Article 

    Google Scholar
     

  • Loessner D, Meinert C, Kaemmerer E, Martine LC, Yue Okay, Levett PA, Klein TJ, Melchels FP, Khademhosseini A, Hutmacher DW. Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue tradition platforms. Nat Protoc. 2016;11:727–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shamskhou EA, Kratochvil MJ, Orcholski ME, Nagy N, Kaber G, Steen E, Balaji S, Yuan Okay, Keswani S, Danielson B. Hydrogel-based supply of Il-10 improves therapy of bleomycin-induced lung fibrosis in mice. Biomaterials. 2019;203:52–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ojo AS, Balogun SA, Williams OT, Ojo OS. Pulmonary fibrosis in COVID-19 survivors: predictive elements and threat discount methods. BMC Pulm Med. 2020;2020(5):1–10.


    Google Scholar
     

  • Alhiyari MA, Ata F, Alghizzawi MI, Bilal ABI, Abdulhadi AS, Yousaf Z. Publish COVID-19 fibrosis, an rising complicationof SARS-CoV-2 an infection. IDCases. 2021;23:e01041.

    Article 

    Google Scholar
     

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MdP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S. Nano primarily based drug supply programs: current developments and future prospects. J Nanobiotechnol. 2018;16:1–33.

    Article 

    Google Scholar
     

  • Forest V, Pourchez J. Nano-delivery to the lung-by inhalation or different routes and why nano when micro is essentially enough? Adv Drug Ship Rev. 2022;183:114173.

    Article 
    CAS 

    Google Scholar
     

  • Lee W-H, Lavatory C-Y, Traini D, Younger PM. Inhalation of nanoparticle-based drug for lung most cancers therapy: benefits and challenges. Asian J Pharm Sci. 2015;10:481–9.

    Article 

    Google Scholar
     

  • Gulati N, Chellappan DK, MacLoughlin R, Dua Okay, Dureja H. Inhaled nano-based therapeutics for inflammatory lung illnesses: current advances and future prospects. Life Sci. 2021;285:119969.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hädrich G, Boschero RA, Appel AS, Falkembach M, Monteiro M, da Silva PEA, Dailey LA, Dora CL. Tuberculosis therapy facilitated by lipid nanocarriers: can inhalation enhance the routine? Assay Drug Dev Technol. 2020;18:298–307.

    Article 
    PubMed 

    Google Scholar
     

  • Tang W, Zhang Y, Zhu G. Pulmonary supply of mucosal nanovaccines. Nanoscale. 2022;14:263–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • U.S. Nationwide Library of Drugs. Medical Trials.gov. First-in-human research to guage the security, tolerability, immunogenicity, and pharmacokinetics of LQ036 [EB/OL]. (2023-04-13) [2023-05-19] https://beta.clinicaltrials.gov/research/NCT04993443.

  • U.S. Nationwide Library of Drugs. Medical Trials.gov. A section 1 research of VX-522 in members with cystic fibrosis (CF) [EB/OL]. (2023-05-01) [2023-05-04] https://clinicaltrials.gov/ct2/present/report/NCT05668741.

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles