LeCun, Y., Bengio, Y. & Hinton, G. Deep studying. Nature 521, 436–444 (2015).
Christensen, D. V. et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorphic Comput. Eng. 2, 022501 (2022).
Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).
Worledge, D. C. Spin-Switch-Torque MRAM: the subsequent revolution in reminiscence. In 2022 IEEE Worldwide Reminiscence Workshop (IMW) 1–4 (IEEE, 2022).
Safranski, C., Solar, J. Z. & Kent, A. D. A perspective on electrical era of spin present for magnetic random entry recollections. Appl. Phys. Lett. 120, 160502 (2022).
Lequeux, S. et al. A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy. Sci. Rep. 6, 31510 (2016).
Kurenkov, A. et al. Synthetic neuron and synapse realized in an antiferromagnet/ferromagnet heterostructure utilizing dynamics of spin–orbit torque switching. Adv. Mater. 31, 1900636 (2019).
Chen, R. et al. Nanoscale room-temperature multilayer skyrmionic synapse for deep spiking neural networks. Phys. Rev. Appl. 14, 014096 (2020).
Track, Ok. M. et al. Skyrmion-based synthetic synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).
Mansueto, M. et al. Spintronic memristors for neuromorphic circuits primarily based on the angular variation of tunnel magnetoresistance. Nanoscale 13, 11488–11496 (2021).
Zhang, X. et al. Spin-torque memristors primarily based on perpendicular magnetic tunnel junctions for neuromorphic computing. Adv. Sci. 8, 2004645 (2021).
Xu, J.-W. et al. A quantum materials spintronic resonator. Sci. Rep. 11, 15082 (2021).
Kiraly, B., Knol, E. J., van Weerdenburg, W. M. J., Kappen, H. J. & Khajetoorians, A. A. An atomic Boltzmann machine able to self-adaption. Nat. Nanotechnol. 16, 414–420 (2021).
Leroux, N. et al. {Hardware} realization of the multiply and accumulate operation on radio-frequency indicators with magnetic tunnel junctions. Neuromorphic Comput. Eng. https://doi.org/10.1088/2634-4386/abfca6 (2021).
Monalisha, P., Kumar, A. P. S., Wang, X. R. & Piramanayagam, S. N. Emulation of synaptic plasticity on a cobalt-based synaptic transistor for neuromorphic computing. ACS Appl. Mater. Interfaces 14, 11864–11872 (2022).
Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).
Prychynenko, D. et al. Magnetic skyrmion as a nonlinear resistive factor: a possible constructing block for reservoir computing. Phys. Rev. Appl. 9, 014034 (2018).
Borders, W. A. et al. Integer factorization utilizing stochastic magnetic tunnel junctions. Nature 573, 390–393 (2019).
Tsunegi, S. et al. Bodily reservoir computing primarily based on spin torque oscillator with compelled synchronization. Appl. Phys. Lett. 114, 164101 (2019).
Koo, M. et al. Distance computation primarily based on coupled spin-torque oscillators: utility to picture processing. Phys. Rev. Appl. 14, 034001 (2020).
Zahedinejad, M. et al. Two-dimensional mutually synchronized spin Corridor nano-oscillator arrays for neuromorphic computing. Nat. Nanotechnol. 15, 47–52 (2020).
Ababei, R. V. et al. Neuromorphic computation with a single magnetic area wall. Sci. Rep. 11, 15587 (2021).
Watt, S., Kostylev, M., Ustinov, A. B. & Kalinikos, B. A. Implementing a magnonic reservoir laptop mannequin primarily based on time-delay multiplexing. Phys. Rev. Appl. 15, 064060 (2021).
Mazza, L. et al. Computing with injection-locked spintronic diodes. Phys. Rev. Appl. 17, 014045 (2022).
Zahedinejad, M. et al. Memristive management of mutual spin Corridor nano-oscillator synchronization for neuromorphic computing. Nat. Mater. 21, 81–87 (2022).
Romera, M. et al. Vowel recognition with 4 coupled spin-torque nano-oscillators. Nature 563, 230–234 (2018).
Romera, M. et al. Binding occasions via the mutual synchronization of spintronic nano-neurons. Nat. Commun. 13, 883 (2022).
Finocchio, G. et al. Views on spintronic diodes. Appl. Phys. Lett. 118, 160502 (2021).
Siafarikas, D. & Volakis, J. L. Towards direct RF sampling: implications for digital communications. IEEE Microw. Magazine. 21, 43–52 (2020).
Farley, B., McGrath, J. & Erdmann, C. An all-programmable 16-nm RFSoC for digital-RF communications. IEEE Micro 38, 61–71 (2018).
Leroux, N. et al. Radio-frequency multiply-and-accumulate operations with spintronic synapses. Phys. Rev. Appl. 15, 034067 (2021).
Tulapurkar, A. A. et al. Spin-torque diode impact in magnetic tunnel junctions. Nature 438, 339–342 (2005).
Slavin, A. & Tiberkevich, V. Nonlinear auto-oscillator concept of microwave era by spin-polarized present. IEEE Trans. Magn. 45, 1875–1918 (2009).
Wright, L. G. et al. Deep bodily neural networks skilled with backpropagation. Nature 601, 549–555 (2022).
Yoon, Y. H., Khan, S., Huh, J. & Ye, J. C. Environment friendly B-mode ultrasound picture reconstruction from sub-sampled RF information utilizing deep studying. IEEE Trans. Med. Imaging 38, 325–336 (2019).
Dai, M., Li, S., Wang, Y., Zhang, Q. & Yu, J. Publish-processing radio-frequency sign primarily based on deep studying technique for ultrasonic microbubble imaging. Biomed. Eng. On-line 18, 95 (2019).
Besler, E., Wang, Y. C. & Sahakian, A. V. Actual-time radiofrequency ablation lesion depth estimation utilizing multi-frequency impedance with a deep neural community and tree-based ensembles. IEEE Trans. Biomed. Eng. 67, 1890–1899 (2020).
Service provider, Ok., Revay, S., Stantchev, G. & Nousain, B. Deep studying for RF machine fingerprinting in cognitive communication networks. IEEE J. Sel. High. Sign Course of. 12, 160–167 (2018).
Lien, J. et al. Soli: ubiquitous gesture sensing with millimeter wave radar. ACM Trans. Graph. 35, 142 (2016).
Basak, S., Rajendran, S., Pollin, S. & Scheers, B. Drone classification from RF fingerprints utilizing deep residual nets. In 2021 Worldwide Convention on COMmunication Methods & NETworkS (COMSNETS) 548–555 (IEEE, 2021).
USRP X310 Excessive-Efficiency Software program Outlined Radio https://www.ettus.com/all-products/x310-kit/ (Ettus Analysis).
Evaluate 10 Sequence Graphics Playing cards, GeForce https://www.nvidia.com/en-in/geforce/merchandise/10series/evaluate/ (NVIDIA).
Chao, X., Jamali, M. & Wang, J.-P. Scaling impact of spin-torque nano-oscillators. AIP Adv. 7, 056624 (2017).
Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).
Dussaux, A. et al. Giant amplitude spin torque vortex oscillations at zero exterior subject utilizing a perpendicular spin polarizer. Appl. Phys. Lett. 105, 022404 (2014).
Tsunegi, S. et al. Excessive emission energy and Q think about spin torque vortex oscillator consisting of FeB free layer. Appl. Phys. Categorical 7, 063009 (2014).
Choi, J.-G. et al. Voltage-driven gigahertz frequency tuning of spin Corridor nano-oscillators. Nat. Commun. 13, 3783 (2022).
Martins, L. et al. Non-volatile synthetic synapse primarily based on a vortex nano-oscillator. Sci. Rep. 11, 16094 (2021).
Jiang, S. et al. Lowered spin torque nano-oscillator linewidth utilizing He+ irradiation. Appl. Phys. Lett. 116, 072403 (2020).
Divinskiy, B., Urazhdin, S., Demokritov, S. O. & Demidov, V. E. Managed nonlinear magnetic damping in spin-Corridor nano-devices. Nat. Commun. 10, 5211 (2019).
Sethi, P. et al. Compensation of anisotropy in spin-Corridor units for neuromorphic functions. Phys. Rev. Appl. 19.6, 064018 (2023).
Jenkins, A. S., Alvarez, L. S. E., Freitas, P. P. & Ferreira, R. Digital and analogue modulation and demodulation scheme utilizing vortex-based spin torque nano-oscillators. Sci. Rep. 10, 11181 (2020).
Jung, S. et al. A crossbar array of magnetoresistive reminiscence units for in-memory computing. Nature 601, 211–216 (2022).
Craven, M. P., Curtis, Ok. M. & Hayes-Gill, B. R. Frequency division multiplexing in analogue neural community. Electron. Lett. 27, 918–920 (1991).
Leroux, N. et al. Convolutional neural networks with radio-frequency spintronic nano-devices. Neuromorphic Comput. Eng. 2, 034002 (2022).
Noh, S. et al. Spin dynamics in ferromagnetic resonance for nano-sized magnetic dot arrays: metrology and perception into magnetization dynamics. IEEE Trans. Magn. 47, 2387–2390 (2011).
Litvinenko, A. et al. Ultrafast GHz-range swept-tuned spectrum analyzer with 20 ns temporal decision primarily based on a spin-torque nano-oscillator with a uniformly magnetized ‘free’ layer. Nano Lett. 22, 1874–1879 (2022).
Kurokawa, Y. et al. Extremely-wide-band millimeter-wave generator utilizing spin torque oscillator with robust interlayer trade couplings. Sci. Rep. 12, 10849 (2022).
Bonetti, S., Muduli, P., Mancoff, F. & Åkerman, J. Spin torque oscillator frequency versus magnetic subject angle: the prospect of operation past 65 GHz. Appl. Phys. Lett. 94, 102507 (2009).
Khymyn, R. et al. Extremely-fast synthetic neuron: era of picosecond-duration spikes in a current-driven antiferromagnetic auto-oscillator. Sci. Rep. 8, 15727 (2018).
Chakravarty, A. et al. Supervised studying of an opto-magnetic neural community with ultrashort laser pulses. Appl. Phys. Lett. 114, 192407 (2019).
Scellier, B. & Bengio, Y. Equilibrium propagation: bridging the hole between energy-based fashions and backpropagation. Entrance. Comput. Neurosci. 11, 24 (2017).
Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. Optuna: a next-generation hyperparameter optimization framework. In Proceedings of the twenty fifth ACM SIGKDD Worldwide Convention on Information Discovery & Knowledge Mining 2623–2631 (Affiliation for Computing Equipment, 2019).