Ultrafast exciton fluid circulate in an atomically skinny MoS2 semiconductor


  • Müller, M., Schmalian, J. & Fritz, L. Graphene: an almost excellent fluid. Phys. Rev. Lett. 103, 025301 (2009).


    Google Scholar
     

  • Bandurin, D. A. et al. Destructive native resistance attributable to viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    CAS 

    Google Scholar
     

  • Crossno, J. et al. Commentary of the Dirac fluid and the breakdown of the Wiedemann–Franz legislation in graphene. Science 351, 1058–1061 (2016).

    CAS 

    Google Scholar
     

  • Moll, P. J. W., Kushwaha, P., Nandi, N., Schmidt, B. & Mackenzie, A. P. Proof for hydrodynamic electron circulate in PdCuO2. Science 351, 1061–1064 (2016).

    CAS 

    Google Scholar
     

  • Huang, Okay. Equation of state of a Bose–Einstein system of particles with engaging interactions. Phys. Rev. 119, 1129–1142 (1960).


    Google Scholar
     

  • Fleming, P. D. Hydrodynamic habits of triplet excitons. J. Chem. Phys. 59, 3199–3206 (1973).

    CAS 

    Google Scholar
     

  • Hyperlink, B. & Baym, G. Hydrodynamic transport of excitons in semiconductors and Bose–Einstein condensation. Phys. Rev. Lett. 69, 2959–2962 (1992).

    CAS 

    Google Scholar
     

  • Laikhtman, B. & Rapaport, R. Exciton correlations in coupled quantum wells and their luminescence blue shift. Phys. Rev. B 80, 195313 (2009).


    Google Scholar
     

  • Versteegh, M. A. M., van Lange, A. J., Stoof, H. T. C. & Dijkhuis, J. I. Commentary of preformed electron–gap Cooper pairs in extremely excited ZnO. Phys. Rev. B 85, 195206 (2012).


    Google Scholar
     

  • Stern, M., Umansky, V. & Bar-Joseph, I. Exciton liquid in coupled quantum wells. Science 343, 55–57 (2014).

    CAS 

    Google Scholar
     

  • Glazov, M. M. & Suris, R. A. Collective states of excitons in semiconductors. Phys.-Uspekhi 63, 1051–1071 (2020).

    CAS 

    Google Scholar
     

  • Honold, A., Schultheis, L., Kuhl, J. & Tu, C. W. Collision broadening of two-dimensional excitons in a gaas single quantum effectively. Phys. Rev. B 40, 6442–6445 (1989).

    CAS 

    Google Scholar
     

  • Ramon, G., Mann, A. & Cohen, E. Idea of impartial and charged exciton scattering with electrons in semiconductor quantum wells. Phys. Rev. B 67, 045323 (2003).


    Google Scholar
     

  • Anankine, R. et al. Temporal coherence of spatially oblique excitons throughout Bose–Einstein condensation: the function of free carriers. N. J. Phys. 20, 073049 (2018).


    Google Scholar
     

  • Keldysh, L. V. The electron–gap liquid in semiconductors. Contemp. Phys. 27, 395–428 (1986).

    CAS 

    Google Scholar
     

  • Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 99, 102109 (2011).


    Google Scholar
     

  • Robert, C. et al. Exciton radiative lifetime in transition metallic dichalcogenide monolayers. Phys. Rev. B 93, 205423 (2016).


    Google Scholar
     

  • Liu, S. et al. Room-temperature valley polarization in atomically skinny semiconductors by way of chalcogenide alloying. ACS Nano 14, 9873–9883 (2020).

    CAS 

    Google Scholar
     

  • Steinhoff, A. et al. Exciton fission in monolayer transition metallic dichalcogenide semiconductors. Nat. Commun. 8, 1166 (2017).

    CAS 

    Google Scholar
     

  • Selig, M. et al. Darkish and vivid exciton formation, thermalization, and photoluminescence in monolayer transition metallic dichalcogenides. 2D Mater. 5, 035017 (2018).


    Google Scholar
     

  • Efimkin, D. Okay., Laird, E. Okay., Levinsen, J., Parish, M. M. & MacDonald, A. H. Electron–exciton interactions within the exciton–polaron downside. Phys. Rev. B 103, 075417 (2021).

    CAS 

    Google Scholar
     

  • Kumar, N. et al. Exciton diffusion in monolayer and bulk MoSe2. Nanoscale 6, 4915–4919 (2014).

    CAS 

    Google Scholar
     

  • Kato, T. & Kaneko, T. Transport dynamics of impartial excitons and trions in monolayer WS2. ACS Nano 10, 9687–9694 (2016).

    CAS 

    Google Scholar
     

  • Onga, M., Zhang, Y., Ideue, T. & Iwasa, Y. Exciton Corridor impact in monolayer MoSs2. Nat. Mat. 16, 1193–1197 (2017).

    CAS 

    Google Scholar
     

  • Zipfel, J. et al. Exciton diffusion in monolayer semiconductors with suppressed dysfunction. Phys. Rev. B 101, 115430 (2020).

    CAS 

    Google Scholar
     

  • Glazov, M. M. Quantum interference impact on exciton transport in monolayer semiconductors. Phys. Rev. Lett. 124, 166802 (2020).

    CAS 

    Google Scholar
     

  • Hotta, T. et al. Exciton diffusion in hBN-encapsulated monolayer MoSe2. Phys. Rev. B 102, 115424 (2020).

    CAS 

    Google Scholar
     

  • Uddin, S. Z. et al. Impartial exciton diffusion in monolayer MoS2. ACS Nano 14, 13433–13440 (2020).

    CAS 

    Google Scholar
     

  • Excessive, A. A. et al. Spontaneous coherence in a chilly exciton gasoline. Nature 483, 584–588 (2012).

    CAS 

    Google Scholar
     

  • Anankine, R. et al. Quantized vortices and four-component superfluidity of semiconductor excitons. Phys. Rev. Lett. 118, 127402 (2017).


    Google Scholar
     

  • Shahnazaryan, V., Iorsh, I., Shelykh, I. A. & Kyriienko, O. Exciton–exciton interplay in transition-metal dichalcogenide monolayers. Phys. Rev. B 96, 115409 (2017).


    Google Scholar
     

  • Amani, M. et al. Close to-unity photoluminescence quantum yield in MoSs2. Science 350, 1065–1068 (2015).

    CAS 

    Google Scholar
     

  • Lien, D.-H. et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 364, 468–471 (2019).

    CAS 

    Google Scholar
     

  • Ballarini, D. et al. Macroscopic two-dimensional polariton condensates. Phys. Rev. Lett. 118, 215301 (2017).


    Google Scholar
     

  • Deng, H., Haug, H. & Yamamoto, Y. Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    CAS 

    Google Scholar
     

  • Michalsky, T., Wille, M., Grundmann, M. & Schmidt-Grund, R. Spatio-temporal evolution of coherent polariton modes in ZnO microwire cavities at room temperature. Nano Lett. 18, 6820–6825 (2018).

    CAS 

    Google Scholar
     

  • Elias, D. C. et al. Dirac cones reshaped by interplay results in suspended graphene. Nat. Phys. 7, 701–704 (2011).

    CAS 

    Google Scholar
     

  • Sung, J. et al. Lengthy-range ballistic propagation of carriers in methylammonium lead iodide perovskite skinny movies. Nat. Phys. 16, 171–176 (2020).

    CAS 

    Google Scholar
     

  • Kalt, H. et al. Quasi-ballistic transport of excitons in quantum wells. J. Lumin. 112, 136–141 (2005).

    CAS 

    Google Scholar
     

  • Butov, L. V., Gossard, A. C. & Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 751–754 (2002).

    CAS 

    Google Scholar
     

  • Snoke, D., Denev, S., Liu, Y., Pfeiffer, L. & West, Okay. Lengthy-range transport in excitonic darkish states in coupled quantum wells. Nature 418, 754 (2002).

    CAS 

    Google Scholar
     

  • Dang, S. et al. Commentary of algebraic time order for two-dimensional dipolar excitons. Phys. Rev. Res. 2, 032013 (2020).

    CAS 

    Google Scholar
     

  • Trauernicht, D. P., Wolfe, J. P. & Mysyrowicz, A. Extremely cellular paraexcitons in cuprous oxide. Phys. Rev. Lett. 52, 855–858 (1984).

    CAS 

    Google Scholar
     

  • Haas, F. & Mahmood, S. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy. Phys. Rev. E 92, 053112 (2015).


    Google Scholar
     

  • Svintsov, D., Vyurkov, V., Yurchenko, S., Otsuji, T. & Ryzhii, V. Hydrodynamic mannequin for electron–gap plasma in graphene. J. Appl. Phys. 111, 083715 (2012).


    Google Scholar
     

  • Erkensten, D., Brem, S. & Malic, E. Exciton-exciton interplay in transition metallic dichalcogenide monolayers and van der Waals heterostructures. Phys. Rev. B 103, 045426 (2021).

    CAS 

    Google Scholar
     

  • Dery, H. & Music, Y. Polarization evaluation of excitons in monolayer and bilayer transition-metal dichalcogenides. Phys. Rev. B 92, 125431 (2015).


    Google Scholar
     

  • Do, T. T. H. et al. Vivid exciton fine-structure in two-dimensional lead halide perovskites. Nano Lett. 20, 5141–5148 (2020).

    CAS 

    Google Scholar
     

  • Qiu, D. Y., Cao, T. & Louie, S. G. Nonanalyticity, valley quantum phases, and lightlike exciton dispersion in monolayer transition metallic dichalcogenides: principle and first-principles calculations. Phys. Rev. Lett. 115, 176801 (2015).


    Google Scholar
     

  • Kadantsev, E. S. & Hawrylak, P. Digital construction of a single MoS2 monolayer. Stable State Commun. 152, 909–913 (2012).

    CAS 

    Google Scholar
     

  • Chen, W., Huang, C.-J. & Zhu, Q. Trying to find unconventional superfluid in exciton condensate of monolayer semiconductors. Preprint at https://doi.org/10.48550/arXiv.2302.05585

  • Guo, H., Zhang, X. & Lu, G. Tuning moiré; excitons in Janus heterobilayers for high-temperature Bose–Einstein condensation. Sci. Adv. 8, eabp9757 (2022).

    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles