Yu, X., Bates, J. B., Jellison, G. E. & Hart, F. X. A secure thin-film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524 (1997).
Bates, J. B. et al. Electrical properties of amorphous lithium electrolyte skinny movies. Strong State Ion. 29, 42–44 (1992).
Lacivita, V. et al. Resolving the amorphous construction of lithium phosphorus oxynitride (Lipon). J. Am. Chem. Soc. 140, 11029–11038 (2018).
Santhanagopalan, D. et al. Interface restricted lithium transport in solid-state batteries. J. Phys. Chem. Lett. 5, 298–303 (2014).
Wang, Z. et al. In situ STEM-EELS remark of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett. 16, 3760–3767 (2016).
Wang, Z. et al. Results of cathode electrolyte interfacial (CEI) layer on long run biking of all-solid-state thin-film batteries. J. Energy Sources 324, 342–348 (2016).
Cheng, D. et al. Unveiling the secure nature of the strong electrolyte interphase between lithium steel and lipon through cryogenic electron microscopy. Joule 4, 2484–2500 (2020).
Hood, Z. D. et al. Elucidating interfacial stability between lithium steel anode and Li phosphorus oxynitride through in situ electron microscopy. Nano Lett. 21, 151–157 (2021).
Lewis, J. A., Tippens, J., Cortes, F. J. Q. & McDowell, M. T. Chemo-mechanical challenges in solid-state batteries. Tendencies Chem. https://doi.org/10.1016/j.trechm.2019.06.013 (2019).
Herbert, E. G., Tenhaeff, W. E., Dudney, N. J. & Pharr, G. M. Mechanical characterization of LiPON movies utilizing nanoindentation. Skinny Strong Movies 520, 413–418 (2011).
Xu, F. et al. Full elastic characterization of lithium phosphorous oxynitride movies utilizing picosecond ultrasonics. Skinny Strong Movies 548, 366–370 (2013).
Zhao, S., Fu, Z. & Qin, Q. A solid-state electrolyte lithium phosphorus oxynitride movie ready by pulsed laser deposition. Skinny Strong Movies 415, 108–113 (2002).
Kozen, A. C., Pearse, A. J., Lin, C. F., Noked, M. & Rubloff, G. W. Atomic layer deposition of the strong electrolyte LiPON. Chem. Mater. 27, 5324–5331 (2015).
Liu, W. Y., Fu, Z. W., Li, C. L. & Qin, Q. Z. Lithium phosphorus oxynitride skinny movie fabricated by a nitrogen plasma-assisted deposition of E-beam response evaporation. Electrochem. Strong-State Lett. 7, 36–41 (2004).
Nowak, S., Berkemeier, F. & Schmitz, G. Extremely-thin LiPON movies—elementary properties and software in strong state skinny movie mannequin batteries. J. Energy Sources 275, 144–150 (2015).
Kim, H. T., Mun, T., Park, C., Jin, S. W. & Park, H. Y. Traits of lithium phosphorous oxynitride skinny movies deposited by steel–natural chemical vapor deposition method. J. Energy Sources 244, 641–645 (2013).
Muñoz, F. et al. Elevated electrical conductivity of LiPON glasses produced by ammonolysis. Strong State Ion. 179, 574–579 (2008).
Westover, A. S. et al. Plasma synthesis of spherical crystalline and amorphous electrolyte nanopowders for solid-state batteries. ACS Appl. Mater. Interfaces 12, 11570–11578 (2020).
López-Aranguren, P. et al. Crystalline LiPON as a bulk-type strong electrolyte. ACS Vitality Lett. https://doi.org/10.1021/acsenergylett.0c02336 (2021).
Bates, J. B. et al. Fabrication and characterization of amorphous lithium electrolyte skinny movies and rechargeable thin-film batteries. J. Energy Sources 43, 103–110 (1993).
Schwöbel, A., Hausbrand, R. & Jaegermann, W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission. Strong State Ion. 273, 51–54 (2015).
Le Van-Jodin, L., Ducroquet, F., Sabary, F. & Chevalier, I. Dielectric properties, conductivity and Li+ ion movement in LiPON skinny movies. Strong State Ion. 253, 151–156 (2013).
Li, J., Ma, C., Chi, M., Liang, C. & Dudney, N. J. Strong electrolyte: the important thing for high-voltage lithium batteries. Adv. Vitality Mater. 5, 1401408 (2015).
Marple, M. A. T. et al. Native construction of glassy lithium phosphorus oxynitride skinny movies: a mixed experimental and ab initio strategy. Angew. Chem. Int. Ed. 59, 22185–22193 (2020).
Köcher, S. S. et al. Chemical shift reference scale for Li strong state NMR derived by first-principles DFT calculations. J. Magn. Reson. 297, 33–41 (2018).
Vieira, E. et al. Versatile solid-state Ge–LiCoO2 battery: from supplies to system software. Adv. Mater. Lett. 8, 820–829 (2017).
Sepúlveda, A., Criscuolo, F., Put, B. & Vereecken, P. M. Impact of excessive temperature LiPON electrolyte in all strong state batteries. Strong State Ion. 337, 24–32 (2019).
Kalnaus, S., Westover, A. S., Kornbluth, M., Herbert, E. & Dudney, N. J. Resistance to fracture within the glassy strong electrolyte Lipon. J. Mater. Res. https://doi.org/10.1557/s43578-020-00098-x (2021).
Ma, D., Chung, W. O., Liu, J. & He, J. Willpower of Younger’s modulus by nanoindentation. Sci. China E 47, 398–408 (2004).
Abadias, G. & Daniel, R. in Handbook of Trendy Coating Applied sciences (eds Aliofkhazraei, M. et al.) 359–436 (Elsevier, 2021).
Swadener, J. G., Taljat, B. & Pharr, G. M. Measurement of residual stress by load and depth sensing indentation with spherical indenters. J. Mater. Res. 16, 2091–2102 (2001).
Lee, J. Z. et al. Cryogenic centered ion beam characterization of lithium steel anodes. ACS Vitality Lett. 4, 489–493 (2019).
Wang, M. J., Carmona, E., Gupta, A., Albertus, P. & Sakamoto, J. Enabling ‘lithium-free’ manufacturing of pure lithium steel solid-state batteries by in situ plating. Nat. Commun. 11, 5201 (2020).
Lee, Y. G. et al. Excessive-energy long-cycling all-solid-state lithium steel batteries enabled by silver–carbon composite anodes. Nat. Vitality 5, 299–308 (2020).
Motoyama, M., Ejiri, M. & Iriyama, Y. Modeling the nucleation and development of Li at steel present collector/LiPON interfaces. J. Electrochem. Soc. 162, A7067–A7071 (2015).
Yan, Okay. et al. Selective deposition and secure encapsulation of lithium by heterogeneous seeded development. Nat. Vitality 1, 16010 (2016).
Lee, Okay., Kazyak, E., Wang, M. J., Dasgupta, N. P. & Sakamoto, J. Analyzing void formation and rewetting of skinny in situ-formed Li anodes on LLZO. Joule 6, 2547–2565 (2022).
Kasemchainan, J. et al. Important stripping present results in dendrite formation on plating in lithium anode strong electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).