Hyaluronic acid-graphene oxide quantum dots nanoconjugate as twin objective drug supply and therapeutic agent in meta-inflammation | Journal of Nanobiotechnology


  • Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of β-Cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care. 2006;29(5):1130–9. https://doi.org/10.2337/dc05-2179.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu H, Ballantyne CM. Metabolic irritation and insulin resistance in weight problems. Circ Res. 2020;126(11):1549–64. https://doi.org/10.1161/CIRCRESAHA.119.315896.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking weight problems with heart problems. Nature. 2006;444(7121):875–80. https://doi.org/10.1038/nature05487.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kusminski CM, Bickel PE, Scherer PE. Concentrating on adipose tissue within the therapy of obesity-associated diabetes. Nat Rev Drug Discov. 2016;15(9):639–60. https://doi.org/10.1038/nrd.2016.75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reilly SM, Saltiel AR. Adapting to weight problems with adipose tissue irritation. Nat Rev Endocrinol. 2017;13(11):633–43. https://doi.org/10.1038/nrendo.2017.90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC, Testa MA, Weiss R. Kind 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1(1):1–22. https://doi.org/10.1038/nrdp.2015.19.

    Article 

    Google Scholar
     

  • Berg AH, Scherer PE. Adipose tissue, irritation, and heart problems. Circ Res. 2005;96(9):939–49. https://doi.org/10.1161/01.RES.0000163635.62927.34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW, Miller AH, Mantovani A, Weyand CM, Barzilai N, Goronzy JJ, Rando TA, Effros RB, Lucia A, Kleinstreuer N, Slavich GM. Continual irritation within the etiology of illness throughout the life span. Nat Med. 2019;25(12):1822–32. https://doi.org/10.1038/s41591-019-0675-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koyama Y, Brenner DA. Liver irritation and fibrosis. J Clin Make investments. 2017;127(1):55–64. https://doi.org/10.1172/JCI88881.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chitturi S, Abeygunasekera S, Farrell GC, Holmes-Walker J, Hui JM, Fung C, Karim R, Lin R, Samarasinghe D, Liddle C, Weltman M, George J. NASH and insulin resistance: insulin hypersecretion and particular affiliation with the insulin resistance syndrome. Hepatology. 2002;35(2):373–9. https://doi.org/10.1053/jhep.2002.30692.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sibuyi NRS, Moabelo KL, Meyer M, Onani MO, Dube A, Madiehe AM. Nanotechnology advances in direction of growth of targeted-treatment for weight problems. J Nanobiotechnol. 2019;17(1):122. https://doi.org/10.1186/s12951-019-0554-3.

    Article 

    Google Scholar
     

  • Puré E, Cuff CA. A Essential Position for CD44 in Irritation. Traits Mol Med. 2001;7(5):213–21. https://doi.org/10.1016/S1471-4914(01)01963-3.

    Article 
    PubMed 

    Google Scholar
     

  • Kuwahara G, Hashimoto T, Tsuneki M, Yamamoto Ok, Assi R, Foster TR, Hanisch JJ, Bai H, Hu H, Protack CD, Corridor MR, Schardt JS, Jay SM, Madri JA, Kodama S, Dardik A. CD44 promotes irritation and extracellular matrix manufacturing throughout arteriovenous fistula maturation. Arterioscler Thromb Vasc Biol. 2017;37(6):1147–56. https://doi.org/10.1161/ATVBAHA.117.309385.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang HS, Liao G, DeGraff LM, Gerrish Ok, Bortner CD, Garantziotis S, Jetten AM. CD44 performs a essential position in regulating diet-induced adipose irritation, hepatic steatosis, and insulin resistance. PLoS ONE. 2013;8(3):e58417. https://doi.org/10.1371/journal.pone.0058417.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kodama Ok, Horikoshi M, Toda Ok, Yamada S, Hara Ok, Irie J, Sirota M, Morgan AA, Chen R, Ohtsu H, Maeda S, Kadowaki T, Butte AJ. Expression-based genome-wide affiliation examine hyperlinks the receptor CD44 in adipose tissue with sort 2 diabetes. Proc Natl Acad Sci. 2012;109(18):7049–54. https://doi.org/10.1073/pnas.1114513109.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang M, Yao M, Yang J, Zheng W-J, Wang L, Yao D-F. Irregular CD44 activation of hepatocytes with nonalcoholic fatty accumulation in rat hepatocarcinogenesis. World J Gastrointestinal Oncol. 2020;12(1):66–76. https://doi.org/10.4251/wjgo.v12.i1.66.

    Article 

    Google Scholar
     

  • Patouraux S, Rousseau D, Bonnafous S, Lebeaupin C, Luci C, Canivet CM, Schneck A-S, Bertola A, Saint-Paul M-C, Iannelli A, Gugenheim J, Anty R, Tran A, Bailly-Maitre B, Gual P. CD44 Is a key participant in non-alcoholic steatohepatitis. J Hepatol. 2017;67(2):328–38. https://doi.org/10.1016/j.jhep.2017.03.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kodama Ok, Toda Ok, Morinaga S, Yamada S, Butte AJ. Anti-CD44 antibody therapy lowers hyperglycemia and improves insulin resistance, adipose irritation, and hepatic steatosis in diet-induced overweight mice. Diabetes. 2014;64(3):867–75. https://doi.org/10.2337/db14-0149.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell floor receptor for hyaluronate. Cell. 1990;61(7):1303–13. https://doi.org/10.1016/0092-8674(90)90694-A.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi KY, Han HS, Lee ES, Shin JM, Almquist BD, Lee DS, Park JH. Hyaluronic acid-based activatable nanomaterials for stimuli-responsive imaging and therapeutics: past CD44-mediated drug supply. Adv Mater. 2019;31(34):1803549. https://doi.org/10.1002/adma.201803549.

    Article 
    CAS 

    Google Scholar
     

  • Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical purposes. Adv Mater. 2011;23(12):H41–56. https://doi.org/10.1002/adma.201003963.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang G, Huang H. Utility of hyaluronic acid as carriers in drug supply. Drug Del. 2018;25(1):766–72. https://doi.org/10.1080/10717544.2018.1450910.

    Article 
    CAS 

    Google Scholar
     

  • Lee GY, Kim J-H, Choi KY, Yoon HY, Kim Ok, Kwon IC, Choi Ok, Lee B-H, Park JH, Kim I-S. Hyaluronic acid nanoparticles for energetic concentrating on atherosclerosis. Biomaterials. 2015;53:341–8. https://doi.org/10.1016/j.biomaterials.2015.02.089.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim H-Y, Kim H-R, Kang M-G, Trang NTD, Baek H-J, Moon J-D, Shin J-H, Suh S-P, Ryang D-W, Kook H, Shin M-G. Profiling of biomarkers for the publicity of polycyclic fragrant hydrocarbons: lamin-A/C isoform 3, poly[ADP-Ribose] polymerase 1, and mitochondria copy quantity are recognized as common biomarkers. BioMed Res Int. 2014;2014:e605135. https://doi.org/10.1155/2014/605135.

    Article 
    CAS 

    Google Scholar
     

  • Altman R, Bedi A, Manjoo A, Niazi F, Shaw P, Mease P. Anti-inflammatory results of intra-articular hyaluronic acid: a scientific assessment. Cartilage. 2019;10(1):43–52. https://doi.org/10.1177/1947603517749919.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sengupta S, Pal S, Pal A, Maity S, Sarkar Ok, Das M. A assessment on synthesis, toxicity profile and biomedical purposes of graphene quantum dots (GQDs). Inorg Chim Acta. 2023;557:121677. https://doi.org/10.1016/j.ica.2023.121677.

    Article 
    CAS 

    Google Scholar
     

  • Chen F, Gao W, Qiu X, Zhang H, Liu L, Liao P, Fu W, Luo Y. Graphene quantum dots in biomedical purposes: current advances and future challenges. Entrance Lab Med. 2017;1(4):192–9. https://doi.org/10.1016/j.flm.2017.12.006.

    Article 

    Google Scholar
     

  • Feng L, Li Ok, Shi X, Gao M, Liu J, Liu Z. Sensible PH-Responsive nanocarriers based mostly on nano-graphene oxide for mixed chemo- and photothermal remedy overcoming drug resistance. Adv Healthcare Mater. 2014;3(8):1261–71. https://doi.org/10.1002/adhm.201300549.

    Article 
    CAS 

    Google Scholar
     

  • Fasbender S, Zimmermann L, Cadeddu R-P, Luysberg M, Moll B, Janiak C, Heinzel T, Haas R. The low toxicity of graphene quantum dots is mirrored by marginal gene expression adjustments of main human hematopoietic stem cells. Sci Rep. 2019;9(1):12028. https://doi.org/10.1038/s41598-019-48567-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao C, Track X, Liu Y, Fu Y, Ye L, Wang N, Wang F, Li L, Mohammadniaei M, Zhang M, Zhang Q, Liu J. Synthesis of graphene quantum dots and their purposes in drug supply. J Nanobiotechnol. 2020;18(1):142. https://doi.org/10.1186/s12951-020-00698-z.

    Article 
    CAS 

    Google Scholar
     

  • Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug supply purposes. Acta Biomater. 2013;9(12):9243–57. https://doi.org/10.1016/j.actbio.2013.08.016.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woo S-L, Xu H, Li H, Zhao Y, Hu X, Zhao J, Guo X, Guo T, Botchlett R, Qi T, Pei Y, Zheng J, Xu Y, An X, Chen L, Chen L, Li Q, Xiao X, Huo Y, Wu C. Metformin ameliorates hepatic steatosis and irritation with out altering adipose phenotype in diet-induced weight problems. PLoS ONE. 2014;9(3):e91111. https://doi.org/10.1371/journal.pone.0091111.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasamsetti SB, Karnewar S, Kanugula AK, Thatipalli AR, Kumar JM, Kotamraju S. Metformin inhibits monocyte-to-macrophage differentiation by way of AMPK-mediated inhibition of STAT3 activation: potential position in atherosclerosis. Diabetes. 2015;64(6):2028–41. https://doi.org/10.2337/db14-1225.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rena G, Hardie DG, Pearson ER. The mechanisms of motion of metformin. Diabetologia. 2017;60(9):1577–85. https://doi.org/10.1007/s00125-017-4342-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li T, Liu Z, Wang J, Ye H, Wan Y, Du X, Solar X, Zhou M, Lin Y, Jing P, Zhong Z. Nanoformulated metformin enhanced the therapy of spinal twine harm. Chem Eng J. 2022;446:137227. https://doi.org/10.1016/j.cej.2022.137227.

    Article 
    CAS 

    Google Scholar
     

  • Bouriche S, Alonso-García A, Cárceles-Rodríguez CM, Rezgui F, Fernández-Varón E. An in vivo pharmacokinetic examine of metformin microparticles as an oral sustained launch formulation in rabbits. BMC Vet Res. 2021;17(1):315. https://doi.org/10.1186/s12917-021-03016-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byrne JD, Betancourt T, Brannon-Peppas L. Lively concentrating on schemes for nanoparticle techniques in most cancers therapeutics. Adv Drug Deliv Rev. 2008;60(15):1615–26. https://doi.org/10.1016/j.addr.2008.08.005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Track E, Han W, Li C, Cheng D, Li L, Liu L, Zhu G, Track Y, Tan W. Hyaluronic acid-decorated graphene oxide nanohybrids as nanocarriers for focused and ph-responsive anticancer drug supply. ACS Appl Mater Interf. 2014;6(15):11882–90. https://doi.org/10.1021/am502423r.

    Article 
    CAS 

    Google Scholar
     

  • Abdullah-Al-Nahain J-EL, In I, Lee H, Lee KD, Jeong JH, Park SY. Goal supply and cell imaging utilizing hyaluronic acid-functionalized graphene quantum dots. Mol Pharmaceutics. 2013;10(10):3736–44. https://doi.org/10.1021/mp400219u.

    Article 
    CAS 

    Google Scholar
     

  • Vahedi N, Tabandeh F, Mahmoudifard M. Hyaluronic acid-graphene quantum dot nanocomposite: potential goal drug supply and most cancers cell imaging. Biotechnol Appl Biochem. 2022;69(3):1068–79. https://doi.org/10.1002/bab.2178.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu H, Shi H, Wang Y, Jia X, Tang C, Zhang J, Yang S. Hyaluronic acid conjugated graphene oxide for focused drug supply. Carbon. 2014;69:379–89. https://doi.org/10.1016/j.carbon.2013.12.039.

    Article 
    CAS 

    Google Scholar
     

  • Zhang X, Qu Q, Yang A, Wang J, Cheng W, Deng Y, Zhou A, Lu T, Xiong R, Huang C. Chitosan enhanced the soundness and antibiofilm exercise of self-propelled prussian blue micromotor. Carbohydrate Poly. 2023;299:120134. https://doi.org/10.1016/j.carbpol.2022.120134.

    Article 
    CAS 

    Google Scholar
     

  • Qu Q, Zhang X, Yang A, Wang J, Cheng W, Zhou A, Deng Y, Xiong R, Huang C. Spatial confinement of multi-enzyme for cascade catalysis in cell-inspired all-aqueous multicompartmental microcapsules. J Colloid Interface Sci. 2022;626:768–74. https://doi.org/10.1016/j.jcis.2022.06.128.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarkar Ok, Dutta Ok, Chatterjee A, Sarkar J, Das D, Prasad A, Chattopadhyay D, Acharya Ok, Das M, Verma SK, De S. Nanotherapeutic potential of antibacterial folic acid-functionalized nanoceria for wound-healing purposes. Nanomedicine. 2023;18(2):109–23. https://doi.org/10.2217/nnm-2022-0233.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bradford MM. A fast and delicate technique for the quantitation of microgram portions of protein using the precept of protein-dye binding. Anal Biochem. 1976;72(1):248–54. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Draper, H. H.; Hadley, M. [43] Malondialdehyde Willpower as Index of Lipid Peroxidation. In Strategies in Enzymology; Oxygen Radicals in Organic Programs Half B: Oxygen Radicals and Antioxidants; Tutorial Press, 1990; Vol. 186, pp 421–431. https://doi.org/10.1016/0076-6879(90)86135-I.

  • Aebi, H. [13] Catalase in Vitro. In Strategies in Enzymology; Oxygen Radicals in Organic Programs; Tutorial Press, 1984; Vol. 105, pp 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3.

  • Das A, Financial institution S, Chatterjee S, Paul N, Sarkar Ok, Chatterjee A, Chakraborty S, Banerjee C, Majumdar A, Das M, Ghosh S. Bifenthrin disrupts cytochrome c oxidase exercise and reduces mitochondrial DNA copy quantity via oxidative harm in pool barb (Puntius Sophore). Chemosphere. 2023;332:138848. https://doi.org/10.1016/j.chemosphere.2023.138848.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salbitani G, Bottone C, Carfagna S. Willpower of lowered and whole glutathione content material in extremophilic microalga galdieria phlegrea. Bio-Protoc. 2017;7(13):e2372–e2372.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chatterjee A, Sarkar Ok, Financial institution S, Ghosh S, Pal D, Saraf S, Wakle D, Roy B, Chakraborty S, Bankura B, Debprasad C, Das M. Homozygous GRHPR C 494G>a mutation is deleterious that causes early onset of nephrolithiasis in West Bengal India. Entrance Mole Biosci. 2022. https://doi.org/10.3389/fmolb.2022.1049620.

    Article 

    Google Scholar
     

  • Multifunctional Biocompatible Graphene Oxide Quantum Dots Adorned Magnetic Nanoplatform for Environment friendly Seize and Two-Photon Imaging of Uncommon Tumor Cells | ACS Utilized Supplies & Interfaces. https://pubs.acs.org/doi/https://doi.org/10.1021/acsami.5b02199 Accessed 15 July 2023.

  • Deng Y, Lu T, Zhang X, Zeng Z, Tao R, Qu Q, Zhang Y, Zhu M, Xiong R, Huang C. Multi-hierarchical nanofiber membrane with typical curved-ribbon construction fabricated by inexperienced electrospinning for environment friendly, breathable and sustainable air filtration. J Memb Sci. 2022;660:120857. https://doi.org/10.1016/j.memsci.2022.120857.

    Article 
    CAS 

    Google Scholar
     

  • Dutta Ok, De S, Das B, Bera S, Guria B, Ali MS, Chattopadhyay D. Growth of an environment friendly immunosensing platform by exploring single-walled carbon nanohorns (SWCNHs) and nitrogen doped graphene quantum dot (N-GQD) nanocomposite for early detection of most cancers biomarker. ACS Biomater Sci Eng. 2021;7(12):5541–54. https://doi.org/10.1021/acsbiomaterials.1c00753.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh T, Prasad E. White-light emission from unmodified graphene oxide quantum dots. J Phys Chem C. 2015;119(5):2733–42. https://doi.org/10.1021/jp511787a.

    Article 
    CAS 

    Google Scholar
     

  • Roy H, Brahma CK, Nandi S, Parida KR. Formulation and design of sustained launch matrix tablets of metformin hydrochloride: affect of hypromellose and polyacrylate polymers. Int J Appl Primary Med Res. 2013;3(1):55–63. https://doi.org/10.4103/2229-516X.112242.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar Ok, Kusminski CM, Scherer PE. Adipose tissue reworking and weight problems. J Clin Make investments. 2011;121(6):2094–101. https://doi.org/10.1172/JCI45887.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lumeng CN, Saltiel AR. Inflammatory hyperlinks between weight problems and metabolic illness. J Clin Make investments. 2011;121(6):2111–7. https://doi.org/10.1172/JCI57132.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petta S, Gastaldelli A, Rebelos E, Bugianesi E, Messa P, Miele L, Svegliati-Baroni G, Valenti L, Bonino F. Pathophysiology of non alcoholic fatty liver illness. Int J Mol Sci. 2016;17(12):2082. https://doi.org/10.3390/ijms17122082.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carr RM, Oranu A, Khungar V. Nonalcoholic fatty liver illness: pathophysiology and administration. Gastroenterol Clin North Am. 2016;45(4):639–52. https://doi.org/10.1016/j.gtc.2016.07.003.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vinaik R, Barayan D, Jeschke MG. NLRP3 inflammasome in irritation and metabolism: figuring out novel roles in postburn adipose dysfunction. Endocrinology. 2020;161(9):116. https://doi.org/10.1210/endocr/bqaa116.

    Article 
    CAS 

    Google Scholar
     

  • Karasawa T, Kawashima A, Usui-Kawanishi F, Watanabe S, Kimura H, Kamata R, Shirasuna Ok, Koyama Y, Sato-Tomita A, Matsuzaka T, Tomoda H, Park S-Y, Shibayama N, Shimano H, Kasahara T, Takahashi M. Saturated fatty acids endure intracellular crystallization and activate the NLRP3 inflammasome in macrophages. Arterioscler Thromb Vasc Biol. 2018;38(4):744–56. https://doi.org/10.1161/ATVBAHA.117.310581.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi H, Kokoeva MV, Inouye Ok, Tzameli I, Yin H, Flier JS. TLR4 hyperlinks innate immunity and fatty acid-induced insulin resistance. J Clin Make investments. 2006;116(11):3015–25. https://doi.org/10.1172/JCI28898.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi X, Wang X, Li Q, Su M, Chew E, Wong ET, Lacza Z, Radda GK, Tergaonkar V, Han W. Nuclear issue ΚB (NF-ΚB) suppresses meals consumption and power expenditure in mice by instantly activating the pomc promoter. Diabetologia. 2013;56(4):925–36. https://doi.org/10.1007/s00125-013-2831-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Li G, Tao S, Xia P, Chaudhry N, Kaura S, Stone SS, Liu M. Ginkgo biloba extract reduces cardiac and mind irritation in rats fed a HFD and uncovered to persistent psychological stress via NF-κB inhibition. Med Inflam. 2022;2022:e2408598. https://doi.org/10.1155/2022/2408598.

    Article 
    CAS 

    Google Scholar
     

  • Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W. IκB Kinases phosphorylate NF-ΚB P65 subunit on serine 536 within the transactivation area *. J Biol Chem. 1999;274(43):30353–6. https://doi.org/10.1074/jbc.274.43.30353.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christian F, Smith EL, Carmody RJ. The regulation of NF-ΚB subunits by phosphorylation. Cells. 2016;5(1):12. https://doi.org/10.3390/cells5010012.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lage R, Diéguez C, Vidal-Puig A, López M. AMPK: a metabolic gauge regulating whole-body power homeostasis. Traits Mol Med. 2008;14(12):539–49. https://doi.org/10.1016/j.molmed.2008.09.007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hattori Y, Suzuki Ok, Hattori S, Kasai Ok. Metformin inhibits cytokine-induced nuclear issue ΚB activation By way of AMP-activated protein kinase activation in vascular endothelial cells. Hypertension. 2006;47(6):1183–8. https://doi.org/10.1161/01.HYP.0000221429.94591.72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • del Fresno C, Otero Ok, Gómez-García L, González-León MC, Soler-Ranger L, Fuentes-Prior P, Escoll P, Baos R, Caveda L, García F, Arnalich F, López-Collazo E. Tumor cells deactivate human monocytes by up-regulating IL-1 receptor related kinase-M expression by way of CD44 and TLR4. J Immunol. 2005;174(5):3032–40. https://doi.org/10.4049/jimmunol.174.5.3032.

    Article 
    PubMed 

    Google Scholar
     

  • Hubbard LLN, Moore BB. IRAK-M regulation and performance in host protection and immune homeostasis. Infect Dis Rep. 2010;2(1):e9. https://doi.org/10.4081/idr.2010.e9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia F, Chen L, Fang L, Chen W. IRAK-M deletion aggravates acute inflammatory response and mitochondrial respiratory dysfunction following myocardial infarction: a bioinformatics evaluation. J Proteomics. 2022;257:104512. https://doi.org/10.1016/j.jprot.2022.104512.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar A, Mu L, Hu X. Graphene oxide quantum dots as novel nanozymes for alcohol intoxication. ACS Appl Mater Interfaces. 2017;9(14):12241–52. https://doi.org/10.1021/acsami.7b00306.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren C, Hu X, Zhou Q. Graphene oxide quantum dots cut back oxidative stress and inhibit neurotoxicity in vitro and in vivo via catalase-like exercise and metabolic regulation. Adv Sci. 2018;5(5):1700595. https://doi.org/10.1002/advs.201700595.

    Article 
    CAS 

    Google Scholar
     

  • Sudha PN, Rose MH. Chapter 9—useful results of hyaluronic acid. Adv Meals Nutr Res. 2014;72:137–76. https://doi.org/10.1016/B978-0-12-800269-8.00009-9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patiño-Herrera R, Louvier-Hernández JF, Escamilla-Silva EM, Chaumel J, Escobedo AGP, Pérez E. Extended launch of metformin by SiO2 nanoparticles pellets for sort II diabetes management. Eur J Pharm Sci. 2019;131:1–8. https://doi.org/10.1016/j.ejps.2019.02.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lari AS, Zahedi P, Ghourchian H, Khatibi A. Microfluidic-based synthesized carboxymethyl chitosan nanoparticles containing metformin for diabetes remedy: in vitro and in vivo assessments. Carbohyd Polym. 2021;261:117889. https://doi.org/10.1016/j.carbpol.2021.117889.

    Article 
    CAS 

    Google Scholar
     

  • Cesur S, Cam ME, Sayın FS, Su S, Harker A, Edirisinghe M, Gunduz O. Metformin-loaded polymer-based microbubbles/nanoparticles generated for the therapy of sort 2 diabetes mellitus. Langmuir. 2022;38(17):5040–51. https://doi.org/10.1021/acs.langmuir.1c00587.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar S, Bhanjana G, Verma RK, Dhingra D, Dilbaghi N, Kim Ok-H. Metformin-loaded alginate nanoparticles as an efficient antidiabetic agent for managed drug launch. J Pharm Pharmacol. 2017;69(2):143–50. https://doi.org/10.1111/jphp.12672.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kenechukwu FC, Nnamani DO, Duhu JC, Nmesirionye BU, Momoh MA, Akpa PA, Attama AA. Potential enhancement of metformin hydrochloride in solidified reverse micellar solution-based PEGylated lipid nanoparticles concentrating on therapeutic efficacy in diabetes therapy. Heliyon. 2022. https://doi.org/10.1016/j.heliyon.2022.e09099.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain AK, Upadhyay R, Mishra Ok, Jain SK. Gastroretentive metformin loaded nanoparticles for the efficient administration of type-2 diabetes mellitus. Present Drug Del. 2022;19(1):93–103.

    Article 
    CAS 

    Google Scholar
     

  • Huang Ok, Liu X, Lv Z, Zhang D, Zhou Y, Lin Z, Guo J. MMP9-responsive graphene oxide quantum dot-based nano-in-micro drug supply system for combinatorial remedy of choroidal neovascularization. Small. 2023. https://doi.org/10.1002/smll.202207335.

    Article 
    PubMed 

    Google Scholar
     

  • Shahabi M, Raissi H. A brand new perception into the switch and supply of Anti-SARS-CoV-2 Drug Carmofur with the help of graphene oxide quantum dot as a extremely environment friendly nanovector towards COVID-19 by molecular dynamics simulation. RSC Adv. 2022;12(22):14167–74. https://doi.org/10.1039/D2RA01420C.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gui W, Zhang J, Chen X, Yu D, Ma Q. N-Doped graphene quantum Dot@mesoporous silica nanoparticles modified with hyaluronic acid for fluorescent imaging of tumor cells and drug supply. Microchim Acta. 2017;185(1):66. https://doi.org/10.1007/s00604-017-2598-0.

    Article 
    CAS 

    Google Scholar
     

  • Tao J, Feng S, Liu B, Pan J, Li C, Zheng Y. Hyaluronic acid conjugated nitrogen-doped graphene quantum dots for identification of human breast most cancers cells. Biomed Mater. 2021. https://doi.org/10.1088/1748-605X/ac0d93.

    Article 
    PubMed 

    Google Scholar
     

  • Asghari S, Mahmoudifard M. The detection of the captured circulating tumor cells on the core-shell nanofibrous membrane utilizing hyaluronic acid-functionalized graphene quantum dots. J Biomed Mater Res B Appl Biomater. 2023;111(5):1121–32. https://doi.org/10.1002/jbm.b.35219.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rho JG, Han HS, Han JH, Lee H, Nguyen VQ, Lee WH, Kwon S, Heo S, Yoon J, Shin HH, Lee E, Kang H, Yang S, Lee EK, Park JH, Kim W. Self-assembled hyaluronic acid nanoparticles: implications as a nanomedicine for therapy of sort 2 diabetes. J Management Rel. 2018;279:89–98. https://doi.org/10.1016/j.jconrel.2018.04.006.

    Article 
    CAS 

    Google Scholar
     

  • Yang L, Zhang L, Hu J, Wang W, Liu X. Promote anti-inflammatory and angiogenesis utilizing a hyaluronic acid-based hydrogel with MiRNA-laden nanoparticles for persistent diabetic wound therapy. Int J Biol Macromol. 2021;166:166–78. https://doi.org/10.1016/j.ijbiomac.2020.10.129.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beldman TJ, Senders ML, Alaarg A, Pérez-Medina C, Tang J, Zhao Y, Fay F, Deichmöller J, Born B, Desclos E, van der Wel NN, Hoebe RA, Kohen F, Kartvelishvily E, Neeman M, Reiner T, Calcagno C, Fayad ZA, de Winther MPJ, Lutgens E, Mulder WJM, Kluza E. Hyaluronan nanoparticles selectively goal plaque-associated macrophages and enhance plaque stability in atherosclerosis. ACS Nano. 2017;11(6):5785–99. https://doi.org/10.1021/acsnano.7b01385.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Z-W, Shi Y, Zhai Y-Y, Du C-C, Zhai J, Yu R-J, Kou L, Xiao J, Zhao Y-Z, Yao Q. Hyaluronic acid coated bilirubin nanoparticles attenuate ischemia reperfusion-induced acute kidney harm. J Management Rel. 2021;334:275–89. https://doi.org/10.1016/j.jconrel.2021.04.033.

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles