2 years in the past, I wrote A Information to Docker and ROS, which is one in all my most steadily seen posts — possible as a result of it’s a difficult subject and other people have been in search of solutions. Since then, I’ve had the prospect to make use of Docker extra in my work and have picked up some new methods. This was lengthy overdue, however I’ve lastly collected my up to date learnings on this put up.
Lately, I encountered an article titled ROS Docker; 6 the reason why they don’t seem to be a superb match, and I largely agree with it. Nonetheless, the fact is that it’s nonetheless fairly troublesome to make sure a reproducible ROS setting for individuals who haven’t spent years preventing the ROS studying curve and are adept at debugging dependency and/or construct errors… so Docker remains to be very a lot a crutch that we fall again on to get working demos (and generally merchandise!) out the door.
If the article above hasn’t fully discouraged you from embarking on this Docker journey, please get pleasure from studying.
Revisiting Our Dockerfile with ROS 2
Now that ROS 1 is on its closing model and approaching finish of life in 2025, I believed it could be acceptable to rehash the TurtleBot3 instance repo from the earlier put up utilizing ROS 2.
Many of the large modifications on this improve should do with ROS 2, together with consumer libraries, launch information, and configuring DDS. The examples themselves have been up to date to make use of the newest instruments for habits timber: BehaviorTree.CPP 4 / Groot 2 for C++ and py_trees / py_trees_ros_viewer for Python. For extra info on the instance and/or habits timber, consult with my Introduction to Habits Timber put up.
From a Docker standpoint, there aren’t too many variations. Our container format will now be as follows:

Layers of our TurtleBot3 instance Docker picture.
We’ll begin by making our Dockerfile
, which defines the contents of our picture. Our preliminary base layer inherits from one of many public ROS photographs, osrf/ros:humble-desktop
, and units up the dependencies from our instance repository into an underlay workspace. These are outlined utilizing a vcstool repos file.
Discover that we’ve arrange the argument, ARG ROS_DISTRO=humble
, so it may be modified for different distributions of ROS 2 (Iron, Rolling, and many others.). Slightly than creating a number of Dockerfiles for various configurations, you must attempt utilizing construct arguments like these as a lot as doable with out being “overly intelligent” in a approach that impacts readability.
ARG ROS_DISTRO=humble
########################################
# Base Picture for TurtleBot3 Simulation #
########################################
FROM osrf/ros:${ROS_DISTRO}-desktop as base
ENV ROS_DISTRO=${ROS_DISTRO}
SHELL [“/bin/bash”, “-c”]
# Create Colcon workspace with exterior dependencies
RUN mkdir -p /turtlebot3_ws/src
WORKDIR /turtlebot3_ws/src
COPY dependencies.repos .
RUN vcs import < dependencies.repos
# Construct the bottom Colcon workspace, putting in dependencies first.
WORKDIR /turtlebot3_ws
RUN supply /choose/ros/${ROS_DISTRO}/setup.bash
&& apt-get replace -y
&& rosdep set up –from-paths src –ignore-src –rosdistro ${ROS_DISTRO} -y
&& colcon construct –symlink-install
ENV TURTLEBOT3_MODEL=waffle_pi
To construct your picture with a selected argument — let’s say you need to use ROS 2 Rolling as a substitute — you could possibly do the next… offered that every one your references to ${ROS_DISTRO}
even have one thing that appropriately resolves to the rolling distribution.
docker construct -f docker/Dockerfile
--build-arg="ROS_DISTRO=rolling"
--target base -t turtlebot3_behavior:base .
I personally have had many points in ROS 2 Humble and later with the default DDS vendor (FastDDS), so I like to change my default implementation to Cyclone DDS by putting in it and setting an setting variable to make sure it’s all the time used.
# Use Cyclone DDS as middleware
RUN apt-get replace && apt-get set up -y --no-install-recommends
ros-${ROS_DISTRO}-rmw-cyclonedds-cpp
ENV RMW_IMPLEMENTATION=rmw_cyclonedds_cpp
Now, we are going to create our overlay layer. Right here, we are going to copy over the instance supply code, set up any lacking dependencies with rosdep set up
, and arrange an entrypoint to run each time a container is launched.
###########################################
# Overlay Picture for TurtleBot3 Simulation #
###########################################
FROM base AS overlay
# Create an overlay Colcon workspace
RUN mkdir -p /overlay_ws/src
WORKDIR /overlay_ws
COPY ./tb3_autonomy/ ./src/tb3_autonomy/
COPY ./tb3_worlds/ ./src/tb3_worlds/
RUN supply /turtlebot3_ws/set up/setup.bash
&& rosdep set up –from-paths src –ignore-src –rosdistro ${ROS_DISTRO} -y
&& colcon construct –symlink-install
# Arrange the entrypoint
COPY ./docker/entrypoint.sh /
ENTRYPOINT [ “/entrypoint.sh” ]
The entrypoint outlined above is a Bash script that sources ROS 2 and any workspaces which can be constructed, and units up setting variables essential to run our TurtleBot3 examples. You should utilize entrypoints to do every other varieties of setup you may discover helpful in your software.
#!/bin/bash
# Primary entrypoint for ROS / Colcon Docker containers
# Supply ROS 2
supply /choose/ros/${ROS_DISTRO}/setup.bash
# Supply the bottom workspace, if constructed
if [ -f /turtlebot3_ws/install/setup.bash ]
then
supply /turtlebot3_ws/set up/setup.bash
export TURTLEBOT3_MODEL=waffle_pi
export GAZEBO_MODEL_PATH=$GAZEBO_MODEL_PATH:$(ros2 pkg prefix turtlebot3_gazebo)/share/turtlebot3_gazebo/fashions
fi
# Supply the overlay workspace, if constructed
if [ -f /overlay_ws/install/setup.bash ]
then
supply /overlay_ws/set up/setup.bash
export GAZEBO_MODEL_PATH=$GAZEBO_MODEL_PATH:$(ros2 pkg prefix tb3_worlds)/share/tb3_worlds/fashions
fi
# Execute the command handed into this entrypoint
exec “$@”
At this level, you must be capable of construct the complete Dockerfile:
docker construct
-f docker/Dockerfile --target overlay
-t turtlebot3_behavior:overlay .
Then, we are able to begin one in all our instance launch information with the best settings with this mouthful of a command. Most of those setting variables and volumes are wanted to have graphics and ROS 2 networking functioning correctly from inside our container.
docker run -it --net=host --ipc=host --privileged
--env="DISPLAY"
--env="QT_X11_NO_MITSHM=1"
--volume="/tmp/.X11-unix:/tmp/.X11-unix:rw"
--volume="${XAUTHORITY}:/root/.Xauthority"
turtlebot3_behavior:overlay
bash -c "ros2 launch tb3_worlds tb3_demo_world.launch.py"

Our TurtleBot3 instance simulation with RViz (left) and Gazebo traditional (proper).
Introducing Docker Compose
From the previous few snippets, we are able to see how the docker construct
and docker run
instructions can get actually lengthy and unwieldy as we add extra choices. You’ll be able to wrap this in a number of abstractions, together with scripting languages and Makefiles… however Docker has already solved this drawback by means of Docker Compose.
Briefly, Docker Compose lets you create a YAML file that captures all of the configuration wanted to arrange constructing photographs and operating containers.
Docker Compose additionally differentiates itself from the “plain” Docker command in its potential to orchestrate providers. This entails constructing a number of photographs or targets throughout the similar picture(s) and launching a number of applications on the similar time that comprise a complete software. It additionally helps you to lengthen present providers to reduce copy-pasting of the identical settings in a number of locations, outline variables, and extra.
The top purpose is that we’ve quick instructions to handle our examples:
- docker compose construct will construct what we’d like
- docker compose up
will launch what we’d like

Docker Compose permits us to extra simply construct and run our containerized examples.
The default title of this magical YAML file is docker-compose.yaml
. For our instance, the docker-compose.yaml
file seems to be as follows:
model: "3.9"
providers:
# Base picture containing dependencies.
base:
picture: turtlebot3_behavior:base
construct:
context: .
dockerfile: docker/Dockerfile
args:
ROS_DISTRO: humble
goal: base
# Interactive shell
stdin_open: true
tty: true
# Networking and IPC for ROS 2
network_mode: host
ipc: host
# Wanted to show graphical functions
privileged: true
setting:
# Wanted to outline a TurtleBot3 mannequin kind
- TURTLEBOT3_MODEL=${TURTLEBOT3_MODEL:-waffle_pi}
# Permits graphical applications within the container.
- DISPLAY=${DISPLAY}
- QT_X11_NO_MITSHM=1
- NVIDIA_DRIVER_CAPABILITIES=all
volumes:
# Permits graphical applications within the container.
- /tmp/.X11-unix:/tmp/.X11-unix:rw
- ${XAUTHORITY:-$HOME/.Xauthority}:/root/.Xauthority
# Overlay picture containing the instance supply code.
overlay:
extends: base
picture: turtlebot3_behavior:overlay
construct:
context: .
dockerfile: docker/Dockerfile
goal: overlay
# Demo world
demo-world:
extends: overlay
command: ros2 launch tb3_worlds tb3_demo_world.launch.py
# Habits demo utilizing Python and py_trees
demo-behavior-py:
extends: overlay
command: >
ros2 launch tb3_autonomy tb3_demo_behavior_py.launch.py
tree_type:=${BT_TYPE:?}
enable_vision:=${ENABLE_VISION:?}
target_color:=${TARGET_COLOR:?}
# Habits demo utilizing C++ and BehaviorTree.CPP
demo-behavior-cpp:
extends: overlay
command: >
ros2 launch tb3_autonomy tb3_demo_behavior_cpp.launch.py
tree_type:=${BT_TYPE:?}
enable_vision:=${ENABLE_VISION:?}
target_color:=${TARGET_COLOR:?}
As you possibly can see from the Docker Compose file above, you possibly can specify variables utilizing the acquainted $ operator in Unix based mostly techniques. These variables will by default be learn from both your host setting or by means of an setting file (often referred to as .env). Our instance.env file seems to be like this:
# TurtleBot3 mannequin
TURTLEBOT3_MODEL=waffle_pi
# Habits tree kind: Will be naive or queue.
BT_TYPE=queue
# Set to true to make use of imaginative and prescient, else false to solely do navigation behaviors.
ENABLE_VISION=true
# Goal shade for imaginative and prescient: Will be pink, inexperienced, or blue.
TARGET_COLOR=blue
At this level, you possibly can construct the whole lot:
# By default, picks up a `docker-compose.yaml` and `.env` file.
docker compose construct
# You may also explicitly specify the information
docker compose –file docker-compose.yaml –env-file .env construct
Then, you possibly can run the providers you care about:
# Convey up the simulation
docker compose up demo-world
# After the simulation has began,
# launch one in all these in a separate Terminal
docker compose up demo-behavior-py
docker compose up demo-behavior-cpp

The total TurtleBot3 demo operating with py_trees because the Habits Tree.
Organising Developer Containers
Our instance up to now works nice if we need to package deal up working examples to different customers. Nonetheless, if you wish to develop the instance code inside this setting, you will want to beat the next obstacles:
- Each time you modify your code, you will want to rebuild the Docker picture. This makes it extraordinarily inefficient to get suggestions on whether or not your modifications are working as supposed. That is already an on the spot deal-breaker.
- You’ll be able to remedy the above by utilizing bind mounts to sync up the code in your host machine with that within the container. This will get us heading in the right direction, however you’ll discover that any information generated contained in the container and mounted on the host can be owned by
root
as default. You may get round this by whipping out thesudo
andchown
hammer, but it surely’s not essential. - All of the instruments chances are you’ll use for improvement, together with debuggers, are possible lacking contained in the container… except you put in them within the Dockerfile, which may bloat the scale of your distribution picture.
Fortunately, there’s a idea of a developer container (or dev container). To place it merely, it is a separate container that allows you to really do your improvement in the identical Docker setting you’d use to deploy your software.
There are numerous methods of implementing dev containers. For our instance, we are going to modify the Dockerfile
so as to add a brand new dev
goal that extends our present overlay
goal.

Dev containers permit us to develop inside a container from our host system with minimal overhead.
This dev container will do the next:
- Set up extra packages that we might discover useful for improvement, akin to debuggers, textual content editors, and graphical developer instruments. Critically, these won’t be a part of the
overlay
layer that we’ll ship to finish customers. - Create a brand new person that has the identical person and group identifiers because the person that constructed the container on the host. This may make it such that every one information generated throughout the container (in folders we care about) have the identical possession settings as if we had created the file on our host. By “folders we care about”, we’re referring to the ROS workspace that accommodates the supply code.
- Put our entrypoint script within the person’s Bash profile (
~/.bashrc
file). This lets us supply our ROS setting not simply at container startup, however each time we connect a brand new interactive shell whereas our dev container stays up.
#####################
# Improvement Picture #
#####################
FROM overlay as dev
# Dev container arguments
ARG USERNAME=devuser
ARG UID=1000
ARG GID=${UID}
# Set up additional instruments for improvement
RUN apt-get replace && apt-get set up -y –no-install-recommends
gdb gdbserver nano
# Create new person and residential listing
RUN groupadd –gid $GID $USERNAME
&& useradd –uid ${GID} –gid ${UID} –create-home ${USERNAME}
&& echo ${USERNAME} ALL=(root) NOPASSWD:ALL > /and many others/sudoers.d/${USERNAME}
&& chmod 0440 /and many others/sudoers.d/${USERNAME}
&& mkdir -p /house/${USERNAME}
&& chown -R ${UID}:${GID} /house/${USERNAME}
# Set the possession of the overlay workspace to the brand new person
RUN chown -R ${UID}:${GID} /overlay_ws/
# Set the person and supply entrypoint within the person’s .bashrc file
USER ${USERNAME}
RUN echo “supply /entrypoint.sh” >> /house/${USERNAME}/.bashrc
You’ll be able to then add a brand new dev service to the docker-compose.yaml
file. Discover that we’re including the supply code as volumes to mount, however we’re additionally mapping the folders generated by colcon construct
to a .colcon
folder on our host file system. This makes it such that generated construct artifacts persist between stopping our dev container and bringing it again up, in any other case we’d should do a clear rebuild each time.
dev:
extends: overlay
picture: turtlebot3_behavior:dev
construct:
context: .
dockerfile: docker/Dockerfile
goal: dev
args:
- UID=${UID:-1000}
- GID=${UID:-1000}
- USERNAME=${USERNAME:-devuser}
volumes:
# Mount the supply code
- ./tb3_autonomy:/overlay_ws/src/tb3_autonomy:rw
- ./tb3_worlds:/overlay_ws/src/tb3_worlds:rw
# Mount colcon construct artifacts for sooner rebuilds
- ./.colcon/construct/:/overlay_ws/construct/:rw
- ./.colcon/set up/:/overlay_ws/set up/:rw
- ./.colcon/log/:/overlay_ws/log/:rw
person: ${USERNAME:-devuser}
command: sleep infinity
At this level you are able to do:
# Begin the dev container
docker compose up dev
# Connect an interactive shell in a separate Terminal
# NOTE: You are able to do this a number of occasions!
docker compose exec -it dev bash
As a result of we’ve mounted the supply code, you may make modifications in your host and rebuild contained in the dev container… or you should use useful instruments just like the Visible Studio Code Containers extension to instantly develop contained in the container. As much as you.
For instance, when you’re contained in the container you possibly can construct the workspace with:
colcon construct
Resulting from our quantity mounts, you’ll see that the contents of the .colcon/construct
, .colcon/set up
, and .colcon/log
folders in your host have been populated. Because of this in the event you shut down the dev container and convey up a brand new occasion, these information will live on and can velocity up rebuilds utilizing colcon construct
.
Additionally, as a result of we’ve gone by means of the difficulty of creating a person, you’ll see that these information will not be owned by root
, so you possibly can delete them in the event you’d like to wash out the construct artifacts. You need to do this with out making the brand new person and also you’ll run into some annoying permissions roadblocks.
$ ls -al .colcon
complete 20
drwxrwxr-x 5 sebastian sebastian 4096 Jul 9 10:15 .
drwxrwxr-x 10 sebastian sebastian 4096 Jul 9 10:15 ..
drwxrwxr-x 4 sebastian sebastian 4096 Jul 9 11:29 construct
drwxrwxr-x 4 sebastian sebastian 4096 Jul 9 11:29 set up
drwxrwxr-x 5 sebastian sebastian 4096 Jul 9 11:31 log
The idea of dev containers is so widespread at this level that an ordinary has emerged at containers.dev. I additionally need to level out another nice sources together with Allison Thackston’s weblog, Griswald Brooks’ GitHub repo, and the official VSCode dev containers tutorial.
Conclusion
On this put up, you’ve gotten seen how Docker and Docker Compose might help you create reproducible ROS 2 environments. This contains the flexibility to configure variables at construct and run time, in addition to creating dev containers that can assist you develop your code in these environments earlier than distributing it to others.
We’ve solely scratched the floor on this put up, so ensure you poke round on the sources linked all through, check out the instance repository, and customarily keep interested by what else you are able to do with Docker to make your life (and your customers’ lives) simpler.
As all the time, please be happy to succeed in out with questions and suggestions. Docker is a extremely configurable device, so I’m genuinely interested by how this works for you or whether or not you’ve gotten approached issues in a different way in your work. I’d be taught one thing new!
Sebastian Castro
is a Senior Robotics Engineer at PickNik.