Fraggedakis, D. et al. A scaling regulation to find out part morphologies throughout ion intercalation. Power Environ. Sci. 13, 2142–2152 (2020).
Van Der Ven, A., Ceder, G., Asta, M. & Tepesch, P. D. First-principles principle of ionic diffusion with nondilute carriers. Phys. Rev. B 64, 184307 (2001).
Van Der Ven, A., Bhattacharya, J. & Belak, A. A. Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 46, 1216–1225 (2013).
Pender, J. P. et al. Electrode degradation in lithium-ion batteries. ACS Nano 14, 1243–1295 (2020).
Daemi, S. R. et al. Visualizing the carbon binder part of battery electrodes in three dimensions. ACS Appl. Power Mater. 1, 3702–3710 (2018).
Park, J. et al. Fictitious part separation in Li layered oxides pushed by electro-autocatalysis. Nat. Mater. 20, 991–999 (2021).
Mistry, A., Heenan, T., Smith, Ok., Shearing, P. & Mukherjee, P. P. Asphericity may cause nonuniform lithium intercalation in battery energetic particles. ACS Power Lett. 7, 1871–1879 (2022).
Finegan, D. P. et al. Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities inside lithium ion electrodes. Nat. Commun. 11, 631 (2020).
Jonkman, J., Brown, C. M., Wright, G. D., Anderson, Ok. I. & North, A. J. Tutorial: steering for quantitative confocal microscopy. Nat. Protoc. 15, 1585–1611 (2020).
Qin, S., Isbaner, S., Gregor, I. & Enderlein, J. Doubling the decision of a confocal spinning-disk microscope utilizing picture scanning microscopy. Nat. Protoc. 16, 164–181 (2020).
Merryweather, A. J., Schnedermann, C., Jacquet, Q., Gray, C. P. & Rao, A. Operando optical monitoring of single-particle ion dynamics in batteries. Nature 594, 522–528 (2021).
Merryweather, A. J. et al. Operando monitoring of single-particle kinetic state-of-charge heterogeneities and cracking in high-rate Li-ion anodes. Nat. Mater. 21, 1306–1313 (2022).
Wu, W., Wang, M., Ma, J., Cao, Y. & Deng, Y. Electrochromic steel oxides: current progress and prospect. Adv. Electron. Mater. 4, 1800185 (2018).
Gillaspie, D. T., Tenent, R. C. & Dillon, A. C. Steel-oxide movies for electrochromic functions: current know-how and future instructions. J. Mater. Chem. 20, 9585–9592 (2010).
Jiang, D. et al. Optical imaging of part transition and Li-ion diffusion kinetics of single LiCoO2 nanoparticles throughout electrochemical biking. J. Am. Chem. Soc. 139, 186–199 (2017).
Joshi, Y. et al. Modulation of the optical properties of lithium manganese oxide by way of Li-ion de/intercalation. Adv. Decide. Mater. 6, 1701362 (2018).
Chen, Y. et al. Operando video microscopy of Li plating and re-intercalation on graphite anodes throughout quick charging. J. Mater. Chem. A 9, 23522–23536 (2021).
Sanchez, A. J., Kazyak, E., Chen, Y., Lasso, J. & Dasgupta, N. P. Lithium stripping: anisotropic evolution and faceting of pits revealed by operando 3-D microscopy. J. Mater. Chem. A 9, 21013–21023 (2021).
Xu, C. et al. Operando visualisation of kinetically-induced lithium heterogeneities in single-particle layered Ni-rich cathodes. Joule 6, 2535–2546 (2022).
Grenier, A. et al. Intrinsic kinetic limitations in substituted lithium-layered transition-metal oxide electrodes. J. Am. Chem. Soc. 142, 7001–7011 (2020).
Liu, H. L. et al. Digital construction and lattice dynamics of LixCoO2 single crystals. New J. Phys. 17, 103004 (2015).
Beluze, L. et al. Infrared electroactive supplies and gadgets. J. Phys. Chem. Solids 67, 1330–1333 (2006).
Kuzmenko, A. B. Kramers-Kronig constrained variational evaluation of optical spectra. Rev. Sci. Instrum. 76, 083108 (2005).
Mahmoodabadi, R. G. et al. Level unfold perform in interferometric scattering microscopy (iSCAT). Half I: aberrations in defocusing and axial localization. Decide. Categorical 28, 25969–25988 (2020).
Jin, Y. et al. In operando plasmonic monitoring of electrochemical evolution of lithium steel. Proc. Natl Acad. Sci. USA 115, 11168–11173 (2018).
Kitta, M., Murai, Ok., Yoshii, Ok. & Sano, H. Electrochemical floor plasmon resonance spectroscopy for investigation of the preliminary technique of lithium steel deposition. J. Am. Chem. Soc. 143, 11160–11170 (2021).
Muñoz-Castro, M. et al. Controlling the optical properties of sputtered-deposited LixV2O5 movies. J. Appl. Phys. 120, 135106 (2016).
Feng, G. et al. Imaging solid-electrolyte-interphase dynamics utilizing in-operando reflection interference microscopy. Nat. Nanotechnol. 18, 780–789 (2023).
Yang, X. et al. Reflection optical imaging to review oxygen evolution reactions. J. Electrochem. Soc. 169, 057507 (2022).
Contreras-Naranjo, J. C., Silas, J. A. & Ugaz, V. M. Reflection interference distinction microscopy of arbitrary convex surfaces. Appl. Decide. 49, 3701–3712 (2010).
Jow, T. R., Delp, S. A., Allen, J. L., Jones, J.-P. & Sensible, M. C. Elements limiting Li + cost switch kinetics in Li-ion batteries. J. Electrochem. Soc. 165, A361–A367 (2018).
Dahéron, L. et al. Electron switch mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS. Chem. Mater. 20, 583–590 (2008).
Cogswell, D. A. & Bazant, M. Z. Concept of coherent nucleation in phase-separating nanoparticles. Nano Lett. 13, 3036–3041 (2013).
Gent, W. E. et al. Persistent state-of-charge heterogeneity in relaxed, partially charged Li1−xNi1/3Co1/3Mn1/3O2 secondary particles. Adv. Mater. 28, 6631–6638 (2016).
Mu, L. et al. Propagation topography of redox part transformations in heterogeneous layered oxide cathode supplies. Nat. Commun. 9, 2810 (2018).
Laurence, S. & Hardwick, J. Kerr gated Raman spectroscopy of LiPF6 salt and LiPF6-based natural carbonate electrolyte for Li-ion batteries. Phys. Chem. Chem. Phys. 21, 23833 (2019).
Jarry, A. et al. The formation mechanism of fluorescent steel complexes on the LixNi0.5Mn1.5O4−δ/carbonate ester electrolyte interface. J. Am. Chem. Soc. 137, 3533–3539 (2015).
Yu, Y. et al. Coupled LiPF6 decomposition and carbonate dehydrogenation enhanced by extremely covalent steel oxides in high-energy Li-ion batteries. J. Phys. Chem. C 122, 27368–27382 (2018).
Wang, A. A. et al. Potentiometric MRI of a superconcentrated lithium electrolyte: testing the irreversible thermodynamics method. ACS Power Lett. 6, 3086–3095 (2021).
Fawdon, J., Ihli, J., La Mantia, F. & Pasta, M. Characterising lithium-ion electrolytes by way of operando Raman microspectroscopy. Nat. Commun. 12, 4053 (2021).
Cheng, Q. et al. Operando and three-dimensional visualization of anion depletion and lithium development by stimulated Raman scattering microscopy. Nat. Commun. 9, 2942 (2018).
Search engine optimization, D. M., Borodin, O., Han, S.-D., Boyle, P. D. & Henderson, W. A. Electrolyte solvation and ionic affiliation II. Acetonitrile-lithium salt mixtures: extremely dissociated salts. J. Electrochem. Soc. 159, A1489–A1500 (2012).
Brissot, C., Rosso, M., Chazalviel, J. ‐N. & Lascaud, S. In situ focus cartography within the neighborhood of dendrites rising in lithium/polymer‐electrolyte/lithium cells. J. Electrochem. Soc. 146, 4393–4400 (1999).
Khan, Z. A., Agnaou, M., Sadeghi, M. A., Elkamel, A. & Gostick, J. T. Pore community modelling of galvanostatic discharge behaviour of lithium-ion battery cathodes. J. Electrochem. Soc. 168, 070534 (2021).
Kang, J., Koo, B., Kang, S. & Lee, H. Physicochemical nature of polarization elements limiting the quick operation of Li-ion batteries. Chem. Phys. Rev. 2, 041307 (2021).
Takamatsu, D. et al. In operando visualization of electrolyte stratification dynamics in lead-acid battery utilizing phase-contrast X-ray imaging. Chem. Commun. 56, 9553–9556 (2020).
Takamatsu, D., Yoneyama, A., Asari, Y. & Hirano, T. Quantitative visualization of salt focus distributions in lithium-ion battery electrolytes throughout battery operation utilizing X-ray part imaging. J. Am. Chem. Soc. 140, 1608–1611 (2018).
Aurbach, D. et al. Raman spectroelectrochemistry of a lithium/polymer electrolyte symmetric cell. J. Electrochem. Soc. 145, 3034 (1998).
Klett, M. et al. Quantifying mass transport throughout polarization in a Li ion battery electrolyte by in situ 7Li NMR imaging. J. Am. Chem. Soc. 134, 14654–14657 (2012).
Zhao, J. et al. Bond-selective depth diffraction tomography. Nat. Commun. 13, 7767 (2022).
Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping strategies for focusing mild into organic tissue. Nat. Photon. 9, 563–571 (2015).
Gong, P. et al. Parametric imaging of attenuation by optical coherence tomography: assessment of fashions, strategies, and scientific translation. J. Biomed. Decide. 25, 040901 (2020).
Ghosh, B., Mandal, M., Mitra, P. & Chatterjee, J. Attenuation corrected-optical coherence tomography for quantitative evaluation of pores and skin wound therapeutic and scar morphology. J. Biophotonics 14, e202000357 (2020).
Diel, E. E., Lichtman, J. W. & Richardson, D. S. Tutorial: avoiding and correcting sample-induced spherical aberration artifacts in 3D fluorescence microscopy. Nat. Protoc. 15, 2773–2784 (2020).
Pimenta, V. et al. Synthesis of Li-rich NMC: a complete research. Chem. Mater. 29, 9923–9936 (2017).
Donaldson, S. H. & De Aguiar, H. B. Molecular imaging of ldl cholesterol and lipid distributions in mannequin membranes. J. Phys. Chem. Lett. 9, 1528–1533 (2018).
Schneider, C. A., Rasband, W. S. & Eliceiri, Ok. W. NIH picture to ImageJ: 25 years of picture evaluation. Nat. Strategies 97, 671–675 (2012).
Lowe, D. G. Distinctive picture options from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004).