Malik R, Johnson RE, Prakash L, Prakash S, Ubarretxena-Belandia I, Aggarwal AK. Cryo-EM construction of translesion DNA synthesis polymerase ζ with a base pair mismatch. Nat Commun. 2022;13(1):1050.
Tan S, McCoy A. James Dewey Watson (1928–): co-discoverer of the construction of DNA. Singapore Med J. 2020;61(10):507–8.
Ngai CK, Lam SL, Lee HK, Guo P. A purine and a spine discontinuous website alter the construction and thermal stability of DNA minidumbbells containing two pentaloops. FEBS Lett. 2022;596(6):826–40.
Dai P, Williams CT, Witucki AM, Rudge DW. Rosalind Franklin and the invention of the construction of DNA: utilizing historic narratives to assist college students perceive nature of science. Sci Educ. 2021;30(3):659–92.
Dong Y, Yao C, Zhu Y, Yang L, Luo D, Yang D. DNA practical supplies assembled from branched DNA: design, synthesis, and purposes. Chem Rev. 2020;120(17):9420–81. https://doi.org/10.1021/acs.chemrev.0c00294.
Seeman NC. DNA nanotechnology: novel DNA constructions. Annu Rev Biophys Biomol Struct. 1998;27(1):225–48.
Wang P, Xiao M, Pei H, et al. Biomineralized DNA nanospheres by steel natural framework for enhanced chemodynamic remedy. Chem Eng J. 2021;415:129036.
Qi H, Xu Y, Hu P, Yao C, Yang D. Building and purposes of DNA nanomaterials in most cancers remedy. Chin Chem Lett. 2022;33(3):1131–40.
Llewellyn SV, Niemeijer M, Nymark P, et al. In vitro three-dimensional liver fashions for nanomaterial DNA injury evaluation. Small. 2021;17(15):2006055.
Baker YR, Yuan L, Chen J, et al. Increasing the chemical performance of DNA nanomaterials generated by rolling circle amplification. Nucleic Acids Res. 2021;49(16):9042–52.
Tian Y, Lhermitte JR, Bai L, et al. Ordered three-dimensional nanomaterials utilizing DNA-prescribed and valence-controlled materials voxels. Nat Mater. 2020;19(7):789–96.
Suo Z, Chen J, Hu Z, Liu Y, Xing F, Feng L. Latest advances in novel DNA guiding nanofabrication and nanotechnology. Nanofabrication. 2018;4(1):32–52.
Baig MMFA, Dissanayaka WL, Zhang C. 2D DNA nanoporous scaffold promotes osteogenic differentiation of pre-osteoblasts. Int J Biol Macromol. 2021;188:657–69. https://doi.org/10.1016/j.ijbiomac.2021.07.198.
Lu H, Hailin T, Yi X, Wang J. Three-dimensional DNA nanomachine mixed with toehold-mediated strand displacement response for delicate electrochemical detection of miRNA. Langmuir. 2020;36(36):10708–14. https://doi.org/10.1021/acs.langmuir.0c01415.
Ma W, Zhan Y, Zhang Y, Mao C, Xie X, Lin Y. The organic purposes of DNA nanomaterials: present challenges and future instructions. Sign Transduct Goal Ther. 2021;6(1):351. https://doi.org/10.1038/s41392-021-00727-9.
Toivari M, Nygård Y, Kumpula EP, et al. Metabolic engineering of Saccharomyces cerevisiae for bioconversion of d-xylose to d-xylonate. Metab Eng. 2012;14(4):427–36. https://doi.org/10.1016/j.ymben.2012.03.002.
Fu J, Liu M, Liu Y, Yan H. Spatially-interactive biomolecular networks organized by nucleic acid nanostructures. Acc Chem Res. 2012;45(8):1215–26.
Wang X, Chandrasekaran AR, Shen Z, et al. Paranemic crossover DNA: there and again once more. Chem Rev. 2019;119(10):6273–89.
Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Focused supply of cisplatin to prostate most cancers cells by aptamer functionalized Pt(IV) prodrug-PLGA–PEG nanoparticles. Proc Natl Acad Sci USA. 2008. https://doi.org/10.1073/pnas.0809154105.
Lee H, Lytton-Jean AKR, Chen Y, et al. Molecularly self-assembled nucleic acid nanoparticles for focused in vivo siRNA supply. Nat Nanotechnol. 2012;7(6):389–93. https://doi.org/10.1038/nnano.2012.73.
Jiang S, Eltoukhy AA, Love KT, Langer R, Anderson DG. Lipidoid-coated iron oxide nanoparticles for environment friendly DNA and siRNA supply. Nano Lett. 2013;13(3):1059–64. https://doi.org/10.1021/nl304287a.
Wei T, Cheng Q, Farbiak L, Anderson DG, Langer R, Siegwart DJ. Supply of tissue-targeted scalpels: alternatives and challenges for in vivo CRISPR/Cas-based genome modifying. ACS Nano. 2020. https://doi.org/10.1021/acsnano.0c04707.
Liu F, Shang Y, Wang Z, Jiao Y, Li N, Ding B. DNA origami directed fabrication of shape-controllable nanomaterials. APL Mater. 2020;8(11):110703. https://doi.org/10.1063/5.0025776.
Yang B, Zhao Z, Pan Y, et al. Shear-thinning and designable responsive supramolecular DNA hydrogels primarily based on chemically branched DNA. ACS Appl Mater Interfaces. 2021;13(41):48414–22. https://doi.org/10.1021/acsami.1c15494.
He Y, Chen Y, Liu H, Ribbe AE, Mao C. Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J Am Chem Soc. 2005;127(35):12202–3.
Cheng E, Xing Y, Chen P, et al. A pH-triggered, fast-responding DNA hydrogel. Angew Chem. 2009;121(41):7796–9.
Zheng J, Birktoft JJ, Chen Y, et al. From molecular to macroscopic by way of the rational design of a self-assembled 3D DNA crystal. Nature. 2009;461(7260):74–7.
Iinuma R, Ke Y, Jungmann R, Schlichthaerle T, Woehrstein JB, Yin P. Polyhedra self-ASSEMBLED from DNA tripods and characterised with 3D DNA-PAINT. Science. 2014;344(6179):65–9.
Zhang F, Jiang S, Wu S, et al. Complicated wireframe DNA origami nanostructures with multi-arm junction vertices. Nat Nanotechnol. 2015;10(9):779–84.
Hong F, Jiang S, Wang T, Liu Y, Yan H. 3D framework DNA origami with layered crossovers. Angew Chem Int Ed. 2016;55(41):12832–5.
Kwon PS, Ren S, Kwon SJ, et al. Designer DNA structure gives exact and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat Chem. 2020;12(1):26–35.
Wang W, Chen S, An B, et al. Complicated wireframe DNA nanostructures from easy constructing blocks. Nat Commun. 2019;10(1):1067.
Yang H, McLaughlin CK, Aldaye FA, et al. Metallic–nucleic acid cages. Nat Chem. 2009;1(5):390–6.
Finke A, Bußkamp H, Manea M, Marx A. Designer extracellular matrix primarily based on DNA-peptide networks generated by polymerase chain response. Angew Chem Int Ed. 2016;55(34):10136–40.
Liu J, Wu T, Lu X, et al. A self-assembled platform primarily based on branched DNA for sgRNA/Cas9/antisense supply. J Am Chem Soc. 2019;141(48):19032–7.
Tapio Okay, Bald I. The potential of DNA origami to construct multifunctional supplies. Multifunct Mater. 2020;3(3):032001.
Ma J, Xu J. Logic gates in nanoscale primarily based on interplay of thiolated DNA with AuNPs and strand displacement. Biosystems. 2021;206:104432.
Hu Y, Niemeyer CM. Designer DNA–silica/carbon nanotube nanocomposites for traceable and focused drug supply. J Mater Chem B. 2020;8(11):2250–5. https://doi.org/10.1039/C9TB02861G.
Wang C, Yu Y, Irfan M, et al. Rational design of DNA framework-based hybrid nanomaterials for anticancer drug supply. Small. 2020;16(44):2002578. https://doi.org/10.1002/smll.202002578.
Wang X, Yu J, Lan W, et al. Novel steady DNA nanoscale materials and its software on particular enrichment of DNA. ACS Appl Mater Interfaces. 2020;12(17):19834–9. https://doi.org/10.1021/acsami.0c02242.
Tian T, Li Y, Lin Y. Prospects and challenges of dynamic DNA nanostructures in biomedical purposes. Bone Res. 2022;10(1):40. https://doi.org/10.1038/s41413-022-00212-1.
Kim Okay, Yoon S, Chang J, et al. Multifunctional heterogeneous carbon nanotube nanocomposites assembled by DNA-binding peptide anchors. Small. 2020;16(5):1905821. https://doi.org/10.1002/smll.201905821.
Schipperges A, Hu Y, Moench S, et al. Formulation of DNA nanocomposites: in direction of practical supplies for protein expression. Polymers. 2021;13(15):2395. https://doi.org/10.3390/polym13152395.
Yu R, Wang R, Wang Z, Zhu Q, Dai Z. Purposes of DNA-nanozyme-based sensors. Analyst. 2021;146(4):1127–41. https://doi.org/10.1039/D0AN02368J.
Bhanjadeo MM, Nayak AK, Subudhi U. Floor-assisted DNA self-assembly: an enzyme-free technique in direction of formation of branched DNA lattice. Biochem Biophys Res Commun. 2017;485(2):492–8. https://doi.org/10.1016/j.bbrc.2017.02.024.
Samanta D, Ebrahimi SB, Kusmierz CD, Cheng HF, Mirkin CA. Protein spherical nucleic acids for live-cell chemical evaluation. J Am Chem Soc. 2020;142(31):13350–5. https://doi.org/10.1021/jacs.0c06866.
Cui MR, Chen LX, Li XL, Xu JJ, Chen HY. NIR remote-controlled “lock–unlock” nanosystem for imaging potassium ions in residing cells. Anal Chem. 2020;92(6):4558–65. https://doi.org/10.1021/acs.analchem.9b05820.
Chen Z, Liu X, Liu D, Li F, Wang L, Liu S. Ultrasensitive electrochemical DNA biosensor fabrication by coupling an integral multifunctional zirconia-reduced graphene oxide-thionine nanocomposite and exonuclease I-assisted cleavage. Entrance Chem. 2020;8:521. https://doi.org/10.3389/fchem.2020.00521.
Shen L, Wang P, Ke Y. DNA nanotechnology-based biosensors and therapeutics. Adv Healthc Mater. 2021;10(15):2002205. https://doi.org/10.1002/adhm.202002205.
Yuan Y, Hu T, Zhong X, Zhu M, Chai Y, Yuan R. Extremely delicate photoelectrochemical biosensor primarily based on quantum dots sensitizing Bi 2 Te 3 nanosheets and DNA-amplifying methods. ACS Appl Mater Interfaces. 2020;12(20):22624–9. https://doi.org/10.1021/acsami.0c04536.
Wei Q, Teng Z, Luo X, et al. Incorporating quaternary mesoporous nanospheres and DNA stochastic nanowalkers right into a sign amplified swap: a extremely delicate electrochemical assay for APE1. Sens Actuators B Chem. 2022;370:132386. https://doi.org/10.1016/j.snb.2022.132386.
Sabari JK, Offin M, Stephens D, et al. A potential examine of circulating tumor DNA to information matched focused remedy in lung cancers. JNCI J Natl Most cancers Inst. 2019;111(6):575–83. https://doi.org/10.1093/jnci/djy156.
Zhang Q, Lin S, Shi S, et al. Anti-inflammatory and antioxidative results of tetrahedral DNA nanostructures by way of the modulation of macrophage responses. ACS Appl Mater Interfaces. 2018;10(4):3421–30.
Zhang T, Tian T, Zhou R, et al. Design, fabrication and purposes of tetrahedral DNA nanostructure-based multifunctional complexes in drug supply and biomedical remedy. Nat Protoc. 2020;15(8):2728–57.
Dou Y, Cui W, Yang X, Lin Y, Ma X, Cai X. Purposes of tetrahedral DNA nanostructures in wound restore and tissue regeneration. Burns Trauma. 2022;10:tkac006. https://doi.org/10.1093/burnst/tkac006.
Li S, Jiang Q, Liu S, et al. A DNA nanorobot capabilities as a most cancers therapeutic in response to a molecular set off in vivo. Nat Biotechnol. 2018;36(3):258–64. https://doi.org/10.1038/nbt.4071.
Liu S, Jiang Q, Zhao X, et al. A DNA nanodevice-based vaccine for most cancers immunotherapy. Nat Mater. 2021;20(3):421–30. https://doi.org/10.1038/s41563-020-0793-6.
Wang Z, Tune L, Liu Q, et al. A tubular DNA nanodevice as a siRNA/chemo-drug co-delivery automobile for mixed most cancers remedy. Angew Chem Int Ed. 2021;60(5):2594–8. https://doi.org/10.1002/anie.202009842.
Zhang L, Wang S, Yang Z, et al. An aptamer-nanotrain assembled from six-letter DNA delivers doxorubicin selectively to liver most cancers cells. Angew Chem Int Ed. 2020;59(2):663–8. https://doi.org/10.1002/anie.201909691.
Comberlato A, Koga MM, Nüssing S, Parish IA, Bastings MMC. Spatially managed activation of toll-like receptor 9 with DNA nanomaterials. Nano Lett. 2022;22(6):2506–13. https://doi.org/10.1021/acs.nanolett.2c00275.
Jiang Y, Zhou H, Zhao W, Zhang S. ATP-triggered drug launch of self-assembled 3D DNA nanostructures for fluorescence imaging and tumor remedy. Anal Chem. 2022;94(18):6771–80. https://doi.org/10.1021/acs.analchem.2c00409.
Gao P, Yin J, Wang M, et al. COF-DNA bicolor nanoprobes for imaging tumor-associated mRNAs in residing cells. Anal Chem. 2022;94(38):13293–9. https://doi.org/10.1021/acs.analchem.2c03658.
Zhao P, Li B, Li Y, Chen L, Wang H, Ye L. DNA-Templated ultrasmall bismuth sulfide nanoparticles for photoacoustic imaging of myocardial infarction. J Colloid Interface Sci. 2022;615:475–84. https://doi.org/10.1016/j.jcis.2022.01.194.
Kim S, Kim JH, Kwon WY, et al. Synthesis of DNA-templated copper nanoparticles with enhanced fluorescence stability for mobile imaging. Microchim Acta. 2019;186(7):479. https://doi.org/10.1007/s00604-019-3620-5.
Wang J, Li J, Chen Y, et al. Measurement-controllable and self-assembled DNA nanosphere for amplified microRNA imaging by way of ATP-fueled cyclic dissociation. Nano Lett. 2022. https://doi.org/10.1021/acs.nanolett.2c02934.
Zeng Y, Chang P, Ma J, et al. DNA origami-anthraquinone hybrid nanostructures for in vivo quantitative monitoring of the development of tumor hypoxia affected by chemotherapy. ACS Appl Mater Interfaces. 2022;14(5):6387–403. https://doi.org/10.1021/acsami.1c22620.
Liang L, Jia S, Barman I. DNA-POINT: DNA patterning of optical imprint for nanomaterials topography. ACS Appl Mater Interfaces. 2022;14(33):38388–97. https://doi.org/10.1021/acsami.2c10908.
Qin D, Gong Q, Li X, et al. Identification of Mycoplasma pneumoniae by DNA-modified gold nanomaterials in a colorimetric assay. Biotechnol Appl Biochem. 2022. https://doi.org/10.1002/bab.2377.