Cell unit-inspired pure nano-based biomaterials as versatile constructing blocks for bone/cartilage regeneration | Journal of Nanobiotechnology


  • O’Keefe RJ, Mao J. Bone tissue engineering and regeneration: from discovery to the clinic—an summary. Tissue Eng Half B Rev. 2011;17(6):389–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM. Stromal cells and stem cells in scientific bone regeneration. Nat Rev Endocrinol. 2015;11(3):140–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bharadwaz A, Jayasuriya AC. Current traits within the utility of extensively used pure and artificial polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2020;110: 110698.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baroli B. From pure bone grafts to tissue engineering therapeutics: brainstorming on pharmaceutical formulative necessities and challenges. J Pharm Sci. 2009;98(4):1317–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walmsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, Hu MS, Feroze AH, Wong VW, Lorenz PH, Longaker MT. Nanotechnology in bone tissue engineering. Nanomedicine. 2015;11(5):1253–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou J, Jian L, Xie J, Cheng S, Li B, Wang D, Shao H, Zhang Y, Peng F. Strontium-containing barium titanate-modified titanium for enhancement of osteointegration. ACS Biomater Sci Eng. 2022;8(3):1271–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang JL, Witte F, Xi TF, Zheng YF, Yang Ok, Yang YS, Zhao DW, Meng J, Li YD, Li WR, Chan KM, Qin L. Suggestion for modifying present cytotoxicity testing requirements for biodegradable magnesium-based supplies. Acta Biomater. 2015;21:237–49.

    Article 
    PubMed 

    Google Scholar
     

  • Ginebra MP, Espanol M, Maazouz Y, Bergez V, Pastorino D. Bioceramics and bone therapeutic. EFORT Open Rev. 2018;3(5):173–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khare D, Basu B, Dubey AK. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering purposes. Biomaterials. 2020;258:120280.

  • Mir AH, Qamar A, Qadir I, Naqvi AH, Begum R. Accumulation and trafficking of zinc oxide nanoparticles in an invertebrate mannequin, Bombyx mori, with insights on their results on immuno-competent cells. Sci Rep-Uk. 2020;10(1):1617.

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S. Nano primarily based drug supply techniques: current developments and future prospects. J Nanobiotechnol. 2018;16(1):1–33.

    Article 

    Google Scholar
     

  • Lee J, Kim G. Three-dimensional hierarchical nanofibrous collagen scaffold fabricated utilizing fibrillated collagen and pluronic F-127 for regenerating bone tissue. ACS Appl Mater Interfaces. 2018;10(42):35801–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Son J, Kim J, Lee Ok, Hwang J, Choi Y, Search engine marketing Y, Jeon H, Kang HC, Woo HM, Kang BJ, Choi J. DNA aptamer immobilized hydroxyapatite for enhancing angiogenesis and bone regeneration. Acta Biomater. 2019;99:469–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Ma W, Zhan Y, Mao C, Shao X, Xie X, Wei X, Lin Y. Nucleic acids and analogs for bone regeneration. Bone Res. 2018;6:37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian T, Li Y, Lin Y. Prospects and challenges of dynamic DNA nanostructures in biomedical purposes. Bone Res. 2022;10(1):40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin L, Nonaka Y, Miyakawa S, Fujiwara M, Nakamura Y. Twin therapeutic motion of a neutralizing anti-FGF2 aptamer in bone illness and bone most cancers ache. Mol Remedy. 2016;24(11):1974–86.

    Article 
    CAS 

    Google Scholar
     

  • Shen MJ, Wang CY, Hao DX, Hao JX, Zhu YF, Han XX, Tonggu L, Chen JH, Jiao Ok, Tay FR, Niu LN. Multifunctional nanomachinery for enhancement of bone therapeutic. Adv Mater. 2022;34(9): e2107924.

    Article 
    PubMed 

    Google Scholar
     

  • Osborne SE, Ellington AD. Nucleic acid choice and the problem of combinatorial chemistry. Chem Rev. 1997;97(2):349–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson DS, Szostak JW. In vitro choice of practical nucleic acids. Annu Rev Biochem. 1999;68:611–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao F, Yin J, Chen Y, Guo C, Hu H, Su J. Current advances in aptamer-based focused drug supply techniques for most cancers remedy. Entrance Bioeng Biotechnol. 2022;10: 972933.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang C, Guo B, Wu H, Shao N, Li D, Liu J, Dang L, Wang C, Li H, Li S, Lau WK, Cao Y, Yang Z, Lu C, He X, Au DW, Pan X, Zhang BT, Lu C, Zhang H, Yue Ok, Qian A, Shang P, Xu J, Xiao L, Bian Z, Tan W, Liang Z, He F, Zhang L, Lu A, Zhang G. Aptamer-functionalized lipid nanoparticles concentrating on osteoblasts as a novel RNA interference-based bone anabolic technique. Nat Med. 2015;21(3):288–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou Z, Meyer S, Propson NE, Nie J, Jiang P, Stewart R, Thomson JA. Characterization and goal identification of a DNA aptamer that labels pluripotent stem cells. Cell Res. 2015;25(3):390–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Zheng X, Duan Y, Ma L, Gao C. Outlined substrate by aptamer modification with the balanced properties of selective seize and stemness upkeep of mesenchymal stem cells. ACS Appl Mater Interfaces. 2019;11(16):15170–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu X, Wang Y, Tan Y, Wang J, Liu H, Wang Y, Yang S, Shi M, Zhao S, Zhang Y, Yuan Q. A difunctional regeneration scaffold for knee restore primarily based on aptamer-directed cell recruitment. Adv Mater. 2017. https://doi.org/10.1002/adma.201605235.

    Article 
    PubMed 

    Google Scholar
     

  • Chen M, Solar Y, Hou Y, Luo Z, Li M, Wei Y, Chen M, Tan L, Cai Ok, Hu Y. Constructions of ROS-responsive titanium-hydroxyapatite implant for mesenchymal stem cell recruitment in peri-implant area and bone formation in osteoporosis microenvironment. Bioact Mater. 2022;18:56–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li F, Lyu D, Liu S, Guo W. DNA hydrogels and microgels for biosensing and biomedical purposes. Adv Mater. 2020;32(3): e1806538.

    Article 
    PubMed 

    Google Scholar
     

  • Yan X, Yang B, Chen Y, Track Y, Ye J, Pan Y, Zhou B, Wang Y, Mao F, Dong Y, Liu D, Yu J. Anti-friction MSCs supply system improves the remedy for extreme osteoarthritis. Adv Mater. 2021;33(52): e2104758.

    Article 
    PubMed 

    Google Scholar
     

  • Miao Y, Chen Y, Luo J, Liu X, Yang Q, Shi X, Wang Y. Black phosphorus nanosheets-enabled DNA hydrogel integrating 3D-printed scaffold for selling vascularized bone regeneration. Bioact Mater. 2023;21:97–109.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basu S, Pacelli S, Feng Y, Lu Q, Wang J, Paul A. Harnessing the noncovalent interactions of DNA spine with 2D silicate nanodisks to manufacture injectable therapeutic hydrogels. ACS Nano. 2018;12(10):9866–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D. Enzyme-catalysed meeting of DNA hydrogel. Nat Mater. 2006;5(10):797–801.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji W, Wu Q, Han X, Zhang W, Wei W, Chen L, Li L, Huang W. Photosensitive hydrogels: from construction, mechanisms, design to bioapplications. Sci China Life Sci. 2020;63(12):1813–28.

    Article 
    PubMed 

    Google Scholar
     

  • Okay O. DNA hydrogels: new practical tender supplies. J Polym Sci B Polym Phys. 2011;49(8):551–6.

    Article 
    CAS 

    Google Scholar
     

  • Topuz F, Okay O. Formation of hydrogels by simultaneous denaturation and cross-linking of DNA. Biomacromol. 2009;10(9):2652–61.

    Article 
    CAS 

    Google Scholar
     

  • Zhang T, Ma HS, Zhang XL, Shi SR, Lin YF. Functionalized DNA nanomaterials concentrating on toll-like receptor 4 forestall bisphosphonate-related osteonecrosis of the jaw through regulating mitochondrial homeostasis in macrophages. Adv Funct Mater. 2023. https://doi.org/10.1002/adfm.202213401.

    Article 
    PubMed 

    Google Scholar
     

  • Tian T, Zhang T, Shi S, Gao Y, Cai X, Lin Y. A dynamic DNA tetrahedron framework for lively concentrating on. Nat Protoc. 2023;18(4):1028–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Y, Li Q, Wang L, Guo Q, Liu S, Zhu S, Solar Y, Fan Y, Solar Y, Li H, Tian X, Luo D, Shi S. Advances in regenerative medication purposes of tetrahedral framework nucleic acid-based nanomaterials: an skilled consensus advice. Int J Oral Sci. 2022;14(1):51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li SH, Liu YH, Tian TR, Zhang T, Lin SY, Zhou M, Zhang XL, Lin YF, Cai XX. Bioswitchable supply of microRNA by framework nucleic acids: utility to bone regeneration. Small. 2021. https://doi.org/10.1002/smll.202104359.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi SR, Tian TR, Li YJ, Xiao DX, Zhang T, Gong P, Lin YF. Tetrahedral framework nucleic acid inhibits chondrocyte apoptosis and oxidative stress by means of activation of autophagy. ACS Appl Mater Interfaces. 2020;12(51):56782–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice missing fibroblast development issue receptor 3. Nat Genet. 1996;12(4):390–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kimura T, Bosakova M, Nonaka Y, Hruba E, Yasuda Ok, Futakawa S, Kubota T, Fafilek B, Gregor T, Abraham SP, Gomolkova R, Belaskova S, Pesl M, Csukasi F, Duran I, Fujiwara M, Kavkova M, Zikmund T, Kaiser J, Buchtova M, Krakow D, Nakamura Y, Ozono Ok, Krejci P. An RNA aptamer restores faulty bone development in FGFR3-related skeletal dysplasia in mice. Sci Transl Med. 2021. https://doi.org/10.1126/scitranslmed.aba4226.

    Article 
    PubMed 

    Google Scholar
     

  • Soldevilla MM, Villanueva H, Bendandi M, Inoges S. de Cerio AL-D, Pastor F, 2-fluoro-RNA oligonucleotide CD40 focused aptamers for the management of B lymphoma and bone-marrow aplasia. Biomaterials. 2015;67:274–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soldevilla MM, Villanueva H, Bendandi M, Inoges S, Lopez-Diaz de Cerio A, Pastor F. 2-fluoro-RNA oligonucleotide CD40 focused aptamers for the management of B lymphoma and bone-marrow aplasia. Biomaterials. 2015;67:274–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joh H, Fan DE. Supplies and schemes of multimodal reconfigurable micro/nanomachines and robots: evaluate and perspective. Adv Mater. 2021;33(39): e2101965.

    Article 
    PubMed 

    Google Scholar
     

  • Taoka M, Nobe Y, Yamaki Y, Sato Ok, Ishikawa H, Izumikawa Ok, Yamauchi Y, Hirota Ok, Nakayama H, Takahashi N, Isobe T. Panorama of the whole RNA chemical modifications within the human 80S ribosome. Nucleic Acids Res. 2018;46(18):9289–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dill KA, MacCallum JL. The protein-folding downside, 50 years on. Science. 2012;338(6110):1042–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muthukumar T, Aravinthan A, Sharmila J, Kim NS, Kim JH. Collagen/chitosan porous bone tissue engineering composite scaffold included with Ginseng compound Ok. Carbohydr Polym. 2016;152:566–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Curtin CM, Cunniffe GM, Lyons FG, Bessho Ok, Dickson GR, Duffy GP, O’Brien FJ. Progressive collagen nano-hydroxyapatite scaffolds supply a extremely environment friendly non-viral gene supply platform for stem cell-mediated bone formation. Adv Mater. 2012;24(6):749–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng L, Liu S, Cheng X, Qin Z, Lu Z, Zhang Ok, Zhao J. Intensified stiffness and photodynamic provocation in a collagen-based composite hydrogel drive chondrogenesis. Adv Sci (Weinh). 2019;6(16):1900099.

    Article 
    PubMed 

    Google Scholar
     

  • Visser R, Rico-Llanos GA, Pulkkinen H, Becerra J. Peptides for bone tissue engineering. J Management Launch. 2016;244(Pt A):122–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarker B, Hum J, Nazhat SN, Boccaccini AR. Combining collagen and bioactive glasses for bone tissue engineering: a evaluate. Adv Healthc Mater. 2015;4(2):176–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Safari B, Aghazadeh M, Roshangar L, Aghanejad A, Davaran S. A bioactive porous scaffold containing collagen/phosphorous-modified polycaprolactone for osteogenesis of adipose-derived mesenchymal stem cells. Eur Polym J. 2022;171: 111220.

    Article 
    CAS 

    Google Scholar
     

  • Oosterlaken BM, Vena MP, de With G. In vitro mineralization of collagen. Adv Mater. 2021;33(16): e2004418.

    Article 
    PubMed 

    Google Scholar
     

  • Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The collagen suprafamily: from biosynthesis to superior biomaterial improvement. Adv Mater. 2019;31(1): e1801651.

    Article 
    PubMed 

    Google Scholar
     

  • Yu L, Rowe DW, Perera IP, Zhang J, Suib SL, Xin X, Wei M. Intrafibrillar mineralized collagen-hydroxyapatite-based scaffolds for bone regeneration. ACS Appl Mater Interfaces. 2020;12(16):18235–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang SJ, Jiang D, Zhang ZZ, Chen YR, Yang ZD, Zhang JY, Shi J, Wang X, Yu JK. Biomimetic nanosilica-collagen scaffolds for in situ bone regeneration: towards a cell-free, one-step surgical procedure. Adv Mater. 2019;31(49): e1904341.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Y, Liu S, Luo D, Xue Z, Yang X, Gu L, Zhou Y, Wang T. Hierarchically staggered nanostructure of mineralized collagen as a bone-grafting scaffold. Adv Mater. 2016;28(39):8740–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu S, Lau CS, Liang Ok, Wen F, Teoh SH. Marine collagen scaffolds in tissue engineering. Curr Opin Biotechnol. 2022;74:92–103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Z, Solomon KL, Zhang X, Pavlos NJ, Abel T, Willers C, Dai Ok, Xu J, Zheng Q, Zheng M. In vitro analysis of pure marine sponge collagen as a scaffold for bone tissue engineering. Int J Biol Sci. 2011;7(7):968–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoyer B, Bernhardt A, Lode A, Heinemann S, Stitching J, Klinger M, Notbohm H, Gelinsky M. Jellyfish collagen scaffolds for cartilage tissue engineering. Acta Biomater. 2014;10(2):883–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caballe-Serrano J, Zhang S, Sculean A, Staehli A, Bosshardt DD. Tissue integration and degradation of a porous collagen-based scaffold used for tender tissue augmentation. Supplies (Basel). 2020;13(10):2420.

  • Zhou Z, Cui J, Wu S, Geng Z, Su J. Silk fibroin-based biomaterials for cartilage/osteochondral restore. Theranostics. 2022;12(11):5103–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holland C, Numata Ok, Rnjak-Kovacina J, Seib FP. The biomedical use of silk: previous, current, future. Adv Healthc Mater. 2019;8(1): e1800465.

    Article 
    PubMed 

    Google Scholar
     

  • Zou S, Yao X, Shao H, Reis RL, Kundu SC, Zhang Y. Nonmulberry silk fibroin-based biomaterials: Affect on cell habits regulation and tissue regeneration. Acta Biomater. 2022;153:68–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi W, Solar M, Hu X, Ren B, Cheng J, Li C, Duan X, Fu X, Zhang J, Chen H, Ao Y. Structurally and functionally optimized silk-fibroin-gelatin scaffold utilizing 3D printing to restore cartilage damage in vitro and in vivo. Adv Mater. 2017. https://doi.org/10.1002/adma.201701089.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong YS, Liu YF, Chen YH, Solar X, Zhang L, Zhang ZL, Wang YY, Qi CX, Wang SF, Yang Q. Spatiotemporal regulation of endogenous MSCs utilizing a practical injectable hydrogel system for cartilage regeneration. NPG Asia Mater. 2021. https://doi.org/10.1038/s41427-021-00339-3.

    Article 

    Google Scholar
     

  • Cheng G, Dai JH, Dai JW, Wang H, Chen S, Liu YH, Liu XY, Li XR, Zhou X, Deng HB, Li Z, Extracellular matrix imitation using nanofibers-embedded biomimetic scaffolds for facilitating cartilage regeneration. Chem Eng J. 2021;410:128379.

  • Wang T, Li YQ, Liu J, Fang Y, Guo WJ, Liu Y, Li XY, Li G, Wang XL, Zheng ZZ, Wang XQ, Kaplan DL. Intraarticularly injectable silk hydrogel microspheres with enhanced mechanical and structural stability to attenuate osteoarthritis. Biomaterials. 2022. https://doi.org/10.1016/j.biomaterials.2022.121611.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang W, Xiang X, Track M, Shen J, Shi Z, Huang W, Liu H. An all-silk-derived bilayer hydrogel for osteochondral tissue engineering. Mater At this time Bio. 2022;17: 100485.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei Ok, Li Y, Kim KO, Nakagawa Y, Kim BS, Abe Ok, Chen GQ, Kim IS. Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their results in osteoblastic habits. J Biomed Mater Res A. 2011;97a(3):272–80.

    Article 
    CAS 

    Google Scholar
     

  • Gao E, Li G, Cao RF, Xia HT, Xu Y, Jiang GN, Xiao KY, Chen J, Chen R, Duan L. Bionic tracheal tissue regeneration utilizing a ring-shaped scaffold comprised of decellularized cartilaginous matrix and silk fibroin. Compos B Eng. 2022. https://doi.org/10.1016/j.compositesb.2021.109470.

    Article 

    Google Scholar
     

  • Bhattacharjee P, Kundu B, Naskar D, Kim HW, Maiti TK, Bhattacharya D, Kundu SC. Silk scaffolds in bone tissue engineering: an summary. Acta Biomater. 2017;63:1–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Unger RE, Peters Ok, Wolf M, Motta A, Migliaresi C, Kirkpatrick CJ. Endothelialization of a non-woven silk fibroin web to be used in tissue engineering: development and gene regulation of human endothelial cells. Biomaterials. 2004;25(21):5137–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuchs S, Jiang X, Schmidt H, Dohle E, Ghanaati S, Orth C, Hofmann A, Motta A, Migliaresi C, Kirkpatrick CJ. Dynamic processes concerned within the pre-vascularization of silk fibroin constructs for bone regeneration utilizing outgrowth endothelial cells. Biomaterials. 2009;30(7):1329–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Yao D, Li L, Qian Z, He W, Ding R, Liu H, Fan Y. Impact of electrospun silk fibroin-silk sericin movies on macrophage polarization and vascularization. ACS Biomater Sci Eng. 2020;6(6):3502–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Ok, Cerutti A. Vaccination methods to advertise mucosal antibody responses. Immunity. 2010;33(4):479–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar H, Guo QP, Shi C, McWilliam RH, Chen JQ, Zhu CH, Han FX, Zhou PH, Yang HL, Liu JB, Solar XL, Meng B, Shu WM, Li B. CD271 antibody-functionalized microspheres able to selective recruitment of reparative endogenous stem cells for in situ bone regeneration. Biomaterials. 2022. https://doi.org/10.1016/j.biomaterials.2021.121243.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Wang H, Pan J, Li J, Zhang Ok, Duan W, Liang H, Chen Ok, Geng D, Shi Q, Yang H, Li B, Chen H. Nanoscaled bionic periosteum orchestrating the osteogenic microenvironment for sequential bone regeneration. ACS Appl Mater Interfaces. 2020;12(33):36823–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Zhang J, Wang X, Chen B, Xiao Z, Shi C, Wei Z, Hou X, Wang Q, Dai J. The osteogenic impact of bone morphogenetic protein-2 on the collagen scaffold conjugated with antibodies. J Management Launch. 2010;141(1):30–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirschenbaum DM. A compilation of amino acid analyses of proteins. VII. Residues per molecule-5. Anal Biochem. 1975;66(1):123–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang X, Tan W. Aptamers generated from cell-SELEX for molecular medication: a chemical biology method. Acc Chem Res. 2010;43(1):48–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kontermann RE. Methods for prolonged serum half-life of protein therapeutics. Curr Opin Biotechnol. 2011;22(6):868–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salazar VS, Gamer LW, Rosen V. BMP signalling in skeletal improvement, illness and restore. Nat Rev Endocrinol. 2016;12(4):203–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Visser R, Rico-Llanos GA, Pulkkinen H, Becerra J. Peptides for bone tissue engineering. J Management Launch. 2016;244:122–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen W, Zhou Z, Chen D, Li Y, Zhang Q, Su J. Bone regeneration utilizing MMP-cleavable peptides-based hydrogels. Gels. 2021. https://doi.org/10.3390/gels7040199.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aoki Ok, Alles N, Soysa N, Ohya Ok. Peptide-based supply to bone. Adv Drug Ship Rev. 2012;64(12):1220–38.

    Article 
    CAS 

    Google Scholar
     

  • Aoki Ok, Saito H, Itzstein C, Ishiguro M, Shibata T, Blanque R, Mian AH, Takahashi M, Suzuki Y, Yoshimatsu M, Yamaguchi A, Deprez P, Mollat P, Murali R, Ohya Ok, Horne WC, Baron R. A TNF receptor loop peptide mimic blocks RANK ligand-induced signaling, bone resorption, and bone loss. J Clin Make investments. 2006;116(6):1525–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heath DJ, Vanderkerken Ok, Cheng X, Gallagher O, Prideaux M, Murali R, Croucher PI. An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone illness in myeloma. Most cancers Res. 2007;67(1):202–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim HK, Kim JH, Park DS, Park KS, Kang SS, Lee JS, Jeong MH, Yoon TR. Osteogenesis induced by a bone forming peptide from the prodomain area of BMP-7. Biomaterials. 2012;33(29):7057–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo ZY, Zhang SQ, Pan JJ, Shi R, Liu H, Lyu YL, Han X, Li Y, Yang Y, Xu ZX, Sui Y, Luo E, Zhang YY, Wei SC. Time-responsive osteogenic area of interest of stem cells: a sequentially triggered, dual-peptide loaded, alginate hybrid system for selling cell exercise and osteo-differentiation. Biomaterials. 2018;163:25–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang TX, Zhou M, Xiao DX, Liu ZQ, Jiang YY, Feng MG, Lin YF, Cai XX. Myelosuppression alleviation and hematopoietic regeneration by tetrahedral-framework nucleic-acid nanostructures functionalized with osteogenic development peptide. Adv Sci (Weinh). 2022. https://doi.org/10.1002/advs.202202058.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li M, Bai J, Tao H, Hao L, Yin W, Ren X, Gao A, Li N, Wang M, Fang S, Xu Y, Chen L, Yang H, Wang H, Pan G, Geng D. Rational integration of protection and restore synergy on PEEK osteoimplants through biomimetic peptide clicking technique. Bioact Mater. 2022;8:309–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Might MJ, D’Acquisto F, Madge LA, Glockner J, Pober JS, Ghosh S. Selective inhibition of NF-kappaB activation by a peptide that blocks the interplay of NEMO with the IkappaB kinase advanced. Science. 2000;289(5484):1550–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glaeser JD, Salehi Ok, Kanim LEA, Sheyn D, NaPier Z, Behrens PH, Garcia L, Cuellar JM, Bae HW. Anti-inflammatory peptide attenuates edema and promotes BMP-2-induced bone formation in backbone fusion. Tissue Eng Half A. 2018;24(21–22):1641–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai S, Hirayama T, Abbas S, Abu-Amer Y. The IkappaB kinase (IKK) inhibitor, NEMO-binding area peptide, blocks osteoclastogenesis and bone erosion in inflammatory arthritis. J Biol Chem. 2004;279(36):37219–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Xu J, Ruan YC, Yu MK, O’Laughlin M, Sensible H, Chen D, Tian L, Shi D, Wang J, Chen S, Feng JQ, Chow DH, Xie X, Zheng L, Huang L, Huang S, Leung Ok, Lu N, Zhao L, Li H, Zhao D, Guo X, Chan Ok, Witte F, Chan HC, Zheng Y, Qin L. Implant-derived magnesium induces native neuronal manufacturing of CGRP to enhance bone-fracture therapeutic in rats. Nat Med. 2016;22(10):1160–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma S, Wang C, Dong Y, Jing W, Wei P, Peng C, Liu Z, Zhao B, Wang Y. Microsphere-gel composite system with mesenchymal stem cell recruitment, antibacterial, and immunomodulatory properties promote bone regeneration through sequential launch of LL37 and W9 peptides. ACS Appl Mater Interfaces. 2022;14(34):38525–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao X, Ran N, Dong X, Zuo B, Yang R, Zhou Q, Moulton HM, Seow Y, Yin H. Anchor peptide captures, targets, and masses exosomes of numerous origins for diagnostics and remedy. Sci Transl Med. 2018. https://doi.org/10.1126/scitranslmed.aat0195.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang T, Yu X, Carbone EJ, Nelson C, Kan HM, Lo KW. Poly aspartic acid peptide-linked PLGA primarily based nanoscale particles: potential for bone-targeting drug supply purposes. Int J Pharm. 2014;475(1–2):547–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramaraju H, Miller SJ, Kohn DH. Twin-functioning phage-derived peptides encourage human bone marrow cell-specific attachment to mineralized biomaterials. Join Tissue Res. 2014;55(Suppl 01):160–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ‘t Hoen PAC, Jirka SMG, ten Broeke BR, Schultes EA, Aguilera B, Pang KH, Heemskerk H, Aartsma-Rus A, van Ommen GJ, den Dunnen JT. Phage show screening with out repetitious choice rounds. Anal Biochem. 2012;421(2):622–31.

    Article 
    PubMed 

    Google Scholar
     

  • Liang Y, Xu X, Li X, Xiong J, Li B, Duan L, Wang D, Xia J. Chondrocyte-targeted microRNA supply by engineered exosomes towards a cell-free osteoarthritis remedy. ACS Appl Mater Interfaces. 2020;12(33):36938–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishizaki J, Waki Y, Takahashi-Nishioka T, Yokogawa Ok, Miyamoto Ok. Selective drug supply to bone utilizing acidic oligopeptides. J Bone Miner Metab. 2009;27(1):1–8.

    Article 
    PubMed 

    Google Scholar
     

  • Zha Y, Li Y, Lin T, Chen J, Zhang S, Wang J. Progenitor cell-derived exosomes endowed with VEGF plasmids improve osteogenic induction and vascular reworking in giant segmental bone defects. Theranostics. 2021;11(1):397–409.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pi YB, Zhang X, Shi JJ, Zhu JX, Chen WQ, Zhang CG, Gao WW, Zhou CY, Ao YF. Focused supply of non-viral vectors to cartilage in vivo utilizing a chondrocyte-homing peptide recognized by phage show. Biomaterials. 2011;32(26):6324–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang Y, Xu X, Xu L, Iqbal Z, Ouyang Ok, Zhang H, Wen C, Duan L, Xia J. Chondrocyte-specific genomic enhancing enabled by hybrid exosomes for osteoarthritis therapy. Theranostics. 2022;12(11):4866–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang YJ, Xu X, Li XF, Xiong JY, Li BQ, Duan L, Wang DP, Xia J. Chondrocyte-targeted microRNA supply by engineered exosomes towards a cell-free osteoarthritis remedy (vol 12, pg 36938, 2020). Acs Appl Mater Inter. 2021;13(49):59591–59591.

    Article 
    CAS 

    Google Scholar
     

  • Safari B, Aghazadeh M, Aghanejad A. Osteogenic differentiation of human adipose-derived mesenchymal stem cells in a bisphosphonate-functionalized polycaprolactone/gelatin scaffold. Int J Biol Macromol. 2023;241: 124573.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu L, Kim Y, Seon GM, Choi SH, Park HC, Son G, Kim SM, Lim BS, Yang HC. Results of RGD-grafted phosphatidylserine-containing liposomes on the polarization of macrophages and bone tissue regeneration. Biomaterials. 2021;279: 121239.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Lin CY, Hollister SJ. The interplay between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds. Biomaterials. 2009;30(25):4063–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng C, Zhang Q, He P, Zhou B, He Ok, Solar X, Lei G, Gong T, Zhang Z. Focused apoptosis of macrophages and osteoclasts in arthritic joints is efficient in opposition to superior inflammatory arthritis. Nat Commun. 2021;12(1):2174.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar J, Huang YK, Zhao H, Niu JJ, Ling XW, Zhu C, Wang L, Yang HL, Yang ZL, Pan GQ, Shi Q. Bio-clickable mussel-inspired peptides enhance titanium-based materials osseointegration synergistically with immunopolarization-regulation. Bioact Mater. 2022;9:1–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li R, Zhou C, Chen J, Luo H, Li R, Chen D, Zou X, Wang W. Synergistic osteogenic and angiogenic results of KP and QK peptides included with an injectable and self-healing hydrogel for environment friendly bone regeneration. Bioact Mater. 2022;18:267–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He Y, Mu C, Shen X, Yuan Z, Liu J, Chen W, Lin C, Tao B, Liu B, Cai Ok. Peptide LL-37 coating on micro-structured titanium implants to facilitate bone formation in vivo through mesenchymal stem cell recruitment. Acta Biomater. 2018;80:412–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamaguchi Ok, Nagai S-I, Ninomiya-Tsuji J, Nishita M, Tamai Ok, Irie Ok, Ueno N, Nishida E, Shibuya H, Matsumoto Ok. XIAP, a mobile member of the inhibitor of apoptosis protein household, hyperlinks the receptors to TAB1–TAK1 within the BMP signaling pathway. EMBO J. 1999;18(1):179–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hattori S, Omi N. The results of royal jelly protein on bone mineral density and power in ovariectomized feminine rats. Phys Act Nutr. 2021;25(2):33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye E, Chee PL, Prasad A, Fang X, Owh C, Yeo VJJ, Loh XJ. Supramolecular tender biomaterials for biomedical purposes. In: Loh XJ, editor. In-situ gelling polymers: for biomedical purposes. Springer Singapore:
    Singapore. 2015;107–125.

  • Arslan E, Garip IC, Gulseren G, Tekinay AB, Guler MO. Bioactive supramolecular peptide nanofibers for regenerative medication. Adv Healthc Mater. 2014;3(9):1357–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang H, Hong N, Liu H, Wang J, Li Y, Wu S. Differentiated adipose-derived stem cell cocultures for bone regeneration in RADA16-I in vitro. J Cell Physiol. 2018;233(12):9458–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye W, Yang Z, Cao F, Li H, Zhao T, Zhang H, Zhang Z, Yang S, Zhu J, Liu Z, Zheng J, Liu H, Ma G, Guo Q, Wang X. Articular cartilage reconstruction with TGF-beta1-simulating self-assembling peptide hydrogel-based composite scaffold. Acta Biomater. 2022;146:94–106.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kopesky PW, Vanderploeg EJ, Sandy JS, Kurz B, Grodzinsky AJ. Self-assembling peptide hydrogels modulate in vitro chondrogenesis of bovine bone marrow stromal cells. Tissue Eng Half A. 2010;16(2):465–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ta HM, Nguyen GT, Jin HM, Choi J, Park H, Kim N, Hwang HY, Kim KK. Construction-based improvement of a receptor activator of nuclear factor-kappaB ligand (RANKL) inhibitor peptide and molecular foundation for osteopetrosis. Proc Natl Acad Sci U S A. 2010;107(47):20281–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim HK, Lee JS, Kim JH, Seon JK, Park KS, Jeong MH, Yoon TR. Bone-forming peptide-2 derived from BMP-7 enhances osteoblast differentiation from multipotent bone marrow stromal cells and bone formation. Exp Mol Med. 2017. https://doi.org/10.1038/emm.2017.40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vignery A, McCarthy TL. The neuropeptide calcitonin gene-related peptide stimulates insulin-like development issue I manufacturing by main fetal rat osteoblasts. Bone. 1996;18(4):331–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sibilia V, Cocchi D, Villa I, Lattuada N, Soglian A, Rubinacci A, Muller EE, Pecile A, Netti C. Bone results of hexarelin, a GH-releasing peptide, in feminine rats: affect of estrogen milieu. Eur J Endocrinol. 2002;146(6):855–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bab I, Gazit D, Chorev M, Muhlrad A, Shteyer A, Greenberg Z, Namdar M, Kahn A. Histone H4-related osteogenic development peptide (OGP): a novel circulating stimulator of osteoblastic exercise. EMBO J. 1992;11(5):1867–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maia FR, Barbosa M, Gomes DB, Vale N, Gomes P, Granja PL, Barrias CC. Hydrogel depots for native co-delivery of osteoinductive peptides and mesenchymal stem cells. J Management Launch. 2014;189:158–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wojtowicz AM, Shekaran A, Oest ME, Dupont KM, Templeman KL, Hutmacher DW, Guldberg RE, Garcia AJ. Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect restore. Biomaterials. 2010;31(9):2574–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scheenstra MR, van den Belt M, Tjeerdsma-van Bokhoven JLM, Schneider VAF, Ordonez SR, van Dijk A, Veldhuizen EJA, Haagsman HP. Cathelicidins PMAP-36, LL-37 and CATH-2 are comparable peptides with completely different modes of motion. Sci Rep. 2019;9(1):4780.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Yang Y, Wang R, Kong X, Wang X. Mineralization of calcium phosphate managed by biomimetic self-assembled peptide monolayers through floor electrostatic potentials. Bioact Mater. 2020;5(2):387–97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee JY, Choo JE, Choi YS, Lee KY, Min DS, Pi SH, Seol YJ, Lee SJ, Jo IH, Chung CP, Park YJ. Characterization of the floor immobilized artificial heparin binding area derived from human fibroblast development factor-2 and its impact on osteoblast differentiation. J Biomed Mater Res A. 2007;83(4):970–9.

    Article 
    PubMed 

    Google Scholar
     

  • Lee JY, Choo JE, Choi YS, Shim IK, Lee SJ, Seol YJ, Chung CP, Park YJ. Impact of immobilized cell-binding peptides on chitosan membranes for osteoblastic differentiation of mesenchymal stem cells. Biotechnol Appl Biochem. 2009;52(Pt 1):69–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fraioli R, Dashnyam Ok, Kim JH, Perez RA, Kim HW, Gil J, Ginebra MP, Manero JM, Mas-Moruno C. Floor steerage of stem cell habits: chemically tailor-made co-presentation of integrin-binding peptides stimulates osteogenic differentiation in vitro and bone formation in vivo. Acta Biomater. 2016;43:269–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin X, Takahashi Ok, Liu Y, Derrien A, Zamora PO. An artificial, bioactive PDGF mimetic with binding to each alpha-PDGF and beta-PDGF receptors. Development Elements. 2007;25(2):87–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar Z, Tong G, Kim TH, Ma N, Niu G, Cao F, Chen X. PEGylated exendin-4, a modified GLP-1 analog displays stronger cardioprotection than its unmodified mother or father molecule on a dose to dose foundation in a murine mannequin of myocardial infarction. Theranostics. 2015;5(3):240–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Li X, Tomin E, Doty SB, Lane JM, Carney DH, Ryaby JT. Thrombin peptide (TP508) promotes fracture restore by up-regulating inflammatory mediators, early development components, and growing angiogenesis. J Orthop Res. 2005;23(3):671–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Zhang ST, Nie BE, Du Z, Lengthy T, Yue B. The antimicrobial peptide KR-12 promotes the osteogenic differentiation of human bone marrow stem cells by stimulating BMP/SMAD signaling. Rsc Adv. 2018;8(28):15547–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallick S, Choi JS. Liposomes: versatile and biocompatible nanovesicles for environment friendly biomolecules supply. J Nanosci Nanotechnol. 2014;14(1):755–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA supply. Nat Rev Mater. 2021;6(12):1078–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burdusel AC, Andronescu E. Lipid nanoparticles and liposomes for bone illnesses therapy. Biomedicines. 2022. https://doi.org/10.3390/biomedicines10123158.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen W, Zheng D, Chen Y, Ruan H, Zhang Y, Chen X, Shen H, Deng L, Cui W, Chen H. Electrospun fibers enhancing mobile respiration through mitochondrial safety. Small. 2021;17(46): e2104012.

    Article 
    PubMed 

    Google Scholar
     

  • Solar Y, Zhou Q, Du Y, Solar J, Bi W, Liu W, Li R, Wu X, Yang F, Track L, Li N, Cui W, Yu Y. Twin biosignal-functional injectable microspheres for reworking osteogenic microenvironment. Small. 2022;18(36): e2201656.

    Article 
    PubMed 

    Google Scholar
     

  • Goldberg R, Schroeder A, Silbert G, Turjeman Ok, Barenholz Y, Klein J. Boundary lubricants with exceptionally low friction coefficients primarily based on 2D close-packed phosphatidylcholine liposomes. Adv Mater. 2011;23(31):3517.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seror J, Zhu L, Goldberg R, Day AJ, Klein J. Supramolecular synergy within the boundary lubrication of synovial joints. Nat Commun. 2015;6:6497.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu SQ, Mahairaki V, Bai H, Ding Z, Li JX, Witwer KW, Cheng LZ. Extremely purified human extracellular vesicles produced by stem cells alleviate growing old mobile phenotypes of senescent human cells. Stem Cells. 2019;37(6):779–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin M, Shi JL, Zhu WZ, Yao H, Wang DA. Polysaccharide-based biomaterials in tissue engineering: a evaluate. Tissue Eng Half B Rev. 2021;27(6):604–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou Z, Wang L, Zhou Z, Solar Q, Liu D, Chen Y, Hu H, Cai Y, Lin S, Yu Z. Simultaneous incorporation of PTH (1–34) and nano-hydroxyapatite into Chitosan/Alginate Hydrogels for environment friendly bone regeneration. Bioact Mater. 2021;6(6):1839–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Janmohammadi M, Nazemi Z, Salehi AOM, Seyfoori A, John JV, Nourbakhsh MS, Akbari M. Cellulose-based composite scaffolds for bone tissue engineering and localized drug supply. Bioact Mater. 2023;20:137–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahendiran B, Muthusamy S, Janani G, Mandal BB, Rajendran S, Krishnakumar GS. Floor modification of decellularized pure cellulose scaffolds with organosilanes for bone tissue regeneration. ACS Biomater Sci Eng. 2022;8(5):2000–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel DK, Dutta SD, Hexiu J, Ganguly Ok, Lim KT. 3D-printable chitosan/silk fibroin/cellulose nanoparticle scaffolds for bone regeneration through M2 macrophage polarization. Carbohydr Polym. 2022;281: 119077.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva AK, Juenet M, Meddahi-Pelle A, Letourneur D. Polysaccharide-based methods for coronary heart tissue engineering. Carbohydr Polym. 2015;116:267–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang B, Liu J, Niu D, Wu N, Yun W, Wang W, Zhang Ok, Li G, Yan S, Xu G, Yin J. Mussel-inspired bisphosphonated injectable nanocomposite hydrogels with adhesive, self-healing, and osteogenic properties for bone regeneration. ACS Appl Mater Interfaces. 2021;13(28):32673–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nikpour P, Salimi-Kenari H, Fahimipour F, Rabiee SM, Imani M, Dashtimoghadam E, Tayebi L. Dextran hydrogels included with bioactive glass-ceramic: nanocomposite scaffolds for bone tissue engineering. Carbohydr Polym. 2018;190:281–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li C, Armstrong JP, Pence IJ, Equipment-Anan W, Puetzer JL, Correia Carreira S, Moore AC, Stevens MM. Glycosylated superparamagnetic nanoparticle gradients for osteochondral tissue engineering. Biomaterials. 2018;176:24–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu JY, Hu Y, Li L, Wang C, Wang J, Li Y, Chen D, Ding X, Shen C, Xu FJ. Biomass-derived multilayer-structured microparticles for accelerated hemostasis and bone restore. Adv Sci (Weinh). 2020;7(22):2002243.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piluso S, Labet M, Zhou C, Search engine marketing JW, Thielemans W, Patterson J. Engineered three-dimensional microenvironments with starch nanocrystals as cell-instructive supplies. Biomacromol. 2019;20(10):3819–30.

    Article 
    CAS 

    Google Scholar
     

  • Murab S, Gupta A, Wlodarczyk-Biegun MK, Kumar A, van Rijn P, Whitlock P, Han SS, Agrawal G. Alginate primarily based hydrogel inks for 3D bioprinting of engineered orthopedic tissues. Carbohydr Polym. 2022;296: 119964.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC, Huebsch N, Lee HP, Lippens E, Duda GN, Mooney DJ. Hydrogels with tunable stress rest regulate stem cell destiny and exercise. Nat Mater. 2016;15(3):326–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Z, Wu J, Qiao W, Zhao Y, Wong KHM, Chu PK, Bian L, Wu S, Zheng Y, Cheung KMC, Leung F, Yeung KWK. Exactly managed supply of magnesium ions through sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere machine to allow in-situ bone regeneration. Biomaterials. 2018;174:1–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirillova A, Maxson R, Stoychev G, Gomillion CT, Ionov L. 4D biofabrication utilizing shape-morphing hydrogels. Adv Mater. 2017. https://doi.org/10.1002/adma.201703443.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang X, Wei D, Xu Y, Zhu Q. Hyaluronic acid in ocular drug supply. Carbohydr Polym. 2021;264: 118006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen F, Ni Y, Liu B, Zhou T, Yu C, Su Y, Zhu X, Yu X, Zhou Y. Self-crosslinking and injectable hyaluronic acid/RGD-functionalized pectin hydrogel for cartilage tissue engineering. Carbohydr Polym. 2017;166:31–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen JQ, Yang JB, Wang L, Zhang XW, Heng BC, Wang DA, Ge ZG. Modified hyaluronic acid hydrogels with chemical teams that facilitate adhesion to host tissues improve cartilage regeneration. Bioact Mater. 2021;6(6):1689–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aisenbrey EA, Bryant SJ. The function of chondroitin sulfate in regulating hypertrophy throughout MSC chondrogenesis in a cartilage mimetic hydrogel underneath dynamic loading. Biomaterials. 2019;190–191:51–62.

    Article 
    PubMed 

    Google Scholar
     

  • Liu X, Liu S, Yang R, Wang P, Zhang W, Tan X, Ren Y, Chi B. Gradient chondroitin sulfate/poly (gamma-glutamic acid) hydrogels inducing differentiation of stem cells for cartilage tissue engineering. Carbohydr Polym. 2021;270: 118330.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borrelli C, Buckley CT. Injectable disc-derived ECM hydrogel functionalised with chondroitin sulfate for intervertebral disc regeneration. Acta Biomater. 2020;117:142–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rindone AN, Kachniarz B, Achebe CC, Riddle RC, O’Sullivan AN, Dorafshar AH, Grayson WL. Heparin-conjugated decellularized bone particles promote enhanced osteogenic signaling of PDGF-BB to adipose-derived stem cells in tissue engineered bone grafts. Adv Healthc Mater. 2019;8(10): e1801565.

    Article 
    PubMed 

    Google Scholar
     

  • Diez-Escudero A, Espanol M, Bonany M, Lu X, Persson C, Ginebra MP. Heparinization of beta tricalcium phosphate: osteo-immunomodulatory results. Adv Healthc Mater. 2018. https://doi.org/10.1002/adhm.201700867.

    Article 
    PubMed 

    Google Scholar
     

  • Ding X, Shi J, Wei J, Li Y, Wu X, Zhang Y, Jiang X, Zhang X, Lai H. A biopolymer hydrogel electrostatically strengthened by amino-functionalized bioactive glass for accelerated bone regeneration. Sci Adv. 2021;7(50):eabj7857.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cidonio G, Cooke M, Glinka M, Dawson JI, Grover L, Oreffo ROC. Printing bone in a gel: utilizing nanocomposite bioink to print functionalised bone scaffolds. Mater At this time Bio. 2019;4: 100028.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba Ok. Chitosan as a bioactive polymer: processing, properties and purposes. Int J Biol Macromol. 2017;105(Pt 2):1358–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levine RL, Dobkin JA, Rozental JM, Satter MR, Nickles RJ. Blood movement reactivity to hypercapnia in strictly unilateral carotid illness: preliminary outcomes. J Neurol Neurosurg Psychiatry. 1991;54(3):204–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu YH, Zhu Z, Pei XB, Zhang X, Cheng XT, Hu SS, Gao XM, Wang J, Chen JY, Wan QB. ZIF-8-modified multifunctional bone-adhesive hydrogels selling angiogenesis and osteogenesis for bone regeneration. Acs Appl Mater Inter. 2020;12(33):36978–95.

    Article 
    CAS 

    Google Scholar
     

  • Lv Z, Hu T, Bian Y, Wang G, Wu Z, Li H, Liu X, Yang S, Tan C, Liang R, Weng X. A MgFe-LDH nanosheet-incorporated sensible thermo-responsive hydrogel with controllable development issue releasing functionality for bone regeneration. Adv Mater. 2022;35: e2206545.

    Article 
    PubMed 

    Google Scholar
     

  • Prajatelistia E, Sanandiya ND, Nurrochman A, Marseli F, Choy S, Hwang DS. Biomimetic Janus chitin nanofiber membrane for potential guided bone regeneration utility. Carbohydr Polym. 2021;251: 117032.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shah NJ, Hong J, Hyder MN, Hammond PT. Osteophilic multilayer coatings for accelerated bone tissue development. Adv Mater. 2012;24(11):1445–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naranda J, Bračič M, Vogrin M, Maver U. Current developments in 3D printing of polysaccharide hydrogels in cartilage tissue engineering. Supplies. 2021;14(14):3977.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shelke NB, James R, Laurencin CT, Kumbar SG. Polysaccharide biomaterials for drug supply and regenerative engineering. Polym Adv Technol. 2014;25(5):448–60.

    Article 
    CAS 

    Google Scholar
     

  • Parodi A, Molinaro R, Sushnitha M, Evangelopoulos M, Martinez JO, Arrighetti N, Corbo C, Tasciotti E. Bio-inspired engineering of cell- and virus-like nanoparticles for drug supply. Biomaterials. 2017;147:155–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Z, Zhang H, Yan J, Wei Y, Su J. Engineered biomembrane-derived nanoparticles for nanoscale theranostics. Theranostics. 2023;13(1):20–39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang QZ, Dehaini D, Zhang Y, Zhou JL, Chen XY, Zhang LF, Fang RH, Gao WW, Zhang LF. Neutrophil membrane-coated nanoparticles inhibit synovial irritation and alleviate joint injury in inflammatory arthritis. Nat Nanotechnol. 2018;13(12):1182.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang JL, Wang F, Lu Y, Qi J, Deng LF, Sousa F, Sarmento B, Xu XY, Cui WG. Current advance of erythrocyte-mimicking nanovehicles: from bench to bedside. J Management Launch. 2019;314:81–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su JH, Solar HP, Meng QS, Yin Q, Zhang PC, Zhang ZW, Yu HJ, Li YP. Bioinspired nanoparticles with NIR-controlled drug launch for synergetic chemophotothermal remedy of metastatic breast most cancers. Adv Funct Mater. 2016;26(41):7495–506.

    Article 
    CAS 

    Google Scholar
     

  • Wu X, Zhang XB, Feng WJ, Feng HM, Ding ZY, Zhao QQ, Li XS, Tang N, Zhang P, Li J, Wang JL. A focused erythrocyte membrane-encapsulated drug-delivery system with anti-osteosarcoma and anti-osteolytic results. Acs Appl Mater Inter. 2021;13(24):27920–33.

    Article 
    CAS 

    Google Scholar
     

  • Chen H, Deng J, Yao X, He Y, Li H, Jian Z, Tang Y, Zhang X, Zhang J, Dai H. Bone-targeted erythrocyte-cancer hybrid membrane-camouflaged nanoparticles for enhancing photothermal and hypoxia-activated chemotherapy of bone invasion by OSCC. J Nanobiotechnol. 2021;19(1):342.

    Article 
    CAS 

    Google Scholar
     

  • Yang HB, Yu ZY, Ji SS, Yan J, Kong Y, Huo Q, Zhang ZJ, Niu YM, Liu Y. Regulation of synovial macrophages polarization by mimicking efferocytosis for remedy of osteoarthritis. Adv Funct Mater. 2022. https://doi.org/10.1002/adfm.202207637.

    Article 
    PubMed 

    Google Scholar
     

  • Nakkala JR, Duan Y, Ding J, Muhammad W, Zhang D, Mao Z, Ouyang H, Gao C. Macrophage membrane-functionalized nanofibrous mats and their immunomodulatory results on macrophage polarization. Acta Biomater. 2022;141:24–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Deng Y, Liu Z, Yin M, Hou M, Zhao Z, Zhou X, Yin L. Cytokine-scavenging nanodecoys reconstruct osteoclast/osteoblast steadiness towards the therapy of postmenopausal osteoporosis. Sci Adv. 2021;7(48): eabl6432.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li S. The essential traits of extracellular vesicles and their potential utility in bone sarcomas. J Nanobiotechnol. 2021;19(1):277.

    Article 
    CAS 

    Google Scholar
     

  • Track H, Li X, Zhao Z, Qian J, Wang Y, Cui J, Weng W, Cao L, Chen X, Hu Y, Su J. Reversal of osteoporotic exercise by endothelial cell-secreted bone concentrating on and biocompatible exosomes. Nano Lett. 2019;19(5):3040–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang S, Teo KYW, Chuah SJ, Lai RC, Lim SK, Toh WS. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating irritation and restoring matrix homeostasis. Biomaterials. 2019;200:35–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang S, Chu WC, Lai RC, Lim SK, Hui JHP, Toh WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr Cartil. 2016;24(12):2135–40.

    Article 
    CAS 

    Google Scholar
     

  • Bei HP, Hung PM, Yeung HL, Wang S, Zhao X. Bone-a-petite: engineering exosomes in the direction of bone, osteochondral, and cartilage restore. Small. 2021;17(50): e2101741.

    Article 
    PubMed 

    Google Scholar
     

  • Hu Y, Li X, Zhang Q, Gu Z, Luo Y, Guo J, Wang X, Jing Y, Chen X, Su J. Exosome-guided bone focused supply of Antagomir-188 as an anabolic remedy for bone loss. Bioact Mater. 2021;6(9):2905–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo J, Wang F, Hu Y, Luo Y, Wei Y, Xu Ok, Zhang H, Liu H, Bo L, Lv S, Sheng S, Zhuang X, Zhang T, Xu C, Chen X, Su J. Exosome-based bone-targeting drug supply alleviates impaired osteoblastic bone formation and bone loss in inflammatory bowel illnesses. Cell Rep Med. 2022;4: 100881.

    Article 

    Google Scholar
     

  • Solar Y, Zhao J, Wu Q, Zhang Y, You Y, Jiang W, Dai Ok. Chondrogenic primed extracellular vesicles activate miR-455/SOX11/FOXO axis for cartilage regeneration and osteoarthritis therapy. NPJ Regen Med. 2022;7(1):53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui Y, Guo Y, Kong L, Shi J, Liu P, Li R, Geng Y, Gao W, Zhang Z, Fu D. A bone-targeted engineered exosome platform delivering siRNA to deal with osteoporosis. Bioact Mater. 2022;10:207–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su Y, Gao Q, Deng R, Zeng L, Guo J, Ye B, Yu J, Guo X. Aptamer engineering exosomes loaded on biomimetic periosteum to advertise angiogenesis and bone regeneration by concentrating on injured nerves through JNK3 MAPK pathway. Mater At this time Bio. 2022;16: 100434.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Zhang Q, Wang S, Weng W, Jing Y, Su J. Bacterial extracellular vesicles as bioactive nanocarriers for drug supply: advances and views. Bioact Mater. 2022;14:169–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen CY, Rao SS, Yue T, Tan YJ, Yin H, Chen LJ, Luo MJ, Wang Z, Wang YY, Hong CG, Qian YX, He ZH, Liu JH, Yang F, Huang FY, Tang SY, Xie H. Glucocorticoid-induced lack of useful intestine bacterial extracellular vesicles is related to the pathogenesis of osteonecrosis. Sci Adv. 2022;8(15):eabg8335.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting expertise for tissue/organ regenerative engineering. Biomaterials. 2020;226: 119536.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Safari B, Davaran S, Aghanejad A. Osteogenic potential of the expansion components and bioactive molecules in bone regeneration. Int J Biol Macromol. 2021;175:544–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miao X, Tan DM, Li J, Xiao Y, Crawford R. Mechanical and organic properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater. 2008;4(3):638–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles