Fuechsle, M. et al. A single-atom transistor. Nat. Nanotechnol. 7, 242–246 (2012).
Huff, T. et al. Binary atomic silicon logic. Nat. Electron. 1, 636–643 (2018).
Achal, R. et al. Lithography for sturdy and editable atomic-scale silicon units and recollections. Nat. Commun. 9, 2778 (2018).
Kalff, F. E. et al. A kilobyte rewritable atomic reminiscence. Nat. Nanotechnol. 11, 926–929 (2016).
Amlani, I. et al. Digital logic gate utilizing quantum-dot mobile automata. Science 284, 289–291 (1999).
Imre, A. et al. Majority logic gate for magnetic quantum-dot mobile automata. Science 311, 205–208 (2006).
Kim, D. et al. Quantum management and course of tomography of a semiconductor quantum dot hybrid qubit. Nature 511, 70–74 (2014).
Fölsch, S., Martínez-Blanco, J., Yang, J., Kanisawa, Okay. & Erwin, S. C. Quantum dots with single-atom precision. Nat. Nanotechnol. 9, 505–508 (2014).
Du, A. et al. Dots versus antidots: computational exploration of construction, magnetism, and half-metallicity in boron-nitride nanostructures. J. Am. Chem. Soc. 131, 17354–17359 (2009).
Mitterreiter, E. et al. The function of chalcogen vacancies for atomic defect emission in MoS2. Nat. Commun. 12, 3822 (2021).
Flindt, C., Mortensen, N. A. & Jauho, A.-P. Quantum computing through defect states in two-dimensional antidot lattices. Nano Lett. 5, 2515–2518 (2005).
Pedersen, T. G. et al. Graphene antidot lattices: designed defects and spin qubits. Phys. Rev. Lett. 100, 136804 (2008).
Besteiro, L. V., Kong, X.-T., Wang, Z., Hartland, G. & Govorov, A. O. Understanding hot-electron era and plasmon leisure in steel nanocrystals: quantum and classical mechanisms. ACS Photon. 4, 2759–2781 (2017).
Zhang, H. et al. Giant-scale mesoscopic transport in nanostructured graphene. Phys. Rev. Lett. 110, 066805 (2013).
Clavero, C. Plasmon-induced hot-electron era at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic units. Nat. Photon. 8, 95–103 (2014).
Goldman, V. J. & Su, B. Resonant tunneling within the quantum corridor regime: measurement of fractional cost. Science 267, 1010–1012 (1995).
Maasilta, I. J. & Goldman, V. J. Tunneling by a coherent ‘quantum antidot molecule’. Phys. Rev. Lett. 84, 1776–1779 (2000).
Sim, H.-S. et al. Coulomb blockade and kondo impact in a quantum Corridor antidot. Phys. Rev. Lett. 91, 266801 (2003).
Park, M., Harrison, C., Chaikin, P. M., Register, R. A. & Adamson, D. H. Block copolymer lithography: periodic arrays of ~1011 holes in 1 sq. centimeter. Science 276, 1401–1404 (1997).
Sinitskii, A. & Tour, J. M. Patterning graphene by the self-assembled templates: towards periodic two-dimensional graphene nanostructures with semiconductor properties. J. Am. Chem. Soc. 132, 14730–14732 (2010).
Sandner, A. et al. Ballistic transport in graphene antidot lattices. Nano Lett. 15, 8402–8406 (2015).
Jessen, B. S. et al. Lithographic band construction engineering of graphene. Nat. Nanotechnol. 14, 340–346 (2019).
Khajetoorians, A. A., Wegner, D., Otte, A. F. & Swart, I. Creating designer quantum states of matter atom-by-atom. Nat. Rev. Phys. 1, 703–715 (2019).
Gomes, Okay. Okay., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012).
Slot, M. R. et al. Experimental realization and characterization of an digital Lieb lattice. Nat. Phys. 13, 672–676 (2017).
Kempkes, S. N. et al. Design and characterization of electrons in a fractal geometry. Nat. Phys. 15, 127–131 (2019).
Drost, R., Ojanen, T., Harju, A. & Liljeroth, P. Topological states in engineered atomic lattices. Nat. Phys. 13, 668–671 (2017).
Xu, J. et al. Quantum antidot formation and correlation to optical shift of gold nanoparticles embedded in MgO. Phys. Rev. Lett. 88, 175502 (2002).
Liu, Y., Xu, F., Zhang, Z., Penev, E. S. & Yakobson, B. I. Two-dimensional mono-elemental semiconductor with electronically inactive defects: the case of phosphorus. Nano Lett. 14, 6782–6786 (2014).
Nguyen, G. D. et al. 3D imaging and manipulation of subsurface selenium vacancies in PdSe2. Phys. Rev. Lett. 121, 086101 (2018).
Liu, M., Nam, H., Kim, J., Fiete, G. A. & Shih, C.-Okay. Affect of nanosize gap defects and their geometric preparations on the superfluid density in atomically skinny single crystals of indium superconductor. Phys. Rev. Lett. 127, 127003 (2021).
Li, X. et al. Ordered clustering of single atomic Te vacancies in atomically skinny PtTe2 promotes hydrogen evolution catalysis. Nat. Commun. 12, 2351 (2021).
Zhussupbekov, Okay. et al. Imaging and identification of level defects in PtTe2. npj 2D Mater. Appl. 5, 14 (2021).
Leo, G., Fabian, M., Nikolaj, M., Peter, L. & Gerhard, M. The chemical construction of a molecule resolved by atomic pressure microscopy. Science 325, 1110–1114 (2009).
Barja, S. et al. Figuring out substitutional oxygen as a prolific level defect in monolayer transition steel dichalcogenides. Nat. Commun. 10, 3382 (2019).
Schuler, B. et al. How substitutional level defects in two-dimensional WS2 induce cost localization, spin–orbit splitting, and pressure. ACS Nano 13, 10520–10534 (2019).
Cochrane, Okay. A. et al. Spin-dependent vibronic response of a carbon radical ion in two-dimensional WS2. Nat. Commun. 12, 7287 (2021).
Guo, G. Y. & Liang, W. Y. The digital buildings of platinum dichalcogenides: PtS2, PtSe2 and PtTe2. J. Phys. C: Strong State Phys. 19, 995 (1986).
Aghajanian, M. et al. Resonant and sure states of charged defects in two-dimensional semiconductors. Phys. Rev. B 101, 081201 (2020).
Fang, H. et al. Digital self-passivation of single emptiness in black phosphorus through ionization. Phys. Rev. Lett. 128, 176801 (2022).
Schuler, B. et al. Giant spin-orbit splitting of deep in-gap defect states of engineered sulfur vacancies in monolayer WS2. Phys. Rev. Lett. 123, 076801 (2019).
Gross, L. et al. Investigating atomic distinction in atomic pressure microscopy and Kelvin probe pressure microscopy on ionic programs utilizing functionalized ideas. Phys. Rev. B 90, 155455 (2014).
Cai, Y., Ke, Q., Zhang, G., Yakobson, B. I. & Zhang, Y.-W. Extremely itinerant atomic vacancies in phosphorene. J. Am. Chem. Soc. 138, 10199–10206 (2016).
Trevethan, T., Latham, C. D., Heggie, M. I., Briddon, P. R. & Rayson, M. J. Emptiness diffusion and coalescence in graphene directed by defect pressure fields. Nanoscale 6, 2978–2986 (2014).
Ishizuka, H. & Nagaosa, N. Spin chirality induced skew scattering and anomalous Corridor impact in chiral magnets. Sci. Adv. 4, eaap9962 (2018).
Fujishiro, Y. et al. Large anomalous Corridor impact from spin-chirality scattering in a chiral magnet. Nat. Commun. 12, 317 (2021).
Arh, T. et al. The Ising triangular-lattice antiferromagnet neodymium heptatantalate as a quantum spin liquid candidate. Nat. Mater. 21, 416–422 (2022).
Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a recent method to numerical computing. SIAM Rev. 59, 65–98 (2017).
Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).
Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17979 (1994).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Moellmann, J. & Grimme, S. DFT-D3 research of some molecular crystals. J. Phys. Chem. C 118, 7615–7621 (2014).
Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing picture nudged elastic band technique for locating saddle factors and minimal power paths. J. Chem. Phys. 113, 9901–9904 (2000).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software program undertaking for quantum simulations of supplies. J. Phys. Condens. Matter 21, 395502 (2009).
Giannozzi, P. et al. Superior capabilities for supplies modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).
Dal Corso, A. Pseudopotentials periodic desk: from H to Pu. Comput. Mater. Sci. 95, 337–350 (2014).