Burgess JL, Wyant WA, Abdo Abujamra B, Kirsner RS, Jozic I. Diabetic wound-healing science. Medicina. 2021;57:1072.
Costa R, Negrão R, Valente Is C, An, Duarte D, Guardão L, Magalhães PJ, Rodrigues JA, Guimarães JoT, Gomes P. Xanthohumol modulates irritation, oxidative stress, and angiogenesis in kind 1 diabetic rat pores and skin wound therapeutic. J Nat Prod. 2013;76:2047–53.
Guan Y, Niu H, Liu Z, Dang Y, Shen J, Zayed M, Ma L, Guan J. Sustained oxygenation accelerates diabetic wound therapeutic by selling epithelialization and angiogenesis and reducing irritation. Sci Adv. 2021;7:eabj0153.
Mou C, Wang X, Teng J, Xie Z, Zheng M. Injectable self-healing hydrogel fabricated from antibacterial carbon dots and ɛ-polylysine for selling bacteria-infected wound therapeutic. J Nanobiotechnol. 2022;20:368.
Wang X, Xing G, Li N, Xie Y, Lin L. An built-in microfluidic gadget for the simultaneous detection of a number of antibiotics. Chin Chem Lett. 2023;34:108110.
Xu Z, Liu G, Zheng L, Wu J. A polyphenol-modified chitosan hybrid hydrogel with enhanced antimicrobial and antioxidant actions for speedy therapeutic of diabetic wounds. Nano Res. 2023;16:905–16.
Liu G, Zhou Y, Xu Z, Bao Z, Zheng L, Wu J. Janus hydrogel with twin antibacterial and angiogenesis features for enhanced diabetic wound therapeutic. Chin Chem Lett. 2023;34:107705.
Balakrishnan B, Mohanty M, Umashankar P, Jayakrishnan A. Analysis of an in situ forming hydrogel wound dressing based mostly on oxidized alginate and gelatin. Biomaterials. 2005;26:6335–42.
Stubbe B, Mignon A, Declercq H, Van Vlierberghe S, Dubruel P. Improvement of gelatin-alginate hydrogels for burn wound therapy. Macromol Biosci. 2019;19:1900123.
Choi YS, Hong SR, Lee YM, Track KW, Park MH, Nam YS. Research on gelatin-containing synthetic pores and skin: I. Preparation and traits of novel gelatin-alginate sponge. Biomaterials. 1999;20:409–17.
Lan B, Zhang L, Yang L, Wu J, Li N, Pan C, Wang X, Zeng L, Yan L, Yang C, Ren M. Sustained supply of MMP-9 siRNA by way of thermosensitive hydrogel accelerates diabetic wound therapeutic. J Nanobiotechnol. 2021;19:130.
Farokhi M, Mottaghitalab F, Fatahi Y, Khademhosseini A, Kaplan DL. Overview of silk fibroin use in wound dressings. Developments Biotechnol. 2018;36:907–22.
Nosrati H, Aramideh Khouy R, Nosrati A, Khodaei M, Banitalebi-Dehkordi M, Ashrafi-Dehkordi Okay, Sanami S, Alizadeh Z. Nanocomposite scaffolds for accelerating persistent wound therapeutic by enhancing angiogenesis. J Nanobiotechnol. 2021;19:1.
Zhao X, Lang Q, Yildirimer L, Lin ZY, Cui W, Annabi N, Ng KW, Dokmeci MR, Ghaemmaghami AM, Khademhosseini A. Photocrosslinkable gelatin hydrogel for epidermal tissue Engineering. Adv Healthc Mater. 2016;5:108–18.
Nicholas MN, Jeschke MG, Amini-Nik S. Cellularized bilayer pullulan-gelatin hydrogel for pores and skin regeneration. Tissue Eng Half A. 2016;22:754–64.
Wang Y, Cao Z, Wei Q, Ma Okay, Hu W, Huang Q, Su J, Li H, Zhang C, Fu X. VH298-loaded extracellular vesicles launched from gelatin methacryloyl hydrogel facilitate diabetic wound therapeutic by HIF-1α-mediated enhancement of angiogenesis. Acta Biomater. 2022;147:342–55.
Yue Okay, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical purposes of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–71.
Lu Okay, Li Okay, Zhang M, Fang Z, Wu P, Feng L, Deng Okay, Yu C, Deng Y, Xiao Y. Adipose-derived stem cells (ADSCs) and platelet-rich plasma (PRP) loaded gelatin/silk fibroin hydrogels for enhancing therapeutic in a murine strain ulcer mannequin. Chem Eng J. 2021;424:130429.
Cheng H, Shi Z, Yue Okay, Huang X, Xu Y, Gao C, Yao Z, Zhang YS, Wang J. Sprayable hydrogel dressing accelerates wound therapeutic with mixed reactive oxygen species-scavenging and antibacterial skills. Acta Biomater. 2021;124:219–32.
Munawaroh HSH, Pratiwi RN, Gumilar GG, Aisyah S, Rohilah S, Nurjanah A, Ningrum A, Susanto E, Pratiwi A, Arindita NPY, et al. Synthesis, modification and software of fish pores and skin gelatin-based hydrogel as sustainable and versatile bioresource of antidiabetic peptide. Int J Biol Macromol. 2023;231:123248.
Ahmed EM. Hydrogel: Preparation, characterization, and purposes: a evaluation. J Adv Res. 2015;6:105–21.
Flores-Hernández CG, Cornejo-Villegas MLA, Moreno-Martell A, Del Actual A. Synthesis of a biodegradable polymer of poly (Sodium Alginate/Ethyl Acrylate). Polym (Basel) 2021, 13.
Hwang J, An EK, Zhang W, Kim HJ, Eom Y, Jin JO. Twin-functional alginate and collagen-based injectable hydrogel for the therapy of most cancers and its metastasis. J Nanobiotechnol. 2022;20:245.
Nguyen HT, Ho T-L, Pratomo A, Ilsan NA, Huang T-W, Chen C-H, Chuang E-Y. Enzymatically triggered graphene oxide launched from multifunctional carriers boosts anti-pathogenic properties for promising wound-healing purposes. Mater Sci Engineering: C. 2021;128:112265.
Robinson JT, Tabakman SM, Liang Y, Wang H, Sanchez Casalongue H, Vinh D, Dai H. Ultrasmall diminished graphene oxide with excessive near-infrared absorbance for photothermal remedy. J Am Chem Soc. 2011;133:6825–31.
Lim D-Okay, Barhoumi A, Wylie RG, Reznor G, Langer RS, Kohane DS. Enhanced photothermal impact of plasmonic nanoparticles coated with diminished graphene oxide. Nano Lett. 2013;13:4075–9.
Guo W, Chen Z, Feng X, Shen G, Huang H, Liang Y, Zhao B, Li G, Hu Y. Graphene oxide (GO)-based nanosheets with mixed chemo/photothermal/photodynamic remedy to beat gastric most cancers (GC) paclitaxel resistance by lowering mitochondria-derived adenosine-triphosphate (ATP). J Nanobiotechnol. 2021;19:146.
Teodorescu F, Oz Y, Quéniat G, Abderrahmani A, Foulon C, Lecoeur M, Sanyal R, Sanyal A, Boukherroub R, Szunerits S. Photothermally triggered on-demand insulin launch from diminished graphene oxide modified hydrogels. J Management Launch. 2017;246:164–73.
Altinbasak I, Jijie R, Barras A, Golba B, Sanyal R, Bouckaert J, Drider D, Bilyy R, Dumych T, Paryzhak S, et al. Decreased graphene-oxide-embedded polymeric nanofiber mats: an On-Demand Photothermally Triggered Antibiotic Launch platform. ACS Appl Mater Interfaces. 2018;10:41098–106.
Chambre L, Rosselle L, Barras A, Aydin D, Loczechin A, Gunbay S, Sanyal R, Skandrani N, Metzler-Nolte N, Bandow JE, et al. Photothermally lively Cryogel Gadgets for efficient launch of antimicrobial peptides: On-Demand therapy of infections. ACS Appl Mater Interfaces. 2020;12:56805–14.
Voronova A, Prieto C, Pardo-Figuerez M, Lagaron JM, Sanyal A, Demir B, Hubert T, Plaisance V, Pawlowski V, Vignoud-Despond S, et al. Photothermal Activatable Mucoadhesive Fiber Mats for On-Demand supply of insulin by way of Buccal and corneal mucosa. ACS Appl Bio Mater. 2022;5:771–8.
Rosselle L, Cantelmo AR, Barras A, Skandrani N, Pastore M, Aydin D, Chambre L, Sanyal R, Sanyal A, Boukherroub R, Szunerits S. An ‘on-demand’ photothermal antibiotic launch cryogel patch: analysis of efficacy on an ex vivo mannequin for pores and skin wound an infection. Biomater Sci. 2020;8:5911–9.
Atalay M, Oksala N, Lappalainen J, Laaksonen DE, Sen CK, Roy S. Warmth shock proteins in diabetes and wound therapeutic. Curr Protein Pept Sci. 2009;10:85–95.
Thangavel P, Kannan R, Ramachandran B, Moorthy G, Suguna L, Muthuvijayan V. Improvement of diminished graphene oxide (rGO)-isabgol nanocomposite dressings for enhanced vascularization and accelerated wound therapeutic in regular and diabetic rats. J Colloid Interface Sci. 2018;517:251–64.
Zhu W, Dong Y, Xu P, Pan Q, Jia Okay, Jin P, Zhou M, Xu Y, Guo R, Cheng B. A composite hydrogel containing resveratrol-laden nanoparticles and platelet-derived extracellular vesicles promotes wound therapeutic in diabetic mice. Acta Biomater. 2022;154:212–30.
Van Niel G, d’Angelo G, Raposo G. Shedding gentle on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.
Ding Y, Li Y, Solar Z, Han X, Chen Y, Ge Y, Mao Z, Wang W. Cell-derived extracellular vesicles and membranes for tissue restore. J Nanobiotechnol. 2021;19:368.
Widyaningrum R, Wu YW, Delila L, Lee DY, Wang TJ, Burnouf T. In vitro analysis of platelet extracellular vesicles (PEVs) for corneal endothelial regeneration. Platelets. 2022;33:1237–50.
Johnson J, Wu YW, Blyth C, Lichtfuss G, Goubran H, Burnouf T. Potential therapeutic purposes of platelet extracellular vesicles. Developments Biotechnol. 2021;39:598–612.
Nyam-Erdene A, Nebie O, Delila L, Buee L, Devos D, Chou SY, Blum D, Burnouf T. Characterization and chromatographic isolation of platelet extracellular vesicles from human platelet lysates for purposes in Neuroregenerative Medication. ACS Biomater Sci Eng. 2021;7:5823–35.
Johnson J, Legislation SQK, Shojaee M, Corridor AS, Bhuiyan S, Lim MBL, Silva A, Kong KJW, Schoppet M, Blyth C, et al. First-in-human scientific trial of allogeneic, platelet-derived extracellular vesicles as a possible therapeutic for delayed wound therapeutic. J Extracell Vesicles. 2023;12:e12332.
Bennett S, Griffiths G, Schor A, Leese G, Schor S. Development elements within the therapy of diabetic foot ulcers. J Br Surg. 2003;90:133–46.
Park JW, Hwang SR, Yoon IS. Superior Development issue Supply Methods in Wound Administration and pores and skin regeneration. Molecules 2017, 22.
Berckmans RJ, Lacroix R, Hau CM, Sturk A, Nieuwland R. Extracellular vesicles and coagulation in blood from wholesome people revisited. J Extracell Vesicles. 2019;8:1688936.
Kao CY, Papoutsakis ET. Extracellular vesicles: exosomes, microparticles, their components, and their targets to allow their biomanufacturing and scientific purposes. Curr Opin Biotechnol. 2019;60:89–98.
Boilard E, Duchez AC, Brisson A. The variety of platelet microparticles. Curr Opin Hematol. 2015;22:437–44.
Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets launch two forms of membrane vesicles: microvesicles by Floor Shedding and Exosomes Derived from exocytosis of Multivesicular Our bodies and -Granules. Blood the Journal of the American Society of Hematology. 1999;94:3791–9.
Guo S-C, Tao S-C, Yin W-J, Qi X, Yuan T, Zhang C-Q. Exosomes derived from platelet-rich plasma promote the re-epithelization of persistent cutaneous wounds by way of activation of YAP in a diabetic rat mannequin. Theranostics. 2017;7:81.
Chen X, Zhang H, Liang Y, Lu Y, Xie X, Tu J, Ba L, Zhang X, Liu H. Irritation-modulating antibacterial hydrogel sustained launch asiaticoside for an infection wound therapeutic. Biomaterials Adv 2023:213302.
Chen Y-H, Chuang E-Y, Jheng P-R, Hao P-C, Hsieh J-H, Chen H-L, Mansel BW, Yeh Y-Y, Lu C-X, Lee J-W. Chilly-atmospheric plasma augments functionalities of hybrid polymeric carriers regenerating persistent wounds: in vivo experiments. Mater Sci Engineering: C. 2021;131:112488.
Samourides A, Browning L, Hearnden V, Chen B. The impact of porous construction on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds. Mater Sci Eng C Mater Biol Appl. 2020;108:110384.
Norahan MH, Pedroza-González SC, Sánchez-Salazar MG, Álvarez MM, Trujillo de Santiago G. Structural and organic engineering of 3D hydrogels for wound therapeutic. Bioact Mater. 2023;24:197–235.
Trappmann B, Gautrot JE, Connelly JT, Unusual DG, Li Y, Oyen ML, Cohen Stuart MA, Boehm H, Li B, Vogel V, et al. Extracellular-matrix tethering regulates stem-cell destiny. Nat Mater. 2012;11:642–9.
Stevens JC, Hooper JE. How pores and skin and object temperature affect contact sensation. Percept Psychophys. 1982;32:282–5.
Meng KJ, Yang S, Yu M, Lu F, He A, Yan QL. Graphene Oxide-Intercalated Tetrazole-Primarily based Coordination Polymers: Thermally Steady Hybrid Energetic Crystals with Enhanced Photosensitivity. Langmuir 2023.
Li T, Liu J, Guo M, Bin FC, Wang JY, Nakayama A, Zhang WC, Jin F, Dong XZ, Fujita Okay, Zheng ML. Synthesis of biocompatible BSA-GMA and two-photon polymerization of 3D hydrogels with free radical kind I photoinitiator. Int J Bioprint. 2023;9:752.
Patel ZS, Yamamoto M, Ueda H, Tabata Y, Mikos AG. Biodegradable gelatin microparticles as supply methods for the managed launch of bone morphogenetic protein-2. Acta Biomater. 2008;4:1126–38.
Li X, Zeng D, Ke P, Wang G, Zhang D. Synthesis and characterization of magnetic chitosan microspheres for drug supply. RSC Adv. 2020;10:7163–9.
Track SW, Hidajat Okay, Kawi S. Functionalized SBA-15 supplies as carriers for managed drug supply: affect of floor properties on matrix-drug interactions. Langmuir. 2005;21:9568–75.
Dockal M, Carter DC, Rüker F. Conformational transitions of the three recombinant domains of human serum albumin relying on pH. J Biol Chem. 2000;275:3042–50.
Biru EI, Necolau MI, Zainea A, Iovu H. Graphene Oxide-Protein-Primarily based scaffolds for tissue Engineering: current advances and purposes. Polym (Basel) 2022, 14.
Wang L, Lu R, Hou J, Nan X, Xia Y, Guo Y, Meng Okay, Xu C, Wang X, Zhao B. Software of injectable silk fibroin/graphene oxide hydrogel mixed with bone marrow mesenchymal stem cells in bone tissue engineering. Colloids Surf a. 2020;604:125318.
Fathi A, Lee S, Zhong X, Hon N, Valtchev P, Dehghani F. Fabrication of interpenetrating polymer community to boost the organic exercise of artificial hydrogels. Polymer. 2013;54:5534–42.
Kara Özenler A, Distler T, Tihminlioglu F, Boccaccini AR. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering. Biofabrication 2023, 15.
Mehrali M, Moghaddam E, Shirazi SFS, Baradaran S, Mehrali M, Latibari ST, Metselaar HSC, Kadri NA, Zandi Okay, Osman NAA. Synthesis, Mechanical Properties, and in Vitro Biocompatibility with osteoblasts of Calcium Silicate–Decreased Graphene Oxide Composites. ACS Appl Mater Interfaces. 2014;6:3947–62.
Mochizuki-Oda N, Kataoka Y, Cui Y, Yamada H, Heya M, Awazu Okay. Results of near-infra-red laser irradiation on adenosine triphosphate and adenosine diphosphate contents of rat mind tissue. Neurosci Lett. 2002;323:207–10.
Wu H, Li F, Shao W, Gao J, Ling D. Selling angiogenesis in oxidative Diabetic Wound Microenvironment utilizing a Nanozyme-Strengthened Self-Defending hydrogel. ACS Cent Sci. 2019;5:477–85.
Wang N, Liang H, Zen Okay. Molecular mechanisms that affect the macrophage m1-m2 polarization steadiness. Entrance Immunol. 2014;5:614.
Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan Okay, Lu L, Yao Z, Goodman SB. Mesenchymal stem cell-macrophage crosstalk and bone therapeutic. Biomaterials. 2019;196:80–9.
Lee SM, Son KN, Shah D, Ali M, Balasubramaniam A, Shukla D, Aakalu VK. Histatin-1 attenuates LPS-Induced Inflammatory Signaling in RAW264.7 macrophages. Int J Mol Sci 2021, 22.
Uchiyama R, Toyoda E, Maehara M, Wasai S, Omura H, Watanabe M, Sato M. Impact of platelet-rich plasma on M1/M2 macrophage polarization. Int J Mol Sci 2021, 22.
Nebie O, Carvalho Okay, Barro L, Delila L, Faivre E, Renn TY, Chou ML, Wu YW, Nyam-Erdene A, Chou SY, et al. Human platelet lysate biotherapy for traumatic mind damage: preclinical evaluation. Mind. 2021;144:3142–58.
Delila L, Wu YW, Nebie O, Widyaningrum R, Chou ML, Devos D, Burnouf T. In depth characterization of the composition and purposeful actions of 5 preparations of human platelet lysates for devoted scientific makes use of. Platelets. 2021;32:259–72.
Track N, Pan Okay, Chen L, Jin Okay. Platelet derived vesicles improve the TGF-beta signaling pathway of M1 macrophage. Entrance Endocrinol (Lausanne). 2022;13:868893.
Steen EH, Wang X, Balaji S, Butte MJ, Bollyky PL, Keswani SG. The function of the anti-inflammatory cytokine Interleukin-10 in tissue fibrosis. Adv Wound Care (New Rochelle). 2020;9:184–98.
Zeng J, Solar Z, Zeng F, Gu C, Chen X. M2 macrophage-derived exosome-encapsulated microneedles with delicate photothermal remedy for accelerated diabetic wound therapeutic. Mater At the moment Bio. 2023;20:100649.
Vendidandala NR, Yin TP, Nelli G, Pasupuleti VR, Nyamathulla S, Mokhtar SI. Gallocatechin–silver nanoparticle impregnated cotton gauze patches improve wound therapeutic in diabetic rats by suppressing oxidative stress and irritation by way of modulating the Nrf2/HO-1 and TLR4/NF-κB pathways. Life Sci. 2021;286:120019.
Amengual-Tugores AM, Ráez-Meseguer C, Forteza-Genestra MA, Monjo M, Ramis JM. Extracellular vesicle-based hydrogels for Wound Therapeutic Purposes. Int J Mol Sci 2023, 24.