Kase AM, Menke D, Tan W. Breast most cancers metastasis to the bladder: a literature evaluation. BMJ Case Rep. 2018;2018:bcr2017222031.
Eckhardt BL, Cao Y, Redfern AD, Chi LH, Burrows AD, Roslan S, Sloan EK, Parker BS, Loi S, Ueno NT, Lau PKH, Latham B, Anderson RL. Activation of canonical BMP4-SMAD7 signaling suppresses breast most cancers metastasis. Most cancers Res. 2020;80:1304–15.
Chen X, Wang W, Jiang Y, Qian X. A dual-transformation with contrastive studying framework for lymph node metastasis prediction in pancreatic most cancers. Med Picture Anal. 2023;5: 102753.
Ho AS, Kim S, Tighiouart M, Gudino C, Mita A, Scher KS, Laury A, Prasad R, Shiao SL, Ali N, Patio C, Mallen-St Clair J, Van Eyk JE, Zumsteg ZS. Affiliation of quantitative metastatic lymph node burden with survival in hypopharyngeal and laryngeal most cancers. JAMA Oncol. 2018;4:985–9.
Ye B, Fan D, Xiong W, Li M, Yuan J, Jiang Q, Zhao Y, Lin J, Liu J, Lv Y, Wang X, Li Z, Su J, Qiao Y. Oncogenic enhancers drive esophageal squamous cell carcinogenesis and metastasis. Nat Commun. 2021;12:4457.
Li F, Nie W, Zhang F, Lu G, Lv C, Lv Y, Bao W, Zhang L, Wang S, Gao X, Wei W, Xie HY. Engineering magnetosomes for high-performance most cancers vaccination. ACS Cent Sci. 2019;5:796–807.
Maeda H. Towards a full understanding of the EPR impact in main and metastatic tumors in addition to points associated to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6.
Scott EA, Karabin NB, Augsornworawat P. Overcoming immune dysregulation with immunoengineered nanobiomaterials. Annu Rev Biomed Eng. 2017;19:57–84.
Zahin N, Anwar R, Tewari D, Kabir MT, Sajid A, Mathew B, Uddin MS, Aleya L, Abdel-Daim MM. Nanoparticles and its biomedical functions in well being and ailments: particular give attention to drug supply. Environ Sci Pollut Res Int. 2020;27:19151–68.
Hoshyar N, Grey S, Han H, Bao G. The impact of nanoparticle dimension on in vivo pharmacokinetics and mobile interplay. Nanomedicine. 2016;11:673–92.
Zwicke GL, Mansoori GA, Jeffery CJ. Using the folate receptor for lively focusing on of most cancers nanotherapeutics. Nano Rev. 2012. https://doi.org/10.3402/nano.v3i0.18496.
Lin N, Qiu J, Track J, Yu C, Fang Y, Wu W, Yang W, Wang Y. Software of nano-carbon and titanium clip mixed labeling in robot-assisted laparoscopic transverse colon most cancers surgical procedure. BMC Surg. 2021;21:257.
Altundag Okay, Dede DS, Purnak T. Albumin-bound paclitaxel (ABI-007; Abraxane) within the administration of basal-like breast carcinoma. J Clin Pathol. 2007;60:958.
Wang B, An J, Zhang H, Zhang S, Zhang H, Wang L, Zhang H, Zhang Z. Customized most cancers immunotherapy by way of transporting endogenous tumor antigens to lymph nodes mediated by nano Fe3 O4. Small. 2018;14: e1801372.
Ryan GM, Kaminskas LM, Porter CJ. Nano-chemotherapeutics: maximising lymphatic drug publicity to enhance the therapy of lymph-metastatic cancers. J Management Launch. 2014;193:241–56.
Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo focusing on of dendritic cells in lymph nodes with poly (propylene sulfide) nanoparticles. J Management Launch. 2006;112:26–34.
Schudel A, Francis DM, Thomas SN. Materials design for lymph node drug supply. Nat Rev Mater. 2019;4:415–28.
Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E, McDonald DM. Functionally specialised junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204:2349–62.
Oh HJ, Yang D, Oh HW, Jeon JG, Kim C, Ahn JY, Han SW, Kim CY. Chronologic traits of cancer-related lymph node analysis in PubMed: informetrics evaluation. Ann Surg Deal with Res. 2020;99:305–13.
Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Lymphatic pumping: mechanics, mechanisms and malfunction. J Physiol. 2016;594:5749–68.
Gashev AA. Fundamental mechanisms controlling lymph transport within the mesenteric lymphatic web. Ann N Y Acad Sci. 2010;1207:E16-20.
Schudel A, Francis DM, Thomas SN. Materials design for lymph node drug supply. Nat Rev Mater. 2019;4:415–428.
Clement CC, Wang W, Dzieciatkowska M, Cortese M, Hansen KC, Becerra A, Thangaswamy S, Nizamutdinova I, Moon JY, Stern LJ, Gashev AA, Zawieja D, Santambrogio L. Quantitative profiling of the lymph node clearance capability. Sci Rep. 2018;8:11253.
Gerner MY, Torabi-Parizi P, Germain RN. Strategically localized dendritic cells promote fast T cell responses to lymph-borne particulate antigens. Immunity. 2015;42:172–85.
Liu Y, Liu Y, Xu D, Zang J, Zheng X, Zhao Y, Li Y, He R, Ruan S, Dong H, Gu J, Yang Y, Cheng Q, Li Y. Concentrating on the detrimental suggestions of adenosine-A2AR metabolic pathway by a tailor-made nanoinhibitor for photothermal immunotherapy. Adv Sci. 2022;9: e2104182.
Jalkanen S, Salmi M. Lymphatic endothelial cells of the lymph node. Nat Rev Immunol. 2020;20:566–78.
Roozendaal R, Mebius RE, Kraal G. The conduit system of the lymph node. Int Immunol. 2008;20:1483–7.
Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rollins BJ, Zweerink H, Rot A, von Andrian UH. Inflammatory chemokine transport and presentation in HEV: a distant management mechanism for monocyte recruitment to lymph nodes in infected tissues. J Exp Med. 2001;194:1361–73.
Schudel A, Chapman AP, Yau MK, Higginson CJ, Francis DM, Manspeaker MP, Avecilla ARC, Rohner NA, Finn MG, Thomas SN. Programmable multistage drug supply to lymph nodes. Nat Nanotechnol. 2020;15:491–9.
Dukhin SS, Labib ME. Convective diffusion of nanoparticles from the epithelial barrier towards regional lymph nodes. Adv Colloid Interface Sci. 2013;199–200:23–43.
Ke X, Howard GP, Tang H, Cheng B, Saung MT, Santos JL, Mao HQ. Bodily and chemical profiles of nanoparticles for lymphatic focusing on. Adv Drug Deliv Rev. 2019;151–152:72–93.
Patravale VB, Prabhu RH, Bora CR. Lymphatic supply: idea, challenges and functions. Indian Medicine. 2017;54:5–22.
Hawley AE, Davis SS, Illum L. Concentrating on of colloids to lymph nodes: affect of lymphatic physiology and colloidal traits. Adv Drug Deliv Rev. 1995;17:129–48.
Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE. Form results of filaments versus spherical particles in circulate and drug supply. Nat Nanotechnol. 2007;2:249–55.
Ja C, Mitragotri S. Position of goal geometry in phagocytosis. Proc Natl Acad Sci USA. 2006;103:4930–4.
Montes-Casado M, Sanvicente A, Casarrubios L, Feito MJ, Rojo JM, Vallet-Regí M, Arcos D, Portolés P, Portolés MT. An immunological strategy to the biocompatibility of mesoporous SiO2-CaO nanospheres. Int J Mol Sci. 2020;21:8291.
Patel HM, Boodle KM, Vaughan-Jones R. Evaluation of the potential makes use of of liposomes for lymphoscintigraphy and lymphatic drug supply. Failure of 99m-technetium marker to characterize intact liposomes in lymph nodes. Biochim Biophys Acta. 1984;801:76–86.
Punjabi MS, Naha A, Shetty D, Nayak UY. Lymphatic drug transport and related drug supply applied sciences: a complete evaluation. Curr Pharm Des. 2021;27(17):1992–8.
Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine supply techniques towards lymph nodes. Adv Drug Deliv Rev. 2021;179: 113914.
Chen Y, De Koker S, De Geest BG. Engineering methods for lymph node focused immune activation. Acc Chem Res. 2020;53(10):2055–67.
Gracia G, Cao E, Feeney OM, Johnston APR, Porter CJH, Trevaskis NL. Excessive-density lipoprotein composition influences lymphatic transport after subcutaneous administration. Mol Pharm. 2020;17(8):2938–51.
He X, Wang J, Tang Y, Chiang ST, Han T, Chen Q, Qian C, Shen X, Li R, Ai X. Latest advances of rising spleen-targeting nanovaccines for immunotherapy. Adv Healthc Mater. 2023;8: e2300351.
Menon I, Bagwe P, Gomes KB, Bajaj L, Gala R, Uddin MN, D’Souza MJ, Zughaier SM. Microneedles: a brand new era vaccine supply system. Micromachines. 2021;12(4):435.
Trac N, Chung EJ. Overcoming physiological obstacles by nanoparticles for intravenous drug supply to the lymph nodes. Exp Biol Med (Maywood). 2021;246(22):2358–71.
Furubayashi T, Inoue D, Kimura S, Tanaka A, Sakane T. Analysis of the pharmacokinetics of intranasal drug supply for focusing on cervical lymph nodes in rats. Pharmaceutics. 2021;13(9):1363.
Schudel A, Francis DM, Thomas SN. Materials design for lymph node drug supply. Nat Rev Mater. 2019;4(6):415–28.
Yoshida T, Kojima H, Sako Okay, Kondo H. Drug supply to the intestinal lymph by oral formulations. Pharm Dev Technol. 2022;27(2):175–89.
Refaat H, Naguib YW, Elsayed MMA, Sarhan HAA, Alaaeldin E. Modified spraying method and response floor methodology for the preparation and optimization of propolis liposomes of enhanced anti-proliferative exercise in opposition to human melanoma cell Line A375. Pharmaceutics. 2019;11:558.
Bangham AD, Horne RW. Damaging staining of phospholipids and their structural modification by surface-active brokers as noticed within the electron microscope. J Mol Biol. 1964;8:660–8.
Solar S, Solar S, Solar Y, Wang P, Zhang J, Du W, Wang S, Liang X. Bubble-manipulated native drug launch from a wise thermosensitive cerasome for dual-mode imaging guided tumor chemo-photothermal remedy. Theranostics. 2019;9:8138–54.
Reichmuth AM, Oberli MA, Jaklenec A, Langer R, Blankschtein D. mRNA vaccine supply utilizing lipid nanoparticles. Ther Deliv. 2016;7:319–34.
Jung HS, Neuman KC. Floor Modification of fluorescent nanodiamonds for organic functions. Nanomaterials. 2021;11:153.
Maeki M, Kimura N, Sato Y, Harashima H, Tokeshi M. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and functions in drug supply techniques. Adv Drug Deliv Rev. 2018;128:84–100.
Milicic A, Kaur R, Reyes-Sandoval A, Tang CK, Honeycutt J, Perrie Y, Hill AV. Small cationic DDA:TDB liposomes as protein vaccine adjuvants obviate the necessity for TLR agonists in inducing mobile and humoral responses. PLoS ONE. 2012;7: e34255.
Chu Y, Qian L, Ke Y, Feng X, Chen X, Liu F, Yu L, Zhang L, Tao Y, Xu R, Wei J, Liu B, Liu Q. Lymph node-targeted neoantigen nanovaccines potentiate anti-tumor immune responses of post-surgical melanoma. J Nanobiotechnol. 2022;20:190.
Warashina S, Nakamura T, Sato Y, Fujiwara Y, Hyodo M, Hatakeyama H, Harashima H. A lipid nanoparticle for the environment friendly supply of siRNA to dendritic cells. J Management Launch. 2016;225:183–91.
Hanson MC, Crespo MP, Abraham W, Moynihan KD, Szeto GL, Chen SH, Melo MB, Mueller S, Irvine DJ. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants. J Clin Make investments. 2015;125:2532–46.
Chen J, Ye Z, Huang C, Qiu M, Track D, Li Y, Xu Q. Lipid nanoparticle-mediated lymph node-targeting supply of mRNA most cancers vaccine elicits sturdy CD8+ T cell response. Proc Natl Acad Sci USA. 2022;119: e2207841119.
Phosphatidylserine lipid nanoparticles promote systemic RNA supply to secondary lymphoid organs. Nano Lett. 2022; 22 (20): 8304–8311.
Trimaille T, Verrier B. Micelle-based adjuvants for subunit vaccine supply. Vaccines. 2015;3:803–13.
Li C, Iqbal M, Jiang B, Wang Z, Kim J, Nanjundan AK, Whitten AE, Wooden Okay, Yamauchi Y. Pore-tuning to spice up the electrocatalytic exercise of polymeric micelle-templated mesoporous Pd nanoparticles. Chem Sci. 2019;10:4054–61.
Cui M, Jin M, Han M, Zang Y, Li C, Zhang D, Huang W, Gao Z, Yin X. Improved antitumor outcomes for colon most cancers utilizing nanomicelles loaded with the novel antitumor agent LA67. Int J Nanomed. 2020;15:3563–76.
Li X, Dong Q, Yan Z, Lu W, Feng L, Xie C, Xie Z, Su B, Liu M. MPEG-DSPE polymeric micelle for translymphatic chemotherapy of lymph node metastasis. Int J Pharm. 2015;487:8–16.
Thol Okay, Pawlik P, McGranahan N. Remedy sculpts the advanced interaction between most cancers and the immune system throughout tumour evolution. Genome Med. 2022;14:137.
Ehser S, Chuang JJ, Kleist C, Sandra-Petrescu F, Iancu M, Wang D, Opelz G, Terness P. Suppressive dendritic cells as a instrument for controlling allograft rejection in organ transplantation: guarantees and difficulties. Hum Immunol. 2008;69:165–73.
Jewell CM, López SC, Irvine DJ. In situ engineering of the lymph node microenvironment by way of intranodal injection of adjuvant-releasing polymer particles. Proc Natl Acad Sci USA. 2011;108:15745–50.
Chida T, Miura Y, Cabral H, Nomoto T, Kataoka Okay, Nishiyama N. Epirubicin-loaded polymeric micelles successfully deal with axillary lymph nodes metastasis of breast most cancers via selective accumulation and pH-triggered drug launch. J Management Launch. 2018;292:130–40.
Cabral H, Makino J, Matsumoto Y, Mi P, Wu H, Nomoto T, Toh Okay, Yamada N, Higuchi Y, Konishi S, Kano MR, Nishihara H, Miura Y, Nishiyama N, Kataoka Okay. Systemic focusing on of lymph node metastasis via the blood vascular system through the use of size-controlled nanocarriers. ACS Nano. 2015;9:4957–67.
Feng HY, Yuan Y, Zhang Y, Liu HJ, Dong X, Yang SC, Liu XL, Lai X, Zhu MH, Wang J, Lu Q, Lin Q, Chen HZ, Lovell JF, Solar P, Fang C. Focused micellar phthalocyanine for lymph node metastasis homing and photothermal remedy in an orthotopic colorectal tumor mannequin. Nanomicro Lett. 2021;13:145.
Kumar A, Tan A, Wong J, Spagnoli JC, Lam J, Blevins BD, Thorne GNL, Ashkan Okay, Xie J, Liu H. Nanotechnology for neuroscience: Promising approaches for diagnostics, therapeutics and mind exercise mapping. Adv Funct Mater. 2017;27:1700489.
Anraku Y, Kuwahara H, Fukusato Y, Mizoguchi A, Ishii T, Nitta Okay, Matsumoto Y, Toh Okay, Miyata Okay, Uchida S, Nishina Okay, Osada Okay, Itaka Okay, Nishiyama N, Mizusawa H, Yamasoba T, Yokota T, Kataoka Okay. Glycaemic management boosts glucosylated nanocarrier crossing the BBB into the mind. Nat Commun. 2017;8:1001.
Xu C, Feng Q, Yang H, Wang G, Huang L, Bai Q, Zhang C, Wang Y, Chen Y, Cheng Q, Chen M, Han Y, Yu Z, Lesniak MS, Cheng Y. A Mild-triggered mesenchymal stem cell supply system for photoacoustic imaging and chemo-photothermal remedy of triple detrimental breast most cancers. Adv Sci. 2018;5:1800382.
Liu Y, Wang Z, Yu F, Li M, Zhu H, Wang Okay, Meng M, Zhao W. The adjuvant of α-galactosylceramide offered by gold nanoparticles enhances antitumor immune responses of MUC1 antigen-based tumor vaccines. Int J Nanomedicine. 2021;16:403–20.
Mottas I, Bekdemir A, Cereghetti A, Spagnuolo L, Yang YS, Müller M, Irvine DJ, Stellacci F, Bourquin C. Amphiphilic nanoparticle supply enhances the anticancer efficacy of a TLR7 ligand by way of native immune activation. Biomaterials. 2019;190–191:111–20.
Oladipo AO, Oluwafemi OS, Songca SP, Sukhbaatar A, Mori S, Okajima J, Komiya A, Maruyama S, Kodama T. A novel therapy for metastatic lymph nodes utilizing lymphatic supply and photothermal remedy. Sci Rep. 2017;7:45459.
Dadfar SM, Roemhild Okay, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic functions. Adv Drug Deliv Rev. 2019;138:302–25.
Pourmadadi M, Rahmani E, Shamsabadipour A, Mahtabian S, Ahmadi M, Rahdar A, Díez-Pascual AM. Position of iron oxide (Fe2O3) nanocomposites in superior biomedical functions: a state-of-the-art evaluation. Nanomaterials. 2022;12:3873.
Kjellman P, in ‘t Zandt R, Fredriksson S, Strand SE. 2014. Optimizing retention of multimodal imaging nanostructures in sentinel lymph nodes by nanoscale dimension tailoring. Nanomedicine. 2014;10: 1089–95.
Zaloga J, Janko C, Nowak J, Matuszak J, Knaup S, Eberbeck D, Tietze R, Unterweger H, Friedrich RP, Duerr S, Heimke-Brinck R, Baum E, Cicha I, Dörje F, Odenbach S, Lyer S, Lee G, Alexiou C. Growth of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility. Int J Nanomedicine. 2014;9:4847–66.
Zou Y, Liu P, Liu CH, Zhi XT. Doxorubicin-loaded mesoporous magnetic nanoparticles to induce apoptosis in breast most cancers cells. Biomed Pharmacother. 2015;69:355–60.
Quinto CA, Mohindra P, Tong S, Bao G. Multifunctional superparamagnetic iron oxide nanoparticles for mixed chemotherapy and hyperthermia most cancers therapy. Nanoscale. 2015;7:12728–36.
Li AW, Sobral MC, Badrinath S, Choi Y, Graveline A, Stafford AG, Weaver JC, Dellacherie MO, Shih TY, Ali OA, Kim J, Wucherpfennig KW, Mooney DJ. A facile strategy to boost antigen response for customized most cancers vaccination. Nat Mater. 2018;17:528–34.
Lu Y, Yang Y, Gu Z, Zhang J, Track H, Xiang G, Yu C. Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and Co-delivery platform for enhanced most cancers immunotherapy. Biomaterials. 2018;175:82–92.
Khakpour E, Salehi S, Naghib SM, Ghorbanzadeh S, Zhang W. Graphene-based nanomaterials for stimuli-sensitive managed supply of therapeutic molecules. Entrance Bioeng Biotechnol. 2023;11:1129768.
Yang F, Jin C, Yang D, Jiang Y, Li J, Di Y, Hu J, Wang C, Ni Q, Fu D. Magnetic functionalised carbon nanotubes as drug autos for most cancers lymph node metastasis therapy. Eur J Most cancers. 2011;47:1873–82.
Wang J, Lu T, Yang M, Solar D, Xia Y, Wang T. Hydrogel 3D printing with the capacitor edge impact. Sci Adv. 2019;5:eaau8769.
Chen W, Chen H, Zheng D, Zhang H, Deng L, Cui W, Zhang Y, Santos HA, Shen H. Gene-hydrogel microenvironment regulates extracellular matrix metabolism stability in nucleus pulposus. Adv Sci. 2019;7:1902099.
Deng W, Yan Y, Zhuang P, Liu X, Tian Okay, Huang W, Li C. Synthesis of nanocapsules blended polymeric hydrogel loaded with bupivacaine drug supply system for native anesthetics and ache administration. Drug Deliv. 2022;29:399–412.
Zhuang X, Wu T, Zhao Y, Hu X, Bao Y, Guo Y, Track Q, Li G, Tan S, Zhang Z. Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2K(b) and H-2D(b)-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity in opposition to melanoma. J Management Launch. 2016;228:26–37.
Nuhn L, Vanparijs N, De Beuckelaer A, Lybaert L, Verstraete G, Deswarte Okay, Lienenklaus S, Shukla NM, Salyer AC, Lambrecht BN, Grooten J, David SA, De Koker S, De Geest BG. pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation. Proc Natl Acad Sci USA. 2016;113:8098–103.
De Koker S, Cui J, Vanparijs N, Albertazzi L, Grooten J, Caruso F, De Geest BG. Engineering polymer hydrogel nanoparticles for lymph node-targeted supply. Angew Chem Int Ed Engl. 2016;55:1334–9.
Urimi D, Hellsing M, Mahmoudi N, Söderberg C, Widenbring R, Gedda L, Edwards Okay, Loftsson T, Schipper N. Structural characterization examine of a lipid nanocapsule formulation supposed for drug supply functions utilizing small-angle scattering methods. Mol Pharm. 2022;19:1068–77.
Shafiq M, Anjum S, Hano C, Anjum I, Abbasi BH. An outline of the functions of nanomaterials and nanodevices within the meals trade. Meals. 2020;9:148.
Vicente S, Goins BA, Sanchez A, Alonso MJ, Phillips WT. Biodistribution and lymph node retention of polysaccharide-based immunostimulating nanocapsules. Vaccine. 2014;32:1685–92.
Li AV, Moon JJ, Abraham W, Suh H, Elkhader J, Seidman MA, Yen M, Im EJ, Foley MH, Barouch DH, Irvine DJ. Technology of effector reminiscence T cell-based mucosal and systemic immunity with pulmonary nanoparticle vaccination. Sci Transl Med. 2013;5:204ra130.
Nawaz M, Yusuf N, Habib S, Shakoor RA, Ubaid F, Ahmad Z, Kahraman R, Mansour S, Gao W. Growth and properties of polymeric nanocomposite coatings. Polymers. 2019;11:852.
Sato Y, Hashiba Okay, Sasaki Okay, Maeki M, Tokeshi M, Harashima H. Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo. J Management Launch. 2019;295:140–52.
Gao W, Fang RH, Thamphiwatana S, Luk BT, Li J, Angsantikul P, Zhang Q, Hu CM, Zhang L. Modulating antibacterial immunity by way of bacterial membrane-coated nanoparticles. Nano Lett. 2015;15:1403–9.
Hu CM, Fang RH, Wang KC, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV, Carpenter C, Ramesh M, Qu V, Patel SH, Zhu J, Shi W, Hofman FM, Chen TC, Gao W, Zhang Okay, Chien S, Zhang L. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015;526:118–21.
Liu C, Liu X, Xiang X, Pang X, Chen S, Zhang Y, Ren E, Zhang L, Liu X, Lv P, Wang X, Luo W, Xia N, Chen X, Liu G. A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalised most cancers immunotherapy technique. Nat Nanotechnol. 2022;17:531–40.
Wang S, Li F, Ye T, Wang J, Lyu C, Qing S, Ding Z, Gao X, Jia R, Yu D, Ren J, Wei W, Ma G. Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Sci Transl Med. 2021;13:eabb6981.
Hong D, Zhang L, Xu Okay, Wan X, Guo Y. Prognostic worth of pre-treatment CT radiomics and medical elements for the general survival of superior (IIIB-IV) lung adenocarcinoma sufferers. Entrance Oncol. 2021;11:628982.
Chiechio RM, Ducarre S, Marets C, Dupont A, Even-Hernandez P, Pinson X, Dutertre S, Artzner F, Musumeci P, Ravel C, Faro MJL, Marchi V. Encapsulation of luminescent gold nanoclusters into artificial vesicles. Nanomaterials. 2022;12:3875.
Yoon HY, Chang IH, Goo YT, Kim CH, Kang TH, Kim SY, Lee SJ, Track SH, Whang YM, Choi YW. Intravesical supply of rapamycin by way of folate-modified liposomes dispersed in thermo-reversible hydrogel. Int J Nanomedicine. 2019;14:6249–68.
Osborne MP, Richardson VJ, Jeyasingh Okay, Ryman BE. Radionuclide-labelled liposomes–a brand new lymph node imaging agent. Int J Nucl Med Biol. 1979;6:75–83.
Phillips WT, Klipper R, Goins B. Novel technique of vastly enhanced supply of liposomes to lymph nodes. J Pharmacol Exp Ther. 2000;295:309–13.
Phillips WWT, Klipper R, Goins B. Use of (99m)Tc-labeled liposomes encapsulating blue dye for identification of the sentinel lymph node. J Nucl Med. 2001;42:446–51.
Yuan B, Zhao S, Hu P, Cui J, Niu QJ. Uneven polyamide nanofilms with extremely ordered nanovoids for water purification. Nat Commun. 2020;11(1):6102.
Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug supply and biomedical functions. Drug Discov At the moment. 2001;6:427–36.
Talanov VS, Regino CA, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW. Dendrimer-based nanoprobe for twin modality magnetic resonance and fluorescence imaging. Nano Lett. 2006;6:1459–63.
Kobayashi H, Kawamoto S, Sakai Y, Choyke PL, Star RA, Brechbiel MW, Sato N, Tagaya Y, Morris JC, Waldmann TA. Lymphatic drainage imaging of breast most cancers in mice by micro-magnetic resonance lymphangiography utilizing a nano-size paramagnetic distinction agent. J Natl Most cancers Inst. 2004;96:703–8.
Niki Y, Ogawa M, Makiura R, Magata Y, Kojima C. Optimization of dendrimer construction for sentinel lymph node imaging: Results of era and terminal group. Nanomedicine. 2015;11(8):2119–27.
Yakunin S, Chaaban J, Benin BM, Cherniukh I, Bernasconi C, Landuyt A, Shynkarenko Y, Bolat S, Hofer C, Romanyuk YE, Cattaneo S, Pokutnyi SI, Schaller RD, Bodnarchuk MI, Poulikakos D, Kovalenko MV. Radiative lifetime-encoded unicolour safety tags utilizing perovskite nanocrystals. Nat Commun. 2021;12:981.
Han SJ, Rathinaraj P, Park SY, Kim YK, Lee JH, Kang IK, Moon JS, Winiarz JG. Particular intracellular uptake of herceptin-conjugated CdSe/ZnS quantum dots into breast most cancers cells. Biomed Res Int. 2014;2014: 954307.
Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV. Close to-infrared fluorescent kind II quantum dots for sentinel lymph node mapping. Nat Biotechnol. 2004;22:93–7.
Kim SW, Zimmer JP, Ohnishi S, Tracy JB, Frangioni JV, Bawendi MG. Engineering InAs(x)P(1–x)/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared. J Am Chem Soc. 2005;127:10526–32.
Dai T, Zhou S, Yin C, Li S, Cao W, Liu W, Solar Okay, Dou H, Cao Y, Zhou G. Dextran-based fluorescent nanoprobes for sentinel lymph node mapping. Biomaterials. 2014;35:8227–35.
Hultborn KA, Larsson LG, Raghult I. The lymph drainage from the breast to the axillary and parasternal lymph nodes, studied with the help of colloidal Au198. Acta radiol. 1955;43:52–64.
Zhou Y, Chakraborty S, Liu S. Radiolabeled cyclic RGD peptides as radiotracers for imaging tumors and thrombosis by SPECT. Theranostics. 2011;1:58–82.
Wilhelm AJ, Mijnhout GS, Franssen EJ. Radiopharmaceuticals in sentinel lymph-node detection—an summary. Eur J Nucl Med. 1999;26:S36-42.
Xie F, Zhang D, Cheng L, Yu L, Yang L, Tong F, Liu H, Wang S, Wang S. Intradermal microbubbles and contrast-enhanced ultrasound (CEUS) is a possible strategy for sentinel lymph node identification in early-stage breast most cancers. World J Surg Oncol. 2015;13:319.
Montoya Mira J, Wu L, Sabuncu S, Sapre A, Civitci F, Ibsen S, Esener S, Yildirim A. Gasoline-stabilizing sub-100 nm mesoporous silica nanoparticles for ultrasound theranostics. ACS Omega. 2020;5:24762–72.
Nie Z, Luo N, Liu J, Zeng X, Zhang Y, Su D. Multi-mode biodegradable tumour-microenvironment delicate nanoparticles for focused breast most cancers imaging. Nanoscale Res Lett. 2020;15:81.
Stride E, Saffari N. The potential for thermal injury posed by microbubble ultrasound distinction brokers. Ultrasonics. 2004;42:907–13.
Ma JJ, Zhang DB, Zhang WF, Wang X. Software of nanocarbon in breast strategy endoscopic thyroidectomy thyroid most cancers surgical procedure. J Laparoendosc Adv Surg Tech A. 2020;30:547–52.
Wang R, Mo S, Liu Q, Zhang W, Zhang Z, He Y, Cai G, Li X. The protection and effectiveness of carbon nanoparticles suspension in monitoring lymph node metastases of colorectal most cancers: a potential randomized managed trial. Jpn J Clin Oncol. 2020;50:535–42.
Schilham MGM, Zamecnik P, Privé BM, Israël B, Rijpkema M, Scheenen T, Barentsz JO, Nagarajah J, Gotthardt M. Head-to-head comparability of 68Ga-prostate-specific membrane antigen PET/CT and ferumoxtran-10-enhanced MRI for the analysis of lymph node metastases in prostate most cancers sufferers. J Nucl Med. 2021;62:1258–63.
Wallace AM, Hoh CK, Ellner SJ, Darrah DD, Schulteis G, Vera DR. Lymphoseek: a molecular imaging agent for melanoma sentinel lymph node mapping. Ann Surg Oncol. 2007;14:913–21.
Bradbury MS, Pauliah M, Zanzonico P, Wiesner U, Patel S. Intraoperative mapping of sentinel lymph node metastases utilizing a clinically translated ultrasmall silica nanoparticle. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8:535–53.
He P, Ren E, Chen B, Chen H, Cheng H, Gao X, Liang X, Liu H, Li J, Li B, Chen A, Chu C, Chen X, Mao J, Zhang Y, Liu G. A brilliant-stable homogeneous lipiodol-hydrophilic chemodrug formulation for therapy of hepatocellular carcinoma. Theranostics. 2022;12:1769–82.
He P, Xiong Y, Ye J, Chen B, Cheng H, Liu H, Zheng Y, Chu C, Mao J, Chen A, Zhang Y, Li J, Tian J, Liu G. A medical trial of super-stable homogeneous lipiodol-nanoICG formulation-guided exact fluorescent laparoscopic hepatocellular carcinoma resection. J Nanobiotechnology. 2022;20:250.
Zhang Y, Cheng H, Chen H, Xu P, Ren E, Jiang Y, Li D, Gao X, Zheng Y, He P, Lin H, Chen B, Lin G, Chen A, Chu C, Mao J, Liu G. A pure nanoICG-based homogeneous lipiodol formulation: towards exact surgical navigation of main liver most cancers after long-term transcatheter arterial embolization. Eur J Nucl Med Mol Imaging. 2022;49:2605–17.
Naz S, Shamoon M, Wang R, Zhang L, Zhou J, Chen J. Advances in therapeutic implications of inorganic drug supply nano-platforms for most cancers. Int J Mol Sci. 2019;20:965.
Eid HM, Ali AA, Ali AMA, Eissa EM, Hassan RM, Abo El-Ela FI, Hassan AH. Potential use of tailor-made citicoline chitosan-coated liposomes for efficient wound therapeutic in diabetic rat mannequin. Int J Nanomedicine. 2022;17:555–75.
Lee J, Kang S, Park H, Solar JG, Kim EC, Shim G. Nanoparticles for lymph node-directed supply. Pharmaceutics. 2023;15:565.
Cheng H, Yang X, Liu G. Superstable homogeneous iodinated formulation expertise: revolutionizing transcatheter arterial chemoembolization. Sci Bull. 2020;65:1685–7.
Peng X, Wang J, Zhou F, Liu Q, Zhang Z. Nanoparticle-based approaches to focus on the lymphatic system for antitumor therapy. Cell Mol Life Sci. 2021;78:5139–61.