Zhang QY, Wang FX, Jia KK, Kong LD. Pure product interventions for chemotherapy and radiotherapy-induced negative effects. Entrance Pharmacol. 2018;9:1253.
Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in most cancers. Most cancers Drug Resistance. 2019;2:141–60.
Zhang XD, Wang C, Wang JQ, Hu QY, Langworthy B, Ye YQ, Solar WJ, Lin J, Wang TF, Nice J, Cheng H, Dotti G, Huang P, Gu Z. PD-1 blockade mobile vesicles for most cancers immunotherapy. Adv Mater. 2018;30:8.
Farkona S, Diamandis EP, Blasutig IM. Most cancers immunotherapy: the start of the top of most cancers? BMC Med. 2016;14:73.
Mellman I, Coukos G, Dranoff G. Most cancers immunotherapy comes of age. Nature. 2011;480:480–9.
Ishida Y, Agata Y, Shibahara Ok, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell demise. EMBO J. 1992;11:3887–95.
Patsoukis N, Wang Q, Strauss L, Boussiotis VA. Revisiting the PD-1 pathway. Sci Adv. 2020;6:eabd2712.
Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and SHP-2 affiliate with immunoreceptor tyrosine-based change motif of programmed demise 1 upon major human Tcell stimulation, however solely receptor ligation prevents T cell activation. J Immunol. 2004;173:945.
Okazaki T, Honjo T. The PD-1–PD-L pathway in immunological tolerance. Traits Immunol. 2006;27:195–201.
Marasco M, Berteotti A, Weyershaeuser J, Thorausch N, Sikorska J, Krausze J, Brandt HJ, Kirkpatrick J, Rios P, Schamel WW, Köhn M, Carlomagno T. Molecular mechanism of SHP2 activation by PD-1 stimulation. Sci Adv. 2020;6:eaay4458.
Seidel JA, Otsuka A, Kabashima Ok. Anti-PD-1 and Anti-CTLA-4 therapies in most cancers: mechanisms of motion, efficacy, and limitations. Entrance Oncol. 2018;8:86.
Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, Mccracken MN, Gupta R, Tsai JM, Sinha R, Corey D, Ring AM, Connolly AJ, Weissman IL. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495–9.
Ruan J, Ouyang M, Zhang W, Luo Y, Zhou D. The impact of PD-1 expression on tumor-associated macrophage in T cell lymphoma. Clin Transl Oncol. 2021;23:1134–41.
Bally APR, Lu P, Tang Y, Austin JW, Scharer CD, Ahmed R, Boss JM. NF-κB regulates PD-1 expression in macrophages. J Immunol. 2015;194:4545.
Liu Y, Cheng Y, Xu Y, Wang Z, Du X, Li C, Peng J, Gao L, Liang X, Ma C. Elevated expression of programmed cell demise protein 1 on NK cells inhibits NK-cell-mediated anti-tumor perform and signifies poor prognosis in digestive cancers. Oncogene. 2017;36:6143–53.
Vari F, Arpon D, Keane C, Hertzberg MS, Talaulikar D, Jain S, Cui Q, Han E, Tobin J, Chicken R, Cross D, Hernandez A, Gould C, Birch S, Gandhi MK. Immune evasion by way of PD-1/PD-L1 on NK cells and monocyte/macrophages is extra distinguished in Hodgkin lymphoma than DLBCL. Blood. 2018;131:1809–19.
Lim TS, Chew V, Sieow JL, Goh S, Yeong JPS, Quickly AL, Ricciardi-Castagnoli P. PD-1 expression on dendritic cells suppresses CD8+ T cell perform and antitumor immunity. OncoImmunology. 2016;5:e1085146.
Aksoylar HI, Boussiotis VA. PD-1(+) T(reg) cells: a foe in most cancers immunotherapy? Nat Immunol. 2020;21:1311–2.
Xie M, Huang X, Ye X, Qian W. Prognostic and clinicopathological significance of PD-1/PD-L1 expression within the tumor microenvironment and neoplastic cells for lymphoma. Int Immunopharmacol. 2019;77:105999.
Kleffel S, Posch C, Barthel SR, Mueller H, Schlapbach C, Guenova E, Elco CP, Lee N, Juneja VR, Zhan Q, Lian CG, Thomi R, Hoetzenecker W, Cozzio A, Dummer R, Mihm MC, Flaherty KT, Frank MH, Murphy GF, Sharpe AH, Kupper TS, Schatton T. Melanoma Cell-intrinsic PD-1 receptor capabilities promote tumor progress. Cell. 2015;162:1242–56.
Zhao Y, Harrison DL, Tune Y, Ji J, Huang J, Hui E. Antigen-presenting cell-intrinsic PD-1 neutralizes PD-L1 in cis to attenuate PD-1 signaling in T cells. Cell Rep. 2018;24:379-390.e6.
Mehrfeld C, Zenner S, Kornek M, Lukacs-Kornek V. The contribution of non-professional antigen-presenting cells to immunity and tolerance within the liver. Entrance Immunol. 2018;9:635.
Rugamba A, Kang DY, Sp N, Jo ES, Lee J-M, Bae SW, Jang Ok-J. Silibinin regulates tumor development and tumorsphere formation by suppressing PD-L1 expression in non-small cell lung most cancers (NSCLC) cells. Cells. 2021;10:1632.
Botti G, Fratangelo F, Cerrone M, Liguori G, Cantile M, Anniciello AM, Scala S, D’alterio C, Trimarco C, Ianaro A, Cirino G, Caracò C, Colombino M, Palmieri G, Pepe S, Ascierto PA, Sabbatino F, Scognamiglio G. COX-2 expression positively correlates with PD-L1 expression in human melanoma cells. J Transl Med. 2017;15:46.
Carlsson J, Sundqvist P, Kosuta V, Fält A, Giunchi F, Fiorentino M, Davidsson SJ. PD-L1 expression is related to poor prognosis in renal cell carcinoma. Appl Immunohistochem Mol Morphol. 2020;28:213–20.
Chen C, Guo Q, Fu H, Yu J, Wang L, Solar Y, Zhang J, Duan Y. Asynchronous blockade of PD-L1 and CD155 by polymeric nanoparticles inhibits triple-negative breast most cancers development and metastasis. Biomaterials. 2021;275:120988.
Ruan S, Xie R, Qin L, Yu M, Xiao W, Hu C, Yu W, Qian Z, Ouyang L, He Q, Gao H. Aggregable nanoparticles-enabled chemotherapy and autophagy inhibition mixed with anti-PD-L1 antibody for improved glioma remedy. Nano Lett. 2019;19:8318–32.
Ye Q, Lin Y, Li R, Wang H, Dong C. Latest advances of nanodrug supply system within the remedy of hematologic malignancies. Semin Most cancers Biol. 2022;86:607–23.
Guan L, Zhang Z, Gao T, Fu S, Mu W, Liang S, Liu Y, Chu Q, Fang Y, Liu Y. Depleting tumor infiltrating B cells to spice up antitumor immunity with tumor immune-microenvironment reshaped hybrid nanocage. ACS Nano. 2022;16:4263–77.
Wang Y, Solar T, Jiang C. Nanodrug supply programs for ferroptosis-based most cancers remedy. J Management Launch. 2022;344:289–301.
Bejarano L, Jordāo MJC, Joyce JA. Therapeutic concentrating on of the tumor microenvironment. Most cancers Discov. 2021;11:933–59.
Arneth B. Tumor microenvironment. Medicina. 2020;56:15.
Quaranta V, Schmid MC. Macrophage-mediated subversion of anti-Tumour immunity. Cells. 2019;8:747.
Chen W, Wang J, Jia L, Liu J, Tian Y. Attenuation of the programmed cell death-1 pathway will increase the M1 polarization of macrophages induced by zymosan. Cell Demise Dis. 2016;7:e2115.
Hanafy MS, Hufnagel S, Trementozzi AN, Sakran W, Stachowiak JC, Koleng JJ, Cui Z. PD-1 siRNA-encapsulated stable lipid nanoparticles downregulate PD-1 expression by macrophages and inhibit tumor progress. AAPS PharmSciTech. 2021;22:60.
Concha-Benavente F, Kansy B, Moskovitz J, Moy J, Chandran U, Ferris RL. PD-L1 mediates dysfunction in activated PD-1+ NK cells in head and neck most cancers sufferers. Most cancers Immunol Res. 2018;6:1548.
Pesce S, Greppi M, Grossi F, Del Zotto G, Moretta L, Sivori S, Genova C, Marcenaro E. PD/1-PD-Ls checkpoint: perception on the potential position of NK cells. Entrance Immunol. 2019;10:1242.
Makowska A, Meier S, Shen L, Busson P, Baloche V, Kontny U. Anti-PD-1 antibody will increase NK cell cytotoxicity in the direction of nasopharyngeal carcinoma cells within the context of chemotherapy-induced upregulation of PD-1 and PD-L1. Most cancers Immunol Immunother. 2021;70:323–36.
Zhou YF, Tune SS, Tian MX, Tang Z, Wang H, Fang Y, Qu WF, Jiang XF, Tao CY, Huang R, Zhou PY, Zhu SG, Zhou J, Fan J, Liu WR, Shi YH. Cystathionine β-synthase mediated PRRX2/IL-6/STAT3 inactivation suppresses Tregs infiltration and induces apoptosis to inhibit HCC carcinogenesis. J Immunother Most cancers. 2021;9:e003031.
Kamada T, Togashi Y, Tay C, Ha D, Sasaki A, Nakamura Y, Sato E, Fukuoka S, Tada Y, Tanaka A, Morikawa H, Kawazoe A, Kinoshita T, Shitara Ok, Sakaguchi S, Nishikawa H. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of most cancers. Proc Natl Acad Sci. 2019;116:9999.
Dyck L, Wilk MM, Raverdeau M, Misiak A, Boon L, Mills KHG. Anti-PD-1 inhibits Foxp3+ Treg cell conversion and unleashes intratumoural effector T cells thereby enhancing the efficacy of a most cancers vaccine in a mouse mannequin. Most cancers Immunol Immunother. 2016;65:1491–8.
Kumagai S, Togashi Y, Kamada T, Sugiyama E, Nishinakamura H, Takeuchi Y, Vitaly Ok, Itahashi Ok, Maeda Y, Matsui S, Shibahara T, Yamashita Y, Irie T, Tsuge A, Fukuoka S, Kawazoe A, Udagawa H, Kirita Ok, Aokage Ok, Ishii G, Kuwata T, Nakama Ok, Kawazu M, Ueno T, Yamazaki N, Goto Ok, Tsuboi M, Mano H, Doi T, Shitara Ok, Nishikawa H. The PD-1 expression steadiness between effector and regulatory T cells predicts the medical efficacy of PD-1 blockade therapies. Nat Immunol. 2020;21:1346–58.
Karyampudi L, Lamichhane P, Krempski J, Kalli KR, Behrens MD, Vargas DM, Hartmann LC, Janco JMT, Dong H, Hedin KE. PD-1 blunts the perform of ovarian tumor–infiltrating dendritic cells by inactivating NF-κB. Most cancers Res. 2016;76:239–50.
Versteven M, Van Den Bergh JMJ, Marcq E, Smits ELJ, Van Tendeloo VFI, Hobo W, Lion E. Dendritic cells and programmed death-1 blockade: a three way partnership to fight most cancers. Entrance Immunol. 2018;9:394.
Iraolagoitia XLR, Spallanzani RG, Torres NI, Araya RE, Ziblat A, Domaica CI, Sierra JM, Nuñez SY, Secchiari F, Gajewski TF, Zwirner NW, Fuertes MB. NK Cells restrain spontaneous antitumor CD8+ T cell priming by way of PD-1/PD-L1 interactions with dendritic cells. J Immunol. 2016;197:953.
Stoycheva D, Simsek H, Weber W, Hauser AE, Klotzsch E. Exterior cues to drive B cell perform in the direction of immunotherapy. Acta Biomater. 2021;133:222–30.
Solar X, Zhang T, Li M, Yin L, Xue J. Immunosuppressive B cells expressing PD-1/PD-L1 in stable tumors: a mini overview. QJM-Int J Med. 2022;115:507–12.
Wang X, Wang G, Wang Z, Liu B, Han N, Li J, Lu C, Liu X, Zhang Q, Yang Q, Wang G. PD-1-expressing B cells suppress CD4+ and CD8+ T cells by way of PD-1/PD-L1-dependent pathway. Mol Immunol. 2019;109:20–6.
Cremolini C, Vitale E, Rastaldo R, Giachino C. Superior nanotechnology for enhancing immune checkpoint blockade remedy. Nanomaterials. 2021;11:661.
Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade remedy for most cancers: an summary of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018;62:29–39.
Singh S, Hassan D, Aldawsari HM, Molugulu N, Shukla R, Kesharwani P. Immune checkpoint inhibitors: a promising anticancer remedy. Drug Discov Immediately. 2020;25:223–9.
Chang E, Pelosof L, Lemery S, Gong Y, Goldberg KB, Farrell AT, Keegan P, Veeraraghavan J, Wei G, Blumenthal GM, Amiri-Kordestani L, Singh H, Fashoyin-Aje L, Gormley N, Kluetz PG, Pazdur R, Beaver JA, Theoret MR. Systematic overview of PD-1/PD-L1 inhibitors in oncology: from personalised drugs to public well being. Oncologist. 2021;26:e1786–99.
Boohaker RJ, Sambandam V, Segura I, Miller J, Suto M, Xu B. Rational design and growth of a peptide inhibitor for the PD-1/PD-L1 interplay. Most cancers Lett. 2018;434:11–21.
Wu X, Meng Y, Liu L, Gong G, Zhang H, Hou Y, Liu C, Wu D, Qin M. Insights into non-peptide small-molecule inhibitors of the PD-1/PD-L1 interplay: growth and perspective. Bioorg Med Chem. 2021;33:116038.
Fan Z, Tian Y, Chen Z, Liu L, Zhou Q, He J, Coleman J, Dong C, Li N, Huang J, Xu C, Zhang Z, Gao S, Zhou P, Ding Ok, Chen L. Blocking interplay between SHP2 and PD-1 denotes a novel alternative for creating PD-1 inhibitors. EMBO Mol Med. 2020;12:e11571.
Zhao T, Wei T, Guo J, Wang Y, Shi X, Guo S, Jia X, Jia H, Feng Z. PD-1-siRNA delivered by attenuated Salmonella enhances the antimelanoma impact of pimozide. Cell Demise Dis. 2019;10:164.
Naidoo J, Web page DB, Li BT, Connell LC, Schindler Ok, Lacouture ME, Postow MA, Wolchok JD. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26:2375–91.
Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Improvement of PD-1 and PD-L1 inhibitors as a type of most cancers immunotherapy: a complete overview of registration trials and future issues. J Immunother Most cancers. 2018;6:8.
Huang Y, Chen Y, Zhou S, Chen L, Wang J, Pei Y, Xu M, Feng J, Jiang T, Liang Ok, Liu S, Tune Q, Jiang G, Gu X, Zhang Q, Gao X, Chen J. Twin-mechanism based mostly CTLs infiltration enhancement initiated by nano-sapper potentiates immunotherapy in opposition to immune-excluded tumors. Nat Commun. 2020;11:622.
Oliver AJ, Davey AS, Keam SP, Mardiana S, Chan JD, Von Scheidt B, Beavis PA, Home IG, Van Audernaerde JRM, Darcy PK, Kershaw MH, Slaney CY. Tissue-specific tumor microenvironments affect responses to immunotherapies. Clinl Transl Immunol. 2019;8:e1094.
Ito M, Mimura Ok, Nakajima S, Saito Ok, Min AKT, Okayama H, Saito M, Momma T, Saze Z, Ohtsuka M, Yamamoto T, Kono Ok. Immune escape mechanism behind resistance to anti-PD-1 remedy in gastrointestinal tract metastasis in malignant melanoma sufferers with a number of metastases. Most cancers Immunol Immunother. 2022;71:2293–300.
Hugo W, Zaretsky JM, Solar L, Tune C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, Seja E, Lomeli S, Kong X, Kelley MC, Sosman JA, Johnson DB, Ribas A, Lo RS. Genomic and transcriptomic options of response to anti-PD-1 remedy in metastatic melanoma. Cell. 2016;165:35–44.
Abril-Rodriguez G, Ribas A. SnapShot: immune checkpoint inhibitors. Most cancers Cell. 2017;31:848-848.e1.
Liang X, Gao C, Cui L, Wang S, Wang J, Dai Z. Self-assembly of an amphiphilic janus camptothecin–floxuridine conjugate into liposome-like nanocapsules for extra efficacious mixture chemotherapy in most cancers. Adv Mater. 2017;29:1703135.
Liu X, Jiang J, Chan R, Ji Y, Lu J, Liao YP, Okene M, Lin J, Lin P, Chang CH. Improved efficacy and decreased toxicity utilizing a custom-designed irinotecan-delivering silicasome for orthotopic colon most cancers. ACS Nano. 2018;13:38–53.
Gao Y, Ouyang Z, Yang C, Tune C, Jiang C, Tune S, Shen M, Shi X. Overcoming T cell exhaustion by way of immune checkpoint modulation with a dendrimer-based hybrid nanocomplex. Adv Healthc Mater. 2021;10:2100833.
Tripathi PK, Tripathi S. Dendrimers for anticancer drug supply. In: Chauhan AS, Kulhari H, editors. Pharmaceutical functions of dendrimers. Amsterdam: Elsevier; 2020. p. 131–50.
Liu C, Wan T, Wang H, Zhang S, Ping Y, Cheng YJ. A boronic acid–wealthy dendrimer with sturdy and unprecedented effectivity for cytosolic protein supply and CRISPR-Cas9 gene enhancing. Sci Adv. 2019;5:eaaw8922.
Manzano M, Vallet-Regí MJ. Mesoporous silica nanoparticles for drug supply. Adv Funct Mater. 2020;30:1902634.
Sztandera Ok, Gorzkiewicz M, Klajnert-Maculewicz BJMP. Gold nanoparticles in most cancers remedy. Mol Pharm. 2018;16:1–23.
Geng Z, Wang L, Liu Ok, Liu J, Tan WJ. Enhancing anti-PD-1 immunotherapy by nanomicelles self-assembled from multivalent aptamer drug conjugates. Angew Chem Int. 2021;133:15587–93.
Zhou Z, Du C, Zhang Q, Yu G, Zhang F, Chen X. Beautiful vesicular nanomedicine by paclitaxel mediated co-assembly with camptothecin prodrug. Angew Chem Int Ed. 2021;60:21033–9.
Yan S, Luo Z, Li Z, Wang Y, Tao J, Gong C, Liu X. Enhancing most cancers immunotherapy outcomes utilizing biomaterials. Angew Chem Int Ed. 2020;59:17332–43.
Gmeiner WH, Ghosh S. Nanotechnology for most cancers remedy. Nanotechnol Rev. 2014;3:111–22.
Li G, Tune YZ, Huang ZJ, Chen Ok, Chen DW, Deng YQ. Novel, nano-sized, liposome-encapsulated polyamidoamine dendrimer derivatives facilitate tumour concentrating on by overcoming the polyethylene glycol dilemma and integrin saturation impediment. J Drug Goal. 2017;25:734–46.
Liu WL, Zou MZ, Liu T, Zeng JY, Li X, Yu WY, Li CX, Ye JJ, Tune W, Feng J, Zhang XZ. Cytomembrane nanovaccines present therapeutic results by mimicking tumor cells and antigen presenting cells. Nat Commun. 2019;10:3199.
Nguyen PV, Allard-Vannier E, Chourpa I, Hervé-Aubert Ok. Nanomedicines functionalized with anti-EGFR ligands for energetic concentrating on in most cancers remedy: organic technique, design and high quality management. Int J Pharm. 2021;605:120795.
Xuan M, Shao J, Dai L, Li J, He Q. Macrophage cell membrane camouflaged Au nanoshells for in vivo extended circulation life and enhanced most cancers photothermal remedy. ACS Appl Mater Interfaces. 2016;8:9610–8.
Su Z, Xiao Z, Wang Y, Huang J, An Y, Wang X, Shuai X. Codelivery of anti-PD-1 antibody and paclitaxel with matrix metalloproteinase and pH dual-sensitive micelles for enhanced tumor chemoimmunotherapy. Small. 2020;16:1906832.
Chen Q, Chen G, Chen J, Shen J, Zhang X, Wang J, Chan A, Gu Z. Bioresponsive protein complicated of aPD1 and aCD47 antibodies for enhanced immunotherapy. Nano Lett. 2019;19:4879–89.
Sanaei M-J, Pourbagheri-Sigaroodi A, Kaveh V, Sheikholeslami SA, Salari S, Bashash D. The applying of nano-medicine to beat the challenges associated to immune checkpoint blockades in most cancers immunotherapy: latest advances and alternatives. Crit Rev Oncol Hemat. 2021;157:103160.
Zhang B, Zhou YL, Chen X, Wang Z, Wang Q, Ju F, Ren S, Xu R, Xue Q, Wu Q. Efficacy and security of CTLA-4 inhibitors mixed with PD-1 inhibitors or chemotherapy in sufferers with superior melanoma. Int Immunopharmacol. 2019;68:131–6.
Fu Y, Peng Y, Zhao S, Mou J, Zeng L, Jiang X, Yang C, Huang C, Li Y, Lu Y, Wu M, Yang Y, Kong T, Lai Q, Wu Y, Yao Y, Wang Y, Gou L, Yang J. Mixture foretinib and anti-PD-1 antibody immunotherapy for colorectal carcinoma. Entrance Cell Dev Biol. 2021;9:689727.
Maharjan R, Choi JU, Kweon S, Pangeni R, Lee NK, Park SJ, Chang KY, Park JW, Byun Y. A novel oral metronomic chemotherapy provokes tumor particular immunity leading to colon most cancers eradication together with anti-PD-1 remedy. Biomaterials. 2022;281:121334.
Fang XY, Wu XL, Li ZD, Jiang LJ, Lo WS, Chen GM, Gu YJ, Wong WT. Biomimetic anti-PD-1 peptide-loaded 2D FePSe3 nanosheets for environment friendly photothermal and enhanced immune remedy with multimodal MR/PA/thermal imaging. Adv Sci. 2021;8:15.
Bertol BC, Bales ES, Calhoun JD, Mayberry A, Ledezma ML, Sams SB, Orlicky DJ, Donadi EA, Haugen BR, French JD. Lenvatinib plus anti-PD-1 mixture remedy for superior cancers: defining mechanisms of resistance in an inducible transgenic mannequin of thyroid most cancers. Thyroid. 2021;32:153–63.
Wu L, Wang W, Tian J, Qi C, Cai Z, Yan W, Xuan S, Shang AJB. Mixture remedy with Nab-paclitaxel and the interleukin-15 fused with anti-human serum albumin nanobody as a synergistic remedy for colorectal most cancers. Bioengineered. 2022;13:1942–51.
Ordikhani F, Uehara M, Kasinath V, Dai L, Eskandari SK, Bahmani B, Yonar M, Azzi JR, Haik Y, Sage PT, Murphy GF, Annabi N, Schatton T, Guleria I, Abdi R. Focusing on antigen-presenting cells by anti-PD-1 nanoparticles augments antitumor immunity. JCI Perception. 2018;3:17.
Tao H, Cheng L, Liu L, Wang H, Jiang Z, Qiang X, Xing L, Xu Y, Cai X, Yao J, Wang M, Qiu Z. A PD-1 peptide antagonist displays potent anti-tumor and immune regulatory exercise. Most cancers Lett. 2020;493:91–101.
Killock D. Macrophages hijack anti-PD-1 remedy. Nat Rev Clin Oncol. 2017;14:394–394.
Barati M, Mirzavi F, Nikpoor AR, Sankian M, Namdar Ahmadabad H, Soleimani A, Mashreghi M, Tavakol Afshar J, Mohammadi M, Jaafari MR. Enhanced antitumor immune response in melanoma tumor mannequin by anti-PD-1 small interference RNA encapsulated in nanoliposomes. Most cancers Gene Ther. 2022;29:814–24.
Wu Y, Gu W, Li L, Chen C, Xu ZP. Enhancing PD-1 gene silence in T lymphocytes by evaluating the supply efficiency of two inorganic nanoparticle platforms. Nanomaterials. 2019;9:159.
Hodi FS, Chiarion-Sileni V, Gonzalez R, Grob J-J, Rutkowski P, Cowey CL, Lao CD, Schadendorf D, Wagstaff J, Dummer R, Ferrucci PF, Smylie M, Hill A, Hogg D, Marquez-Rodas I, Jiang J, Rizzo J, Larkin J, Wolchok JD. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in superior melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, section 3 trial. Lancet Oncol. 2018;19:1480–92.
Zhang J, Liu D, Liu J, Han Y, Xu H, Leng X, Kong D, Liu L. Hybrid spherical nucleotide nanoparticles can improve the synergistic anti-tumor impact of CTLA-4 and PD-1 blockades. Biomater Sci. 2020;8:4757–66.
Kwak SY, Lee S, Han HD, Chang S, Kim KP, Ahn HJ. PLGA nanoparticles codelivering siRNAs in opposition to programmed cell demise protein-1 and its ligand gene for suppression of colon tumor progress. Mol Pharm. 2019;16:4940–53.
Wu YH, Gu WY, Li J, Chen C, Xu ZP. Silencing PD-1 and PD-L1 with nanoparticle-delivered small interfering RNA will increase cytotoxicity of tumor-infiltrating lymphocytes. Nanomedicine. 2019;14:955–68.
Mi Y, Smith CC, Yang F, Qi Y, Roche KC, Serody JS, Vincent BG, Wang AZ. A twin immunotherapy nanoparticle improves T-cell activation and most cancers immunotherapy. Adv Mater. 2018;30:1706098.
Fu Y, Huang Y, Li P, Wang L, Tang Z, Liu X, Bian X, Wu S, Wang X, Zhu B, Yu Y, Jiang J, Li C. Bodily- and chemical-dually ROS-responsive nano-in-gel platforms with sequential launch of OX40 agonist and PD-1 Inhibitor for augmented mixture immunotherapy. Nano Lett. 2023;23:1424–34.
Beavis PA, Milenkovski N, Henderson MA, John LB, Allard B, Loi S, Kershaw MH, Stagg J, Darcy PK. Adenosine receptor 2A blockade will increase the efficacy of anti–PD-1 by way of enhanced antitumor T-cell responses. Most cancers Immunol Res. 2015;3:506.
Karoon Kiani F, Izadi S, Ansari Dezfouli E, Ebrahimi F, Mohammadi M, Chalajour H, Mortazavi Bulus M, Nasr Esfahani M, Karpisheh V, Mahmoud Salehi Khesht A, Abbaszadeh-Goudarzi Ok, Soleimani A, Gholizadeh Navashenaq J, Ahmadi M, Hassannia H, Hojjat-Farsangi M, Shahmohammadi Farid S, Hashemi V, Jadidi-Niaragh F. Simultaneous silencing of the A2aR and PD-1 immune checkpoints by siRNA-loaded nanoparticles enhances the immunotherapeutic potential of dendritic cell vaccine in tumor experimental fashions. Life Sci. 2022;288:120166.
Xiao Z, Su Z, Han S, Huang J, Lin L, Shuai X. Twin pH-sensitive nanodrug blocks PD-1 immune checkpoint and makes use of T cells to ship NF-κB inhibitor for antitumor immunotherapy. Sci Adv. 2020;6:eaay7785.
Ruan H, Hu Q, Wen D, Chen Q, Chen G, Lu Y, Wang J, Cheng H, Lu W, Gu Z. A Twin-bioresponsive drug-delivery depot for mixture of epigenetic modulation and immune checkpoint blockade. Adv Mater. 2019;31:1806957.
Ye Y, Wang J, Hu Q, Hochu GM, Xin H, Wang C, Gu Z. Synergistic transcutaneous immunotherapy enhances antitumor immune responses by way of supply of checkpoint inhibitors. ACS Nano. 2016;10:8956–63.
Schmid D, Park CG, Hartl CA, Subedi N, Cartwright AN, Puerto RB, Zheng Y, Maiarana J, Freeman GJ, Wucherpfennig KW, Irvine DJ, Goldberg MS. T cell-targeting nanoparticles focus supply of immunotherapy to enhance antitumor immunity. Nat Commun. 2017;8:1747.
Duan X, Chan C, Lin W. Nanoparticle-mediated immunogenic cell demise permits and potentiates most cancers immunotherapy. Angew Chem Int Ed. 2019;58:670–80.
Lan XM, Zhu WY, Huang XS, Yu YJ, Xiao HH, Jin LJ, Pu JYJ, Xie X, She JC, Lui VWY, Chen HJ, Su YX. Microneedles loaded with anti-PD-1-cisplatin nanoparticles for synergistic most cancers immuno-chemotherapy. Nanoscale. 2020;12:18885–98.
Gai S, Yang G, Yang P, He F, Lin J, Jin D, Xing B. Latest advances in practical nanomaterials for gentle–triggered most cancers remedy. Nano Immediately. 2018;19:146–87.
Doughty ACV, Hoover AR, Layton E, Murray CK, Howard EW, Chen WR. Nanomaterial functions in photothermal remedy for most cancers. Supplies. 2019;12:779.
Zhang N, Tune J, Liu Y, Liu MZ, Zhang L, Sheng DL, Deng LM, Yi HJ, Wu M, Zheng YY, Wang ZG, Yang Z. Photothermal remedy mediated by phase-transformation nanoparticles facilitates supply of anti-PD1 antibody and synergizes with antitumor immunotherapy for melanoma. J Management Launch. 2019;306:15–28.
Luo LH, Zhu CQ, Yin H, Jiang MS, Zhang JL, Qin B, Luo ZY, Yuan XL, Yang J, Li W, Du YZ, You J. Laser Immunotherapy together with perdurable PD-1 blocking for the remedy of metastatic tumors. ACS Nano. 2018;12:7647–62.
Gao T, Zhang Z, Liang S, Fu S, Mu W, Guan L, Liu Y, Chu Q, Fang Y, Liu Y, Zhang N. Reshaping antitumor immunity with chemo-photothermal built-in nanoplatform to enhance checkpoint blockade-based vancer remedy. Adv Funct Mater. 2021;31:2100437.
Zhang F, Li F, Lu G-H, Nie W, Zhang L, Lv Y, Bao W, Gao X, Wei W, Pu Ok, Xie H-Y. Engineering magnetosomes for ferroptosis/immunomodulation synergism in most cancers. ACS Nano. 2019;13:5662–73.
Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z. Present approaches of nanomedicines out there and varied stage of medical translation. Acta Pharm Sin B. 2022;12:3028–48.