Advances in remedy methods primarily based on scavenging reactive oxygen species of nanoparticles for atherosclerosis | Journal of Nanobiotechnology


  • Wang L, Tang C. Concentrating on platelet in atherosclerosis plaque formation: present data and future views. Int J Mol Sci. 2020;21.

  • Poznyak AV, Grechko AV, Orekhova VA, Khotina V, Ivanova EA, Orekhov AN. NADPH oxidases and their function in atherosclerosis. Biomedicines. 2020;8:206.

  • Wolf D, Ley Ok. Immunity and irritation in atherosclerosis. Circ Res. 2019;124:315–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aryal B, Value NL, Suarez Y, Fernández-Hernando C. ANGPTL4 in metabolic and heart problems. Developments Mol Med. 2019;25:723–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tabas I, Bornfeldt KE. Macrophage phenotype and performance in several levels of atherosclerosis. Circ Res. 2016;118:653–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng X, Chen W, Ni X, Little PJ, Xu S, Tang L, Weng J. Metformin, macrophage dysfunction and atherosclerosis. Entrance Immunol. 2021;12:682853.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura Y, Tsukui D, Kono H. Uric acid in irritation and the pathogenesis of atherosclerosis. Int J Mol Sci 2021, 22.

  • Sies H. Oxidative stress: an idea in redox biology and medication. Redox Biol. 2015;4:180–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling brokers. Nat Rev Mol Cell Biol. 2020;21:363–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moloney JN, Cotter TG. ROS signalling within the biology of most cancers. Semin Cell Dev Biol. 2018;80:50–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and most cancers paradox: to advertise or to suppress? Free Radic Biol Med. 2017;104:144–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moris D, Spartalis M, Tzatzaki E, Spartalis E, Karachaliou GS, Triantafyllis AS, Karaolanis GI, Tsilimigras DI, Theocharis S. The function of reactive oxygen species in myocardial redox signaling and regulation. Ann Transl Med. 2017;5:324.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Assar M, Angulo J, Rodríguez-Mañas L. Oxidative stress and vascular irritation in growing old. Free Radic Biol Med. 2013;65:380–401.

    Article 
    PubMed 

    Google Scholar
     

  • Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res. 2018;122:877–902.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirtonia A, Sethi G, Garg M. The multifaceted function of reactive oxygen species in tumorigenesis. Cell Mol Life Sci. 2020;77:4459–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer technique. Nat Rev Drug Discov. 2013;12:931–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • D’Autréaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007;8:813–24.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang L, Wang X, Cueto R, Effi C, Zhang Y, Tan H, Qin X, Ji Y, Yang X, Wang H. Biochemical foundation and metabolic interaction of redox regulation. Redox Biol. 2019;26:101284.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown DI, Griendling KK. Regulation of sign transduction by reactive oxygen species within the cardiovascular system. Circ Res. 2015;116:531–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris IS, DeNicola GM. The complicated interaction between antioxidants and ROS in most cancers. Developments Cell Biol. 2020;30:440–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuznetsov AV, Ausserlechner MJ. Analysis of mitochondrial operate, construction, dynamics and intracellular group. Int J Mol Sci. 2023;24:886.

  • Giorgi C, Marchi S, Simoes ICM, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jędrak P, Pierzynowska Ok, et al. Mitochondria and reactive oxygen species in growing old and age-related ailments. Int Rev Cell Mol Biol. 2018;340:209–344.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang ZJ. Systematic assessment on the affiliation between F2-isoprostanes and heart problems. Ann Clin Biochem. 2013;50:108–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borén J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, Daemen MJ, Demer LL, Hegele RA, Nicholls SJ, et al. Low-density lipoproteins trigger atherosclerotic heart problems: pathophysiological, genetic, and therapeutic insights: a consensus assertion from the ecu atherosclerosis Society Consensus Panel. Eur Coronary heart J. 2020;41:2313–30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu Y, Han J, Jiang C, Zhang Y. Biomarkers, oxidative stress and autophagy in pores and skin growing old. Ageing Res Rev. 2020;59:101036.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative stress in atherosclerosis. Curr Atheroscler Rep. 2017;19:42.

    Article 
    PubMed 

    Google Scholar
     

  • Donato AJ, Pierce GL, Lesniewski LA, Seals DR. Function of NFkappaB in age-related vascular endothelial dysfunction in people. Ageing. 2009;1:678–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Libby P. Molecular and mobile mechanisms of the thrombotic problems of atherosclerosis. J Lipid Res. 2009;50(Suppl):352–7.

    Article 

    Google Scholar
     

  • Ungvari Z, Tarantini S, Nyúl-Tóth Á, Kiss T, Yabluchanskiy A, Csipo T, Balasubramanian P, Lipecz A, Benyo Z, Csiszar A. Nrf2 dysfunction and impaired mobile resilience to oxidative stressors within the aged vasculature: from elevated mobile senescence to the pathogenesis of age-related vascular ailments. Geroscience. 2019;41:727–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seldin MM, Meng Y, Qi H, Zhu W, Wang Z, Hazen SL, Lusis AJ, Shih DM. Trimethylamine N-Oxide promotes vascular irritation by way of signaling of Mitogen-Activated protein kinase and nuclear Issue-κB. J Am Coronary heart Assoc 2016, 5.

  • Kitada M, Ogura Y, Koya D. The protecting function of Sirt1 in vascular tissue: its relationship to vascular growing old and atherosclerosis. Ageing. 2016;8:2290–307.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai B, Yang Y, Wang Q, Li M, Tian C, Liu Y, Aung LHH, Li PF, Yu T, Chu XM. NLRP3 inflammasome in endothelial dysfunction. Cell Loss of life Dis. 2020;11:776.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Wang L, Pitzer AL, Li X, Li PL, Zhang Y. Contribution of redox-dependent activation of endothelial Nlrp3 inflammasomes to hyperglycemia-induced endothelial dysfunction. J Mol Med (Berl). 2016;94:1335–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren X, Ren L, Wei Q, Shao H, Chen L, Liu N. Superior glycation end-products decreases expression of endothelial nitric oxide synthase by way of oxidative stress in human coronary artery endothelial cells. Cardiovasc Diabetol. 2017;16:52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huynh DTN, Heo KS. Function of mitochondrial dynamics and mitophagy of vascular easy muscle cell proliferation and migration in development of atherosclerosis. Arch Pharm Res. 2021;44:1051–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng C, Chen Q, Fan M, Guo J, Liu Y, Ji T, Zhu J, Zhao X. Platelet-derived microparticles promote phagocytosis of oxidized low-density lipoprotein by macrophages, doubtlessly enhancing foam cell formation. Ann Transl Med. 2019;7:477.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nikdoust F, Pazoki M, Mohammadtaghizadeh M, Aghaali MK, Amrovani M. Exosomes: potential participant in endothelial dysfunction in heart problems. Cardiovasc Toxicol. 2022;22:225–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beyea MM, Reaume S, Sawyez CG, Edwards JY, O’Neil C, Hegele RA, Pickering JG, Huff MW. The oxysterol 24(s),25-epoxycholesterol attenuates human easy muscle-derived foam cell formation by way of decreased low-density lipoprotein uptake and enhanced ldl cholesterol efflux. J Am Coronary heart Assoc. 2012;1:e000810.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh S, Gautam AS. Upregulated LOX-1 receptor: key participant of the pathogenesis of atherosclerosis. Curr Atheroscler Rep. 2019;21:38.

    Article 
    PubMed 

    Google Scholar
     

  • Lin HC, Lii CK, Chen HC, Lin AH, Yang YC, Chen HW. Andrographolide inhibits oxidized LDL-induced ldl cholesterol accumulation and foam cell formation in macrophages. Am J Chin Med. 2018;46:87–106.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Armitage J. The protection of statins in scientific observe. Lancet. 2007;370:1781–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheeley MK, Saseen JJ, Agarwala A, Ravilla S, Ciffone N, Jacobson TA, Dixon DL, Maki KC. NLA scientific assertion on statin intolerance: a brand new definition and key issues for ASCVD danger discount within the statin illiberal affected person. J Clin Lipidol. 2022;16:361–75.

    Article 
    PubMed 

    Google Scholar
     

  • Toth PP, Banach M. Statins: then and now. Methodist Debakey Cardiovasc J. 2019;15:23–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pradhan A, Tiwari A, Caminiti G, Salimei C, Muscoli S, Sethi R, Perrone MA. Splendid P2Y12 inhibitor in acute coronary syndrome: a assessment and present standing. Int J Environ Res Public Well being. 2022;19:8977.

  • Lewis DR, Kamisoglu Ok, York AW, Moghe PV. Polymer-based therapeutics: nanoassemblies and nanoparticles for administration of atherosclerosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3:400–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye M, Zhou J, Zhong Y, Xu J, Hou J, Wang X, Wang Z, Guo D. SR-A-Focused phase-transition nanoparticles for the detection and remedy of atherosclerotic weak plaques. ACS Appl Mater Interfaces. 2019;11:9702–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kheradmandi M, Ackers I, Burdick MM, Malgor R, Farnoud AM. Concentrating on dysfunctional vascular endothelial cells utilizing immunoliposomes beneath move circumstances. Cell Mol Bioeng. 2020;13:189–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao C, Huang Q, Liu C, Kwong CHT, Yue L, Wan JB, Lee SMY, Wang R. Therapy of atherosclerosis by macrophage-biomimetic nanoparticles by way of focused pharmacotherapy and sequestration of proinflammatory cytokines. Nat Commun. 2020;11:2622.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Tian XY, Chan CKW, Bai Q, Cheng CK, Chen FM, Cheung MSH, Yin B, Yang H, Yung WY, et al. Selling the supply of nanoparticles to atherosclerotic plaques by DNA coating. ACS Appl Mater Interfaces. 2019;11:13888–904.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Zhang Ok, Qin X, Li T, Qiu J, Yin T, Huang J, McGinty S, Pontrelli G, Ren J, et al. Biomimetic nanotherapies: purple blood cell primarily based core-shell structured nanocomplexes for atherosclerosis administration. Adv Sci (Weinh). 2019;6:1900172.

    Article 
    PubMed 

    Google Scholar
     

  • Wu T, Peng Y, Yan S, Li N, Chen Y, Lan T. Andrographolide ameliorates atherosclerosis by suppressing pro-inflammation and ROS generation-mediated foam cell formation. Irritation. 2018;41:1681–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to beat most cancers drug resistance. Adv Drug Deliv Rev. 2013;65:1866–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu X, Zhao P, Lu Y, Liu Y. ROS-Based mostly nanoparticles for atherosclerosis remedy. Mater (Basel) 2021, 14.

  • Apel Ok, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and sign transduction. Annu Rev Plant Biol. 2004;55:373–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Wu Y, Zhang R, Lam J, Ng JC, Xu ZP, Li L, Ta HT. Investigating using layered double hydroxide nanoparticles as carriers of metallic oxides for theranostics of ROS-related ailments. ACS Appl Bio Mater. 2019;2:5930–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pham LM, Kim EC, Ou W, Phung CD, Nguyen TT, Pham TT, Poudel Ok, Gautam M, Nguyen HT, Jeong JH, et al. Concentrating on and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for assuaging aorta atherosclerosis. Biomaterials. 2021;269:120677.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu M, Zhang Y, Ma X, Zhang B, Huang Y, Zhao J, Wang S, Li Y, Zhu Y, Xiong J, et al. Synthesis and characterization of fucoidan-chitosan nanoparticles focusing on p-selectin for efficient atherosclerosis remedy. Oxid Med Cell Longev. 2022;2022:8006642.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Ding F, Qian X, Solar J, Ge Z, Yang L, Cheng Z. Anti-inflammatory cytokine IL10 loaded cRGD liposomes for the focused remedy of atherosclerosis. J Microencapsul. 2021;38:357–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu X, Yu X, Jiang J, Yang J, Chen L, Yang Z, Yu C. Small molecule-assisted meeting of multifunctional ceria nanozymes for synergistic remedy of atherosclerosis. Nat Commun. 2022;13:6528.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou H, You P, Liu H, Fan J, Tong C, Yang A, Jiang Y, Liu B. Artemisinin and Procyanidins loaded multifunctional nanocomplexes alleviate atherosclerosis by way of concurrently modulating lipid inflow and ldl cholesterol efflux. J Management Launch. 2022;341:828–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao Y, Liu S, Zeng X, Guo Z, Chen D, Li S, Tian Z, Qu Y. Discount of reactive oxygen species accumulation utilizing gadolinium-doped ceria for the alleviation of atherosclerosis. ACS Appl Mater Interfaces. 2023;15:10414–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar W, Xu Y, Yao Y, Yue J, Wu Z, Li H, Shen G, Liao Y, Wang H, Zhou W. Self-oxygenation mesoporous MnO(2) nanoparticles with ultra-high drug loading capability for focused arteriosclerosis remedy. J Nanobiotechnol. 2022;20:88.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Li L, Zhao W, Dou Y, An H, Tao H, Xu X, Jia Y, Lu S, Zhang J, Hu H. Focused remedy of atherosclerosis by a broad-spectrum reactive oxygen species scavenging nanoparticle with intrinsic anti-inflammatory exercise. ACS Nano. 2018;12:8943–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leal BH, Velasco B, Cambón A, Pardo A, Fernandez-Vega J, Arellano L, Al-Modlej A, Mosquera VX, Bouzas A, Prieto G et al. Mixed therapeutics for atherosclerosis remedy utilizing polymeric nanovectors. Pharmaceutics. 2022;14:258.

  • Hu R, Dai C, Dong C, Ding L, Huang H, Chen Y, Zhang B. Residing macrophage-delivered Tetrapod PdH Nanoenzyme for focused atherosclerosis administration by ROS scavenging, hydrogen anti-inflammation, and Autophagy activation. ACS Nano. 2022;16:15959–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Westerterp M, Fotakis P, Ouimet M, Bochem AE, Zhang H, Molusky MM, Wang W, Abramowicz S, la Bastide-van Gemert S, Wang N, et al. Ldl cholesterol efflux pathways suppress Inflammasome activation, NETosis, and atherogenesis. Circulation. 2018;138:898–912.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang P, Zhu D, Chen X, Li Y, Li N, Gao Q, Li L, Zhou X, Lv J, Solar M, et al. Prenatal hypoxia promotes atherosclerosis by way of vascular irritation within the offspring rats. Atherosclerosis. 2016;245:28–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain T, Nikolopoulou EA, Xu Q, Qu A. Hypoxia inducible issue as a therapeutic goal for atherosclerosis. Pharmacol Ther. 2018;183:22–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arias LS, Pessan JP, Vieira APM, Lima TMT, Delbem ACB, Monteiro DR. Iron oxide nanoparticles for biomedical purposes: a perspective on synthesis, medication, antimicrobial exercise, and toxicity. Antibiot (Basel). 2018;7:46.

  • Montiel Schneider MG, Martín MJ, Otarola J, Vakarelska E, Simeonov V, Lassalle V, Nedyalkova M. Biomedical purposes of iron oxide nanoparticles: present insights progress and views. Pharmaceutics. 2022;14:204.

  • Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: a novel class of drug supply programs. Int J Nanomedicine. 2012;7:1525–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho JH, Kim EC, Son Y, Lee DW, Park YS, Choi JH, Cho KH, Kwon KS, Kim JR. CD9 induces mobile senescence and aggravates atherosclerotic plaque formation. Cell Loss of life Differ. 2020;27:2681–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brosseau C, Colas L, Magnan A, Brouard S. CD9 tetraspanin: a brand new pathway for the regulation of irritation? Entrance Immunol. 2018;9:2316.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosser DM, Zhang X. Interleukin-10: new views on an outdated cytokine. Immunol Rev. 2008;226:205–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma Ok, Kumar Ok, Mishra N. Nanoparticulate provider system: a novel remedy strategy for hyperlipidemia. Drug Deliv. 2016;23:694–709.

    Article 
    PubMed 

    Google Scholar
     

  • Asadullah Ok, Sterry W, Volk HD. Interleukin-10 remedy–assessment of a brand new strategy. Pharmacol Rev. 2003;55:241–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li MC, He SH. IL-10 and its associated cytokines for remedy of inflammatory bowel illness. World J Gastroenterol. 2004;10:620–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gloire G, Legrand-Poels S, Piette J. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006;72:1493–505.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mittal M, Siddiqui MR, Tran Ok, Reddy SP, Malik AB. Reactive oxygen species in irritation and tissue damage. Antioxid Redox Sign. 2014;20:1126–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA. Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Chem. 2008;283:21837–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stocker R, Keaney JF Jr. Function of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84:1381–478.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide within the pathogenesis of atherosclerosis. Circ Res. 2017;120:713–35.

    Article 
    PubMed 

    Google Scholar
     

  • Münzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC. Affect of oxidative stress on the guts and vasculature: half 2 of a 3-Half sequence. J Am Coll Cardiol. 2017;70:212–29.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aljabali AA, Obeid MA, Bashatwah RM, Serrano-Aroca Á, Mishra V, Mishra Y, El-Tanani M, Hromić-Jahjefendić A, Kapoor DN, Goyal R et al. Nanomaterials and their affect on the Immune System. Int J Mol Sci 2023, 24.

  • Bravo-San Pedro JM, Kroemer G, Galluzzi L. Autophagy and mitophagy in heart problems. Circ Res. 2017;120:1812–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu S, Zhao Ok, Wang J, Liu N, Nie Ok, Qi L, Xia L. Current advances of tanshinone in regulating autophagy for medicinal analysis. Entrance Pharmacol. 2022;13:1059360.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao W, He Z. ROS-responsive drug supply programs for biomedical purposes. Asian J Pharm Sci. 2018;13:101–12.

    Article 
    PubMed 

    Google Scholar
     

  • Hou X, Lin H, Zhou X, Cheng Z, Li Y, Liu X, Zhao F, Zhu Y, Zhang P, Chen D. Novel twin ROS-sensitive and CD44 receptor focusing on nanomicelles primarily based on oligomeric hyaluronic acid for the environment friendly remedy of atherosclerosis. Carbohydr Polym. 2020;232:115787.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma B, Xu H, Zhuang W, Wang Y, Li G, Wang Y. ROS responsive nanoplatform with two-photon AIE imaging for atherosclerosis prognosis and “Two-Pronged” remedy. Small. 2020;16:e2003253.

    Article 
    PubMed 

    Google Scholar
     

  • Tang D, Wang Y, Wijaya A, Liu B, Maruf A, Wang J, Xu J, Liao X, Wu W, Wang G. ROS-responsive biomimetic nanoparticles for potential utility in focused anti-atherosclerosis. Regen Biomater. 2021;8:rbab033.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He J, Zhang W, Zhou X, Xu F, Zou J, Zhang Q, Zhao Y, He H, Yang H, Liu J. Reactive oxygen species (ROS)-responsive size-reducible nanoassemblies for deeper atherosclerotic plaque penetration and enhanced macrophage-targeted drug supply. Bioact Mater. 2023;19:115–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Ke W, Li H, Zha Z, Han Y, Ge Z. Endogenous stimuli-sensitive multistage polymeric micelleplex anticancer drug supply system for environment friendly tumor penetration and mobile internalization. Adv Healthc Mater. 2015;4:2206–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taniguchi R, Miura Y, Koyama H, Chida T, Anraku Y, Kishimura A, Shigematsu Ok, Kataoka Ok, Watanabe T. Adequately-sized nanocarriers permit sustained focused drug supply to neointimal lesions in rat arteries. Mol Pharm. 2016;13:2108–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ernsting MJ, Murakami M, Roy A, Li SD. Elements controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Management Launch. 2013;172:782–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lobatto ME, Fuster V, Fayad ZA, Mulder WJ. Views and alternatives for nanomedicine within the administration of atherosclerosis. Nat Rev Drug Discov. 2011;10:835–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu MY, Lu JH. Autophagy and macrophage capabilities: inflammatory response and phagocytosis. Cells. 2019;9:70.

  • Moore KJ, Tabas I. Macrophages within the pathogenesis of atherosclerosis. Cell. 2011;145:341–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagenborg J, Goossens P, Biessen EAL, Donners M. Heterogeneity of atherosclerotic plaque macrophage origin, phenotype and capabilities: implications for remedy. Eur J Pharmacol. 2017;816:14–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • von Ehr A, Bode C, Hilgendorf I. Macrophages in atheromatous plaque developmental levels. Entrance Cardiovasc Med. 2022;9:865367.

    Article 

    Google Scholar
     

  • Wu Y, Wan S, Yang S, Hu H, Zhang C, Lai J, Zhou J, Chen W, Tang X, Luo J, et al. Macrophage cell membrane-based nanoparticles: a brand new promising biomimetic platform for focused supply and remedy. J Nanobiotechnol. 2022;20:542.

    Article 
    CAS 

    Google Scholar
     

  • Liu H, Su YY, Jiang XC, Gao JQ. Cell membrane-coated nanoparticles: a novel multifunctional biomimetic drug supply system. Drug Deliv Transl Res. 2023;13:716–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu H, She P, Ma B, Zhao Z, Li G, Wang Y. ROS responsive nanoparticles loaded with lipid-specific AIEgen for atherosclerosis-targeted prognosis and bifunctional remedy. Biomaterials. 2022;288:121734.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma B, Xiao Y, Lv Q, Li G, Wang Y, Fu G. Concentrating on theranostics of atherosclerosis by dual-responsive nanoplatform by way of photoacoustic imaging and three-in-one built-in lipid administration. Adv Mater. 2023;35:e2206129.

    Article 
    PubMed 

    Google Scholar
     

  • Mu D, Li J, Qi Y, Solar X, Liu Y, Shen S, Li Y, Xu B, Zhang B. Hyaluronic acid-coated polymeric micelles with hydrogen peroxide scavenging to encapsulate statins for assuaging atherosclerosis. J Nanobiotechnol. 2020;18:179.

    Article 
    CAS 

    Google Scholar
     

  • Ma B, Xu H, Wang Y, Yang L, Zhuang W, Li G, Wang Y. Biomimetic-coated nanoplatform with lipid-specific imaging and ROS responsiveness for atherosclerosis-targeted Theranostics. ACS Appl Mater Interfaces. 2021;13:35410–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen M, Li H, Yao S, Wu X, Liu S, Yang Q, Zhang Y, Du J, Qi S, Li Y. Shear stress and ROS-responsive biomimetic micelles for atherosclerosis by way of ROS consumption. Mater Sci Eng C Mater Biol Appl. 2021;126:112164.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang X, Li H, Zhang A, Tian X, Guo H, Zhang H, Yang J, Zeng Y. Purple blood cell biomimetic nanoparticle with anti-inflammatory, anti-oxidative and hypolipidemia impact ameliorated atherosclerosis remedy. Nanomedicine. 2022;41:102519.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao J, Ling L, Zhu W, Ying T, Yu T, Solar M, Zhu X, Du Y, Zhang L. M1/M2 re-polarization of kaempferol biomimetic NPs in anti-inflammatory remedy of atherosclerosis. J Management Launch. 2023;353:1068–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen M, Yao S, Li S, Wu X, Liu S, Yang Q, Du J, Wang J, Zheng X, Li Y. A ROS and shear stress dual-sensitive bionic system with cross-linked dendrimers for atherosclerosis remedy. Nanoscale. 2021;13:20013–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma B, Xu H, Zhuang W, Wang Y, Li G, Wang Y. Reactive oxygen species responsive theranostic nanoplatform for two-photon aggregation-induced emission imaging and remedy of acute and continual irritation. ACS Nano. 2020;14:5862–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao R, Ning X, Wang M, Wang H, Xing G, Wang L, Lu C, Yu A, Wang Y. A ROS-responsive simvastatin nano-prodrug and its fibronectin-targeted co-delivery system for atherosclerosis remedy. ACS Appl Mater Interfaces. 2022;14:25080–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan J, Yang J, Lei W, Xiao Z, Zhou P, Zheng S, Zhu P. Anti-Oxidative, anti-apoptotic, and M2 polarized DSPC liposome nanoparticles for selective remedy of atherosclerosis. Int J Nanomedicine. 2023;18:579–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu T, Chen X, Wang Y, Xiao H, Peng Y, Lin L, Xia W, Lengthy M, Tao J, Shuai X. Aortic plaque-targeted andrographolide supply with oxidation-sensitive micelle successfully treats atherosclerosis by way of simultaneous ROS seize and anti-inflammation. Nanomedicine. 2018;14:2215–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson P, Ruffell B. CD44 and its function in irritation and inflammatory ailments. Inflamm Allergy Drug Targets. 2009;8:208–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krolikoski M, Monslow J, Puré E. The CD44-HA axis and irritation in atherosclerosis: a temporal perspective. Matrix Biol. 2019;78–79:201–18.

    Article 
    PubMed 

    Google Scholar
     

  • Tu S, He W, Han J, Wu A, Ren W. Advances in imaging and remedy of atherosclerosis primarily based on natural nanoparticles. APL Bioeng. 2022;6:041501.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S, Vladisavljevic GT, Clokie MRJ, Garton NJ, Stapley AGF, Kirpichnikova A. Formulation, stabilisation and encapsulation of bacteriophage for phage remedy. Adv Colloid Interface Sci. 2017;249:100–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang N, Chen M, Wang T. Liposomes used as a vaccine adjuvant-delivery system: from fundamentals to scientific immunization. J Management Launch. 2019;303:130–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang RH, Jiang Y, Fang JC, Zhang L. Cell membrane-derived nanomaterials for biomedical purposes. Biomaterials. 2017;128:69–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chambers E, Mitragotri S. Extended circulation of huge polymeric nanoparticles by non-covalent adsorption on erythrocytes. J Management Launch. 2004;100:111–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glassman PM, Hood ED, Ferguson LT, Zhao Z, Siegel DL, Mitragotri S, Brenner JS, Muzykantov VR. Purple blood cells: the metamorphosis of a uncared for provider into the pure mothership for synthetic nanocarriers. Adv Drug Deliv Rev. 2021;178:113992.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Luo J, Chen X, Liu W, Chen T. Cell membrane coating know-how: a promising technique for biomedical purposes. Nanomicro Lett. 2019;11:100.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spacek M, Zemanek D, Hutyra M, Sluka M, Taborsky M. Weak atherosclerotic plaque – a assessment of present ideas and superior imaging. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2018;162:10–7.

    Article 
    PubMed 

    Google Scholar
     

  • Qiu J, Lei D, Hu J, Yin T, Zhang Ok, Yu D, Wang G. Impact of intraplaque angiogenesis to atherosclerotic rupture-prone plaque induced by excessive shear stress in rabbit mannequin. Regen Biomater. 2017;4:215–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Qiu J, Luo S, Xie X, Zheng Y, Zhang Ok, Ye Z, Liu W, Gregersen H, Wang G. Excessive shear stress induces atherosclerotic weak plaque formation by way of angiogenesis. Regen Biomater. 2016;3:257–67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Juan CA, de la Pérez JM, Plou FJ, Pérez-Lebeña E. The Chemistry of reactive oxygen species (ROS) revisited: outlining their function in Organic Macromolecules (DNA, lipids and proteins) and Induced Pathologies. Int J Mol Sci 2021, 22.

  • Li JM, Newburger PE, Gounis MJ, Dargon P, Zhang X, Messina LM. Native arterial nanoparticle supply of siRNA for NOX2 knockdown to forestall restenosis in an atherosclerotic rat mannequin. Gene Ther. 2010;17:1279–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imanparast F, Faramarzi MA, Vatannejad A, Paknejad M, Deiham B, Kobarfard F, Amani A, Doosti M. mZD7349 peptide-conjugated PLGA nanoparticles directed towards VCAM-1 for focused supply of simvastatin to revive dysfunctional HUVECs. Microvasc Res. 2017;112:14–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, Xu H, Huang Ok. Selenium within the prevention of atherosclerosis and its underlying mechanisms. Metallomics. 2017;9:21–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weekley CM, Harris HH. Which kind is that? The significance of selenium speciation and metabolism within the prevention and remedy of illness. Chem Soc Rev. 2013;42:8870–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Constantinescu-Aruxandei D, Frîncu RM, Capră L, Oancea F. Selenium evaluation and speciation in dietary dietary supplements primarily based on next-generation selenium components. Vitamins. 2018;10:1466.

  • Maiyo F, Singh M. Selenium nanoparticles: potential in most cancers gene and drug supply. Nanomed (Lond). 2017;12:1075–89.

    Article 
    CAS 

    Google Scholar
     

  • Guo L, Xiao J, Liu H, Liu H. Selenium nanoparticles alleviate hyperlipidemia and vascular damage in ApoE-deficient mice by regulating ldl cholesterol metabolism and lowering oxidative stress. Metallomics. 2020;12:204–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Talev J, Kanwar JR. Iron oxide nanoparticles as imaging and therapeutic brokers for atherosclerosis. Semin Thromb Hemost. 2020;46:553–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ou LC, Zhong S, Ou JS, Tian JW. Utility of focused remedy methods with nanomedicine supply for atherosclerosis. Acta Pharmacol Sin. 2021;42:10–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Psarros C, Lee R, Margaritis M, Antoniades C. Nanomedicine for the prevention, remedy and imaging of atherosclerosis. Nanomedicine. 2012;8(Suppl 1):59–68.

    Article 

    Google Scholar
     

  • Gao W, Zhao Y, Li X, Solar Y, Cai M, Cao W, Liu Z, Tong L, Cui G, Tang B. H(2)O(2)-responsive and plaque-penetrating nanoplatform for mTOR gene silencing with strong anti-atherosclerosis efficacy. Chem Sci. 2018;9:439–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maruf A, Wang Y, Yin T, Huang J, Wang N, Durkan C, Tan Y, Wu W, Wang G. Atherosclerosis remedy with Stimuli-Responsive Nanoagents: current advances and future views. Adv Healthc Mater. 2019;8:e1900036.

    Article 
    PubMed 

    Google Scholar
     

  • Cao Z, Yuan G, Zeng L, Bai L, Liu X, Wu M, Solar R, Chen Z, Jiang Y, Gao Q, et al. Macrophage-targeted Sonodynamic/Photothermal synergistic remedy for stopping atherosclerotic plaque development utilizing CuS/TiO(2) Heterostructured Nanosheets. ACS Nano. 2022;16:10608–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan CKW, Zhang L, Cheng CK, Yang H, Huang Y, Tian XY, Choi CHJ. Current advances in managing atherosclerosis by way of nanomedicine. Small. 2018;14:1702793.

  • Park JH, Dehaini D, Zhou J, Holay M, Fang RH, Zhang L. Biomimetic nanoparticle know-how for heart problems detection and remedy. Nanoscale Horiz. 2020;5:25–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Napolitano G, Fasciolo G, Venditti P. Mitochondrial administration of reactive oxygen species. Antioxid (Basel) 2021, 10.

  • Drysdale J, Arosio P, Invernizzi R, Cazzola M, Volz A, Corsi B, Biasiotto G, Levi S. Mitochondrial ferritin: a brand new participant in iron metabolism. Blood Cells Mol Dis. 2002;29:376–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen NH, Tran GB, Nguyen CT. Anti-oxidative results of superoxide dismutase 3 on inflammatory ailments. J Mol Med (Berl). 2020;98:59–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dehaini D, Fang RH, Zhang L. Biomimetic methods for focused nanoparticle supply. Bioeng Transl Med. 2016;1:30–46.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater. 2018;30:e1706759.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia M, Ren W, Liu Y, Wang C, Zheng X, Zhang D, Tan X, Li C. Messenger nanozyme for reprogramming the microenvironment of rheumatoid arthritis. ACS Appl Mater Interfaces. 2023;15:338–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Q, Piao H, Wang Y, Zheng D, Wang W. Circulating exosomes in heart problems: novel carriers of organic info. Biomed Pharmacother. 2021;135:111148.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles