Age-associated disparity in phagocytic clearance impacts the efficacy of most cancers nanotherapeutics


  • de Magalhaes, J. P. How ageing processes affect most cancers. Nat. Rev. Most cancers 13, 357–365 (2013).

    Article 

    Google Scholar
     

  • Laconi, E., Marongiu, F. & DeGregori, J. Most cancers as a illness of previous age: altering mutational and microenvironmental landscapes. Br. J. Most cancers 122, 943–952 (2020).

    Article 

    Google Scholar
     

  • Van Herck, Y. et al. Is most cancers biology completely different in older sufferers? Lancet Wholesome Longev. 2, E663–E677 (2021).

    Article 

    Google Scholar
     

  • Sceneay, J. et al. Interferon signaling is diminished with age and is related to immune checkpoint blockade efficacy in triple-negative breast most cancers. Most cancers Discov. 9, 1208–1227 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kaur, A. et al. sFRP2 within the aged microenvironment drives melanoma metastasis and remedy resistance. Nature 532, 250–254 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kim, B. Y., Rutka, J. T. & Chan, W. C. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, W. et al. Designing nanomedicine for immuno-oncology. Nat. Biomed. Eng 1, 0029 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rodriguez, P. L. et al. Minimal ‘self’ peptides that inhibit phagocytic clearance and improve supply of nanoparticles. Science 339, 971–975 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Parodi, A. et al. Artificial nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like features. Nat. Nanotechnol. 8, 61–68 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Gradishar, W. J. et al. Section III trial of nanoparticle albumin-bound paclitaxel in contrast with polyethylated castor oil-based paclitaxel in ladies with breast most cancers. J. Clin. Oncol. 23, 7794–7803 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Barenholz, Y. Doxil®—the primary FDA-approved nano-drug: classes discovered. J. Management. Launch 160, 117–134 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug supply. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Blanco, E., Shen, H. & Ferrari, M. Ideas of nanoparticle design for overcoming organic obstacles to drug supply. Nat. Biotechnol. 33, 941–951 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ngo, W. et al. Figuring out cell receptors for the nanoparticle protein corona utilizing genome screens. Nat. Chem. Biol. 18, 1023–1031 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Boehnke, N. et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle supply. Science 377, eabm5551 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dobrowolski, C. et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA supply. Nat. Nanotechnol. 17, 871–879 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, W., Wang, Y., Wargo, J. A., Lang, F. F. & Kim, B. Y. S. Issues for designing preclinical most cancers immune nanomedicine research. Nat. Nanotechnol. 16, 6–15 (2021).

    Article 

    Google Scholar
     

  • Ouyang, B. et al. The dose threshold for nanoparticle tumour supply. Nat. Mater. 19, 1362–1371 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wilhelm, S. et al. Evaluation of nanoparticle supply to tumours. Nat. Rev. Mater. 1, 1–12 (2016).

    Article 

    Google Scholar
     

  • Chen, Y. et al. Therapeutic transforming of the tumor microenvironment enhances nanoparticle supply. Adv. Sci. (Weinh.) 6, 1802070 (2019).


    Google Scholar
     

  • Pili, R. et al. Altered angiogenesis underlying age-dependent adjustments in tumor development. J. Natl Most cancers Inst. 86, 1303–1314 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Marinho, A., Soares, R., Ferro, J., Lacerda, M. & Schmitt, F. C. Angiogenesis in breast most cancers is said to age however to not different prognostic parameters. Pathol. Res. Pract. 193, 267–273 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Ouyang, B. et al. Affect of tumor obstacles on nanoparticle supply to macrophages. Mol. Pharm. 19, 1917–1925 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Grolleau, A., Misek, D. E., Kuick, R., Hanash, S. & Mule, J. J. Inducible expression of macrophage receptor Marco by dendritic cells following phagocytic uptake of lifeless cells uncovered by oligonucleotide arrays. J. Immunol. 171, 2879–2888 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Hamilton, R. F. Jr., Thakur, S. A., Mayfair, J. Okay. & Holian, A. MARCO mediates silica uptake and toxicity in alveolar macrophages from C57BL/6 mice. J. Biol. Chem. 281, 34218–34226 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Park, J. et al. Intravascular innate immune cells reprogrammed through intravenous nanoparticles to advertise useful restoration after spinal wire damage. Proc. Natl Acad. Sci. USA 116, 14947–14954 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pikkarainen, T., Brannstrom, A. & Tryggvason, Okay. Expression of macrophage MARCO receptor induces formation of dendritic plasma membrane processes. J. Biol. Chem. 274, 10975–10982 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Hirano, S., Fujitani, Y., Furuyama, A. & Kanno, S. Macrophage receptor with collagenous construction (MARCO) is a dynamic adhesive molecule that enhances uptake of carbon nanotubes by CHO-K1 cells. Toxicol. Appl Pharm. 259, 96–103 (2012).

    Article 
    CAS 

    Google Scholar
     

  • van der Laan, L. J. et al. Regulation and useful involvement of macrophage scavenger receptor MARCO in clearance of micro organism in vivo. J. Immunol. 162, 939–947 (1999).

    Article 

    Google Scholar
     

  • Arredouani, M. S. et al. MARCO is the most important binding receptor for unopsonized particles and micro organism on human alveolar macrophages. J. Immunol. 175, 6058–6064 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. et al. Ageing-impaired filamentous actin polymerization signaling reduces alveolar macrophage phagocytosis of micro organism. J. Immunol. 199, 3176–3186 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ojala, J. R., Pikkarainen, T., Tuuttila, A., Sandalova, T. & Tryggvason, Okay. Crystal construction of the cysteine-rich area of scavenger receptor MARCO reveals the presence of a primary and an acidic cluster that each contribute to ligand recognition. J. Biol. Chem. 282, 16654–16666 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Novakowski, Okay. E. et al. A naturally occurring transcript variant of MARCO reveals the SRCR area is vital for operate. Immunol. Cell Biol. 94, 646–655 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Brannstrom, A., Sankala, M., Tryggvason, Okay. & Pikkarainen, T. Arginine residues in area V have a central position for bacteria-binding exercise of macrophage scavenger receptor MARCO. Biochem. Biophys. Res. Commun. 290, 1462–1469 (2002).

    Article 

    Google Scholar
     

  • Wang, Y. et al. Mutant LKB1 confers enhanced radiosensitization together with trametinib in KRAS-mutant non-small cell lung most cancers. Clin. Most cancers Res. 24, 5744–5756 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tabula Sapiens Consortium. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of people. Science 376, eabl4896 (2022).

    Article 

    Google Scholar
     

  • Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles