Stupp R, Hegi ME, Mason WP, Bent MJ, Taphoorn MJB, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger Ok, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari Ok, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO. Results of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised part III research: 5-year evaluation of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.
Allen BG, Bodeker KL, Smith MC, Monga V, Sandhu S, Hohl R, Carlisle T, Brown H, Hollenbeck N, Vollstedt S, Greenle JD, Howard MA, Mapuskar KA, Seyedin SN, Caster JM, Jones KA, Cullen JJ, Berg D, Wagner BA, Buettner GR, TenNapel MJ, Smith BJ, Spitz DR, Buatti JM. First-in-human part I medical trial of pharmacologic ascorbate mixed with radiation and temozolomide for newly recognized glioblastoma. Clin Most cancers Res. 2019;25:6590–7.
Teng J, Hejazi S, Hiddingh L, Carvalho L, Gooijer MC, Wakimoto H, Barazas M, Tannous M, Chi AS, Noske DP, Wesseling P, Wurdinger T, Batchelor TT, Tannous BA. Recycling drug display screen repurposes hydroxyurea as a sensitizer of glioblastomas to temozolomide focusing on de novo DNA synthesis, no matter molecular subtype. Neuro Oncol. 2018;20:642–54.
Anderson JC, Duarte CW, Welaya Ok, Rohrbach TD, Bredel M, Yang ES, Choradia NV, Thottassery JV, Gillespie GY, Bonner JA, Willey CD. Kinomic exploration of temozolomide and radiation resistance in Glioblastoma multiforme xenolines. Radiother Oncol. 2015;111:468–74.
Zhuang DP, Zhang HF, Hu GW, Guo B. Latest improvement of distinction brokers for magnetic resonance and multimodal imaging of glioblastoma. J Nanobiotechnol. 2022;20:284. https://doi.org/10.1186/s12951-022-01479-6.
Kim HS, Website positioning M, Park TE, Lee DY. A novel therapeutic technique of multimodal nanoconjugates for state-of-the-art mind tumor phototherapy. J Nanobiotechnol. 2022;20:14. https://doi.org/10.1186/s12951-021-01220-9.
Uddin MS, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM. Epigenetics of glioblastoma multiforme: from molecular mechanisms to therapeutic approaches. Semin Most cancers Biol. 2020;20:30275–83.
Hersh DS, More durable BG, Roos A, Peng S, Heath JE, Legesse T, Kim AJ, Woodworth GF, Tran NL, Winkles JA. The TNF receptor member of the family Fn14 is extremely expressed in recurrent glioblastoma and in GBM patient-derived xenografts with acquired temozolomide resistance. Neuro Oncol. 2018;20:1321–30.
Ma J, Benitez JA, Li J, Miki S, Ponte DAC, Galatro T, Orellana L, Zanca C, Reed R, Boyer A, Koga T, Varki NM, Fenton TR, Nagahashi MSK, Lindahl E, Gahman TC, Shiau AK, Zhou H, DeGroot J, Sulman EP, Cavenee WK, Kolodner RD, Chen CC, Furnari FB. Inhibition of nuclear PTEN tyrosine phosphorylation enhances glioma radiation sensitivity by way of attenuated DNA restore, most cancers. Cell. 2019;35:504–18.
Ghorai A, Mahaddalkar T, Thorat R, Dutt S. Sustained inhibition of PARP-1 exercise delays glioblastoma recurrence by enhancing radiation-induced senescence. Most cancers Lett. 2020;490:44–53.
Chen XY, Zhang MJ, Gan HY, Wang H, Lee JH, Fang D, Kitange GJ, He LH, Hu Z, Parney IF, Meyer FB, Giannini C, Sarkaria JN, Zhang ZG. A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma. Nat Commun. 2018;9:2949.
Bernstein BE, Hol WG. Crystal buildings of substrates and merchandise certain to the phosphoglycerate kinase lively web site reveal the catalytic mechanism. Biochemistry. 1998;37:4429–36.
Qian X, Li X, Shi Z, Xia Y, Cai Q, Xu D, Tan L, Du L, Zheng Y, Zhao D, Zhang C, Lorenzi PL, You Y, Jiang BH, Jiang T, Li H, Lu Z. PTEN suppresses glycolysis by dephosphorylating and inhibiting autophosphorylated PGK1. Mol Cell. 2019;76:516–27.
Nie H, Ju H, Fan J, Shi X, Cheng Y, Cang X, Zheng Z, Duan X, Yi W. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to advertise tumor development. Nat Commun. 2020;11:36.
Zhang Y, Yu G, Chu H, Wang X, Xiong L, Cai G, Liu R, Gao H, Tao B, Li W, Li G, Liang J, Yang W. Macrophage-associated PGK1 phosphorylation promotes cardio glycolysis and tumorigenesis. Mol Cell. 2018;71:201–15.
Liang C, Shi S, Qin Y, Meng Q, Hua J, Hu Q, Ji S, Zhang B, Xu J, Yu XJ. Localisation of PGK1 determines metabolic phenotype to steadiness metastasis and proliferation in sufferers with SMAD4-negative pancreatic most cancers. Intestine. 2020;69:888–900.
Hu H, Zhu W, Qin J, Chen M, Gong L, Li L, Liu X, Tao Y, Yin H, Zhou H, Zhou L, Ye D, Ye Q, Gao D. Acetylation of PGK1 promotes liver most cancers cell proliferation and tumorigenesis. Hepatology. 2017;65:515–28.
Fu Q, Yu Z. Phosphoglycerate kinase 1 (PGK1) in most cancers: a promising goal for analysis and remedy. Life Sci. 2020;256:117863.
Li X, Jiang Y, Meisenhelder J, Yang W, Hawke DH, Zheng Y, Xia Y, Aldape Ok, He J, Hunter T, Wang L, Lu Z. Mitochondria-translocated PGK1 capabilities as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis. Mol Cell. 2016;61:705–19.
Zhang D, Tai L, Wong L, Chiu L, Sethi SK, Koay ES. Proteomic research reveals that proteins concerned in metabolic and cleansing pathways are extremely expressed in HER-2/neu-positive breast most cancers. Mol Cell Proteomics. 2005;4:1686–96.
Hwang T, Liang Y, Chien Ok, Yu J. Overexpression and elevated serum ranges of phosphoglycerate kinase 1 in pancreatic ductal adenocarcinoma. Proteomics. 2006;6:2259–72.
Yan H, Yang Ok, Xiao H, Zou YJ, Zhang WB, Liu HY. Over-expression of cofilin-1 and phosphoglycerate kinase 1 in astrocytomas concerned in pathogenesis of radioresistance. CNS Neurosci Ther. 2012;18:729–36.
Cheng Y, Ding H, Du H, Yan H, Zhao J, Zhang W, Zou Y, Liu H, Xiao H. Downregulation of phosphoglycerate kinase 1 by shRNA sensitizes U251 xenografts to radiotherapy. Oncol Rep. 2014;32:1513–20.
Wang F, Zhang H, Liu B, Liu W, Zhang Z. miR-6869-5p inhibits glioma cell proliferation and invasion through focusing on PGK1. Mediators Inflamm. 2020;3:9752372.
Eunice LLD, Nilmary GR, Pablo EVM. RNA interference for glioblastoma remedy: innovation ladder from the bench to medical trials. Life Sci. 2017;188:26–36.
Zou Y, Solar X, Wang Y, Yan C, Liu Y, Li J, Zhang D, Zheng M, Chung R, Shi B. Single siRNA nanocapsules for efficient siRNA mind supply and glioblastoma therapy. Adv Mater. 2020;32:e2000416.
Manju CA, Jeena Ok, Ramachandran R, Manohar M, Ambily AM, Sajesh KM, Gowd GS, Menon Ok, Pavithran Ok, Pillai A, Nair SV, Koyakutty M. Intracranially injectable multi-siRNA nanomedicine for the inhibition of glioma stem cells. Neurooncol Adv. 2021;3:vdab104.
Setten RL, Rossi JJ, Han S. The present state and future instructions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18:421–46.
Wang T, Shigdar S, Shamaileh HA, Gantier MP, Yin W, Xiang D, Wang L, Zhou S, Hou Y, Wang P, Zhang W, Pu C, Duan W. Challenges and alternatives for siRNA-based most cancers therapy. Most cancers Lett. 2017;387:77–83.
Chen X, Mangala LS, Rodriguez AC, Kong X, Lopez BG, Sood AK. RNA interference-based remedy and its supply methods. Most cancers Metastasis Rev. 2018;37:107–24.
Pi FM, Binzel DW, Lee TJ, Li ZF, Solar M, Rychahou P, Li H, Haque F, Wang SY, Croce CM, Guo B, Evers BM, Guo PX. Nanoparticle orientation to regulate RNA loading and ligand show on extracellular vesicles for most cancers regression. Nat Nanotechnol. 2018;13:82–9.
Yonezawa S, Koide H, Asai T. Latest advances in siRNA supply mediated by lipid-based nanoparticles. Adv Drug Deliv Rev. 2020;155:64–78.
Wang Ok, Kievit FM, Chiarelli PA, Stephen ZR, Lin GY, Silber JR, Ellenbogen RG, Zhang MQ. siRNA nanoparticle suppresses drug-resistant gene and prolongs survival in an orthotopic glioblastoma xenograft mouse mannequin. Adv Funct Mater. 2021;31:2007166.
Wu Y, Zhong D, Li Y, Wu H, Zhang H, Mao H, Yang J, Luo Ok, Gong Q, Gu Z. A tumor-activatable peptide supramolecular nanoplatform for the supply of dual-gene focused siRNAs for drug-resistant most cancers therapy. Nanoscale. 2021;13:4887–98.
Karlsson J, Rui Y, Kozielski KL, Placone AL, Choi O, Tzeng SY, Kim J, Keyes JJ, Bogorad MI, Gabrielson Ok, Cazares HG, Hinojosa AQ, Searson PC, Inexperienced JJ. Engineered nanoparticles for systemic siRNA supply to malignant mind tumours. Nanoscale. 2019;11:20045–57.
Karlsson J, Tzeng SY, Hemmati S, Luly KM, Choi O, Rui Y, Wilson DR, Kozielski KL, Hinojosa AQ, Inexperienced JJ. Photocrosslinked bioreducible polymeric nanoparticles for enhanced systemic siRNA supply as most cancers remedy. Adv Funct Mater. 2021;31:2009768.
Chen Z, Zhao P, Luo Z, Zheng M, Tian H, Gong P, Gao G, Pan H, Liu L, Ma A, Cui H, Ma Y, Cai L. Most cancers cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal remedy. ACS NANO. 2016;10:10049–57.
Zhao QQ, Solar XY, Wu B, Shang YH, Huang XY, Dong H, Liu HT, Chen WS, Gui R, Li J. Building of homologous most cancers cell membrane camouflage in a nano-drug supply system for the therapy of lymphoma. J Nanobiotechnology. 2021;19:8.
Wang C, Wu B, Wu Y, Tune X, Zhang S, Liu Z. Camouflaging nanoparticles with mind metastatic tumor cell membranes: a brand new technique to traverse blood-brain barrier for imaging and remedy of mind tumors. Adv Funct Mater. 2020;14:1909369.
Solar H, Su J, Meng Q, Yin Q, Chen L, Gu W, Zhang P, Zhang Z, Yu H, Wang S, Li Y. Most cancers-cell-biomimetic nanoparticles for focused remedy of homotypic tumors. Adv Mater. 2016;28:9581–8.
Zhang W, Yu M, Xi Z, Nie D, Dai Z, Wang J, Qian Ok, Weng H, Gan Y, Xu L. Most cancers cell membrane-camouflaged nanorods with endoplasmic reticulum focusing on for improved antitumor remedy. ACS Appl Mater Interfaces. 2019;11:46614–25.
Hua L, Wang Z, Zhao L, Mao H, Wang G, Zhang Ok, Liu X, Wu D, Zheng Y, Lu J, Yu R, Liu H. Hypoxia-responsive lipid-poly-(hypoxic radiosensitized polyprodrug) nanoparticles for glioma chemo- and radiotherapy. Theranostics. 2018;8:5088–105.
Zhupanyn P, Ewe A, Büch T, Malek A, Rademacher P, Müller C, Reinert A, Jaimes Y, Aigner A. Extracellular vesicle (ECV)-modified polyethylenimine (PEI) complexes for enhanced siRNA supply in vitro and in vivo. J Management Launch. 2020;319:63–76.
Galliani M, Tremolanti C, Signore G. Nanocarriers for protein supply to the cytosol: assessing the endosomal escape of poly (Lactide-co-Glycolide)-poly(Ethylene imine) nanoparticles. Nanomaterials. 2019;9:652.