Classifying bodily exercise from smartphone information


Introduction

On this submit we’ll describe methods to use smartphone accelerometer and gyroscope information to foretell the bodily actions of the people carrying the telephones. The information used on this submit comes from the Smartphone-Primarily based Recognition of Human Actions and Postural Transitions Information Set distributed by the College of California, Irvine. Thirty people had been tasked with performing varied fundamental actions with an hooked up smartphone recording motion utilizing an accelerometer and gyroscope.

Earlier than we start, let’s load the assorted libraries that we’ll use within the evaluation:


library(keras)     # Neural Networks
library(tidyverse) # Information cleansing / Visualization
library(knitr)     # Desk printing
library(rmarkdown) # Misc. output utilities 
library(ggridges)  # Visualization

Actions dataset

The information used on this submit come from the Smartphone-Primarily based Recognition of Human Actions and Postural Transitions Information Set(Reyes-Ortiz et al. 2016) distributed by the College of California, Irvine.

When downloaded from the hyperlink above, the information incorporates two totally different ‘components.’ One which has been pre-processed utilizing varied characteristic extraction strategies akin to fast-fourier rework, and one other RawData part that merely provides the uncooked X,Y,Z instructions of an accelerometer and gyroscope. None of the usual noise filtering or characteristic extraction utilized in accelerometer information has been utilized. That is the information set we are going to use.

The motivation for working with the uncooked information on this submit is to assist the transition of the code/ideas to time collection information in much less well-characterized domains. Whereas a extra correct mannequin may very well be made by using the filtered/cleaned information offered, the filtering and transformation can differ vastly from activity to activity; requiring a number of handbook effort and area information. One of many lovely issues about deep studying is the characteristic extraction is realized from the information, not outdoors information.

Exercise labels

The information has integer encodings for the actions which, whereas not vital to the mannequin itself, are useful to be used to see. Let’s load them first.


activityLabels <- learn.desk("information/activity_labels.txt", 
                             col.names = c("quantity", "label")) 

activityLabels %>% kable(align = c("c", "l"))
1 WALKING
2 WALKING_UPSTAIRS
3 WALKING_DOWNSTAIRS
4 SITTING
5 STANDING
6 LAYING
7 STAND_TO_SIT
8 SIT_TO_STAND
9 SIT_TO_LIE
10 LIE_TO_SIT
11 STAND_TO_LIE
12 LIE_TO_STAND

Subsequent, we load within the labels key for the RawData. This file is a listing of the entire observations, or particular person exercise recordings, contained within the information set. The important thing for the columns is taken from the information README.txt.


Column 1: experiment quantity ID, 
Column 2: consumer quantity ID, 
Column 3: exercise quantity ID 
Column 4: Label begin level 
Column 5: Label finish level 

The beginning and finish factors are in variety of sign log samples (recorded at 50hz).

Let’s check out the primary 50 rows:


labels <- learn.desk(
  "information/RawData/labels.txt",
  col.names = c("experiment", "userId", "exercise", "startPos", "endPos")
)

labels %>% 
  head(50) %>% 
  paged_table()

File names

Subsequent, let’s take a look at the precise information of the consumer information offered to us in RawData/


dataFiles <- record.information("information/RawData")
dataFiles %>% head()

[1] "acc_exp01_user01.txt" "acc_exp02_user01.txt"
[3] "acc_exp03_user02.txt" "acc_exp04_user02.txt"
[5] "acc_exp05_user03.txt" "acc_exp06_user03.txt"

There’s a three-part file naming scheme. The primary half is the kind of information the file incorporates: both acc for accelerometer or gyro for gyroscope. Subsequent is the experiment quantity, and final is the consumer Id for the recording. Let’s load these right into a dataframe for ease of use later.


fileInfo <- data_frame(
  filePath = dataFiles
) %>%
  filter(filePath != "labels.txt") %>% 
  separate(filePath, sep = '_', 
           into = c("kind", "experiment", "userId"), 
           take away = FALSE) %>% 
  mutate(
    experiment = str_remove(experiment, "exp"),
    userId = str_remove_all(userId, "consumer|.txt")
  ) %>% 
  unfold(kind, filePath)

fileInfo %>% head() %>% kable()
01 01 acc_exp01_user01.txt gyro_exp01_user01.txt
02 01 acc_exp02_user01.txt gyro_exp02_user01.txt
03 02 acc_exp03_user02.txt gyro_exp03_user02.txt
04 02 acc_exp04_user02.txt gyro_exp04_user02.txt
05 03 acc_exp05_user03.txt gyro_exp05_user03.txt
06 03 acc_exp06_user03.txt gyro_exp06_user03.txt

Studying and gathering information

Earlier than we are able to do something with the information offered we have to get it right into a model-friendly format. This implies we wish to have a listing of observations, their class (or exercise label), and the information comparable to the recording.

To acquire this we are going to scan via every of the recording information current in dataFiles, search for what observations are contained within the recording, extract these recordings and return the whole lot to a straightforward to mannequin with dataframe.


# Learn contents of single file to a dataframe with accelerometer and gyro information.
readInData <- operate(experiment, userId){
  genFilePath = operate(kind) {
    paste0("information/RawData/", kind, "_exp",experiment, "_user", userId, ".txt")
  }  
  
  bind_cols(
    learn.desk(genFilePath("acc"), col.names = c("a_x", "a_y", "a_z")),
    learn.desk(genFilePath("gyro"), col.names = c("g_x", "g_y", "g_z"))
  )
}

# Operate to learn a given file and get the observations contained alongside
# with their lessons.

loadFileData <- operate(curExperiment, curUserId) {
  
  # load sensor information from file into dataframe
  allData <- readInData(curExperiment, curUserId)

  extractObservation <- operate(startPos, endPos){
    allData[startPos:endPos,]
  }
  
  # get commentary areas on this file from labels dataframe
  dataLabels <- labels %>% 
    filter(userId == as.integer(curUserId), 
           experiment == as.integer(curExperiment))
  

  # extract observations as dataframes and save as a column in dataframe.
  dataLabels %>% 
    mutate(
      information = map2(startPos, endPos, extractObservation)
    ) %>% 
    choose(-startPos, -endPos)
}

# scan via all experiment and userId combos and collect information right into a dataframe. 
allObservations <- map2_df(fileInfo$experiment, fileInfo$userId, loadFileData) %>% 
  right_join(activityLabels, by = c("exercise" = "quantity")) %>% 
  rename(activityName = label)

# cache work. 
write_rds(allObservations, "allObservations.rds")
allObservations %>% dim()

Exploring the information

Now that we now have all the information loaded together with the experiment, userId, and exercise labels, we are able to discover the information set.

Size of recordings

Let’s first take a look at the size of the recordings by exercise.


allObservations %>% 
  mutate(recording_length = map_int(information,nrow)) %>% 
  ggplot(aes(x = recording_length, y = activityName)) +
  geom_density_ridges(alpha = 0.8)

The actual fact there’s such a distinction in size of recording between the totally different exercise varieties requires us to be a bit cautious with how we proceed. If we prepare the mannequin on each class without delay we’re going to must pad all of the observations to the size of the longest, which would depart a big majority of the observations with an enormous proportion of their information being simply padding-zeros. Due to this, we are going to match our mannequin to simply the biggest ‘group’ of observations size actions, these embrace STAND_TO_SIT, STAND_TO_LIE, SIT_TO_STAND, SIT_TO_LIE, LIE_TO_STAND, and LIE_TO_SIT.

An fascinating future course can be trying to make use of one other structure akin to an RNN that may deal with variable size inputs and coaching it on all the information. Nonetheless, you’d run the danger of the mannequin studying merely that if the commentary is lengthy it’s most definitely one of many 4 longest lessons which might not generalize to a state of affairs the place you had been working this mannequin on a real-time-stream of information.

Filtering actions

Primarily based on our work from above, let’s subset the information to simply be of the actions of curiosity.


desiredActivities <- c(
  "STAND_TO_SIT", "SIT_TO_STAND", "SIT_TO_LIE", 
  "LIE_TO_SIT", "STAND_TO_LIE", "LIE_TO_STAND"  
)

filteredObservations <- allObservations %>% 
  filter(activityName %in% desiredActivities) %>% 
  mutate(observationId = 1:n())

filteredObservations %>% paged_table()

So after our aggressive pruning of the information we may have a decent quantity of information left upon which our mannequin can be taught.

Coaching/testing cut up

Earlier than we go any additional into exploring the information for our mannequin, in an try and be as truthful as doable with our efficiency measures, we have to cut up the information right into a prepare and check set. Since every consumer carried out all actions simply as soon as (excluding one who solely did 10 of the 12 actions) by splitting on userId we are going to be sure that our mannequin sees new individuals completely after we check it.


# get all customers
userIds <- allObservations$userId %>% distinctive()

# randomly select 24 (80% of 30 people) for coaching
set.seed(42) # seed for reproducibility
trainIds <- pattern(userIds, measurement = 24)

# set the remainder of the customers to the testing set
testIds <- setdiff(userIds,trainIds)

# filter information. 
trainData <- filteredObservations %>% 
  filter(userId %in% trainIds)

testData <- filteredObservations %>% 
  filter(userId %in% testIds)

Visualizing actions

Now that we now have trimmed our information by eradicating actions and splitting off a check set, we are able to truly visualize the information for every class to see if there’s any instantly discernible form that our mannequin might be able to choose up on.

First let’s unpack our information from its dataframe of one-row-per-observation to a tidy model of all of the observations.


unpackedObs <- 1:nrow(trainData) %>% 
  map_df(operate(rowNum){
    dataRow <- trainData[rowNum, ]
    dataRow$information[[1]] %>% 
      mutate(
        activityName = dataRow$activityName, 
        observationId = dataRow$observationId,
        time = 1:n() )
  }) %>% 
  collect(studying, worth, -time, -activityName, -observationId) %>% 
  separate(studying, into = c("kind", "course"), sep = "_") %>% 
  mutate(kind = ifelse(kind == "a", "acceleration", "gyro"))

Now we now have an unpacked set of our observations, let’s visualize them!


unpackedObs %>% 
  ggplot(aes(x = time, y = worth, colour = course)) +
  geom_line(alpha = 0.2) +
  geom_smooth(se = FALSE, alpha = 0.7, measurement = 0.5) +
  facet_grid(kind ~ activityName, scales = "free_y") +
  theme_minimal() +
  theme( axis.textual content.x = element_blank() )

So at the least within the accelerometer information patterns positively emerge. One would think about that the mannequin could have bother with the variations between LIE_TO_SIT and LIE_TO_STAND as they’ve an analogous profile on common. The identical goes for SIT_TO_STAND and STAND_TO_SIT.

Preprocessing

Earlier than we are able to prepare the neural community, we have to take a few steps to preprocess the information.

Padding observations

First we are going to resolve what size to pad (and truncate) our sequences to by discovering what the 98th percentile size is. By not utilizing the very longest commentary size this may assist us keep away from extra-long outlier recordings messing up the padding.


padSize <- trainData$information %>% 
  map_int(nrow) %>% 
  quantile(p = 0.98) %>% 
  ceiling()
padSize

98% 
334 

Now we merely have to convert our record of observations to matrices, then use the tremendous useful pad_sequences() operate in Keras to pad all observations and switch them right into a 3D tensor for us.


convertToTensor <- . %>% 
  map(as.matrix) %>% 
  pad_sequences(maxlen = padSize)

trainObs <- trainData$information %>% convertToTensor()
testObs <- testData$information %>% convertToTensor()
  
dim(trainObs)

[1] 286 334   6

Fantastic, we now have our information in a pleasant neural-network-friendly format of a 3D tensor with dimensions (<num obs>, <sequence size>, <channels>).

One-hot encoding

There’s one very last thing we have to do earlier than we are able to prepare our mannequin, and that’s flip our commentary lessons from integers into one-hot, or dummy encoded, vectors. Fortunately, once more Keras has provided us with a really useful operate to do exactly this.


oneHotClasses <- . %>% 
  {. - 7} %>%        # convey integers all the way down to 0-6 from 7-12
  to_categorical() # One-hot encode

trainY <- trainData$exercise %>% oneHotClasses()
testY <- testData$exercise %>% oneHotClasses()

Modeling

Structure

Since we now have temporally dense time-series information we are going to make use of 1D convolutional layers. With temporally-dense information, an RNN has to be taught very lengthy dependencies in an effort to choose up on patterns, CNNs can merely stack a couple of convolutional layers to construct sample representations of considerable size. Since we’re additionally merely in search of a single classification of exercise for every commentary, we are able to simply use pooling to ‘summarize’ the CNNs view of the information right into a dense layer.

Along with stacking two layer_conv_1d() layers, we are going to use batch norm and dropout (the spatial variant(Tompson et al. 2014) on the convolutional layers and commonplace on the dense) to regularize the community.


input_shape <- dim(trainObs)[-1]
num_classes <- dim(trainY)[2]

filters <- 24     # variety of convolutional filters to be taught
kernel_size <- 8  # what number of time-steps every conv layer sees.
dense_size <- 48  # measurement of our penultimate dense layer. 

# Initialize mannequin
mannequin <- keras_model_sequential()
mannequin %>% 
  layer_conv_1d(
    filters = filters,
    kernel_size = kernel_size, 
    input_shape = input_shape,
    padding = "legitimate", 
    activation = "relu"
  ) %>%
  layer_batch_normalization() %>%
  layer_spatial_dropout_1d(0.15) %>% 
  layer_conv_1d(
    filters = filters/2,
    kernel_size = kernel_size,
    activation = "relu",
  ) %>%
  # Apply common pooling:
  layer_global_average_pooling_1d() %>% 
  layer_batch_normalization() %>%
  layer_dropout(0.2) %>% 
  layer_dense(
    dense_size,
    activation = "relu"
  ) %>% 
  layer_batch_normalization() %>%
  layer_dropout(0.25) %>% 
  layer_dense(
    num_classes, 
    activation = "softmax",
    identify = "dense_output"
  ) 

abstract(mannequin)

______________________________________________________________________
Layer (kind)                   Output Form                Param #    
======================================================================
conv1d_1 (Conv1D)              (None, 327, 24)             1176       
______________________________________________________________________
batch_normalization_1 (BatchNo (None, 327, 24)             96         
______________________________________________________________________
spatial_dropout1d_1 (SpatialDr (None, 327, 24)             0          
______________________________________________________________________
conv1d_2 (Conv1D)              (None, 320, 12)             2316       
______________________________________________________________________
global_average_pooling1d_1 (Gl (None, 12)                  0          
______________________________________________________________________
batch_normalization_2 (BatchNo (None, 12)                  48         
______________________________________________________________________
dropout_1 (Dropout)            (None, 12)                  0          
______________________________________________________________________
dense_1 (Dense)                (None, 48)                  624        
______________________________________________________________________
batch_normalization_3 (BatchNo (None, 48)                  192        
______________________________________________________________________
dropout_2 (Dropout)            (None, 48)                  0          
______________________________________________________________________
dense_output (Dense)           (None, 6)                   294        
======================================================================
Whole params: 4,746
Trainable params: 4,578
Non-trainable params: 168
______________________________________________________________________

Coaching

Now we are able to prepare the mannequin utilizing our check and coaching information. Word that we use callback_model_checkpoint() to make sure that we save solely the perfect variation of the mannequin (fascinating since sooner or later in coaching the mannequin could start to overfit or in any other case cease bettering).


# Compile mannequin
mannequin %>% compile(
  loss = "categorical_crossentropy",
  optimizer = "rmsprop",
  metrics = "accuracy"
)

trainHistory <- mannequin %>%
  match(
    x = trainObs, y = trainY,
    epochs = 350,
    validation_data = record(testObs, testY),
    callbacks = record(
      callback_model_checkpoint("best_model.h5", 
                                save_best_only = TRUE)
    )
  )

The mannequin is studying one thing! We get a decent 94.4% accuracy on the validation information, not unhealthy with six doable lessons to select from. Let’s look into the validation efficiency a bit deeper to see the place the mannequin is messing up.

Analysis

Now that we now have a educated mannequin let’s examine the errors that it made on our testing information. We will load the perfect mannequin from coaching based mostly upon validation accuracy after which take a look at every commentary, what the mannequin predicted, how excessive a likelihood it assigned, and the true exercise label.


# dataframe to get labels onto one-hot encoded prediction columns
oneHotToLabel <- activityLabels %>% 
  mutate(quantity = quantity - 7) %>% 
  filter(quantity >= 0) %>% 
  mutate(class = paste0("V",quantity + 1)) %>% 
  choose(-number)

# Load our greatest mannequin checkpoint
bestModel <- load_model_hdf5("best_model.h5")

tidyPredictionProbs <- bestModel %>% 
  predict(testObs) %>% 
  as_data_frame() %>% 
  mutate(obs = 1:n()) %>% 
  collect(class, prob, -obs) %>% 
  right_join(oneHotToLabel, by = "class")

predictionPerformance <- tidyPredictionProbs %>% 
  group_by(obs) %>% 
  summarise(
    highestProb = max(prob),
    predicted = label[prob == highestProb]
  ) %>% 
  mutate(
    reality = testData$activityName,
    appropriate = reality == predicted
  ) 

predictionPerformance %>% paged_table()

First, let’s take a look at how ‘assured’ the mannequin was by if the prediction was appropriate or not.


predictionPerformance %>% 
  mutate(end result = ifelse(appropriate, 'Right', 'Incorrect')) %>% 
  ggplot(aes(highestProb)) +
  geom_histogram(binwidth = 0.01) +
  geom_rug(alpha = 0.5) +
  facet_grid(end result~.) +
  ggtitle("Possibilities related to prediction by correctness")

Reassuringly it appears the mannequin was, on common, much less assured about its classifications for the wrong outcomes than the right ones. (Though, the pattern measurement is simply too small to say something definitively.)

Let’s see what actions the mannequin had the toughest time with utilizing a confusion matrix.


predictionPerformance %>% 
  group_by(reality, predicted) %>% 
  summarise(rely = n()) %>% 
  mutate(good = reality == predicted) %>% 
  ggplot(aes(x = reality,  y = predicted)) +
  geom_point(aes(measurement = rely, colour = good)) +
  geom_text(aes(label = rely), 
            hjust = 0, vjust = 0, 
            nudge_x = 0.1, nudge_y = 0.1) + 
  guides(colour = FALSE, measurement = FALSE) +
  theme_minimal()

We see that, because the preliminary visualization steered, the mannequin had a little bit of bother with distinguishing between LIE_TO_SIT and LIE_TO_STAND lessons, together with the SIT_TO_LIE and STAND_TO_LIE, which even have related visible profiles.

Future instructions

The obvious future course to take this evaluation can be to try to make the mannequin extra normal by working with extra of the provided exercise varieties. One other fascinating course can be to not separate the recordings into distinct ‘observations’ however as a substitute preserve them as one streaming set of information, very like an actual world deployment of a mannequin would work, and see how nicely a mannequin may classify streaming information and detect modifications in exercise.

Gal, Yarin, and Zoubin Ghahramani. 2016. “Dropout as a Bayesian Approximation: Representing Mannequin Uncertainty in Deep Studying.” In Worldwide Convention on Machine Studying, 1050–9.

Graves, Alex. 2012. “Supervised Sequence Labelling.” In Supervised Sequence Labelling with Recurrent Neural Networks, 5–13. Springer.

Kononenko, Igor. 1989. “Bayesian Neural Networks.” Organic Cybernetics 61 (5). Springer: 361–70.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep Studying.” Nature 521 (7553). Nature Publishing Group: 436.

Reyes-Ortiz, Jorge-L, Luca Oneto, Albert Samà, Xavier Parra, and Davide Anguita. 2016. “Transition-Conscious Human Exercise Recognition Utilizing Smartphones.” Neurocomputing 171. Elsevier: 754–67.

Tompson, Jonathan, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. 2014. “Environment friendly Object Localization Utilizing Convolutional Networks.” CoRR abs/1411.4280. http://arxiv.org/abs/1411.4280.

Related Articles

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Latest Articles