Concentrating on lymph node supply with nanovaccines for most cancers immunotherapy: latest advances and future instructions | Journal of Nanobiotechnology


  • Zhou H, Lei PJ, Padera TP. Development of Metastasis by means of Lymphatic System. Cells 2021, 10(3).

  • Najibi AJ, Mooney DJ. Cell and tissue engineering in lymph nodes for most cancers immunotherapy. Adv Drug Deliv Rev. 2020;161–162:42–62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Himmel ME, Saibil SD, Saltman AP. Immune checkpoint inhibitors in most cancers immunotherapy. CMAJ. 2020;192(24):E651.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sterner RC, Sterner RM. CAR-T cell remedy: present limitations and potential methods. Blood Most cancers J. 2021;11(4):69.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohaan MW, Borch TH, van den Berg JH, Met Ö, Kessels R, Geukes Foppen MH, Stoltenborg Granhøj J, Nuijen B, Nijenhuis C, Jedema I, et al. Tumor-infiltrating lymphocyte remedy or Ipilimumab in Superior Melanoma. N Engl J Med. 2022;387(23):2113–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gumusay O, Callan J, Rugo HS. Immunotherapy toxicity: identification and administration. Breast Most cancers Res Deal with. 2022;192(1):1–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M, Shabafrouz Ok, Ribi C, Cairoli A, Guex-Crosier Y, et al. Adversarial results of immune-checkpoint inhibitors: epidemiology, administration and surveillance. Nat Rev Clin Oncol. 2019;16(9):563–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao B, Wu J, Li H, Wang Y, Wang Y, Xing H, Wang Y, Ma W. Current advances and future challenges of tumor vaccination remedy for recurrent glioblastoma. Cell Commun Sign. 2023;21(1):74.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Timmer FEF, Geboers B, Nieuwenhuizen S, Dijkstra M, Schouten EAC, Puijk RS, de Vries JJJ, van den Tol MP, Bruynzeel AME, Streppel MM et al. Pancreatic Most cancers and Immunotherapy: A Medical Overview. Cancers (Basel) 2021, 13(16).

  • Wang J, Mamuti M, Wang H. Therapeutic vaccines for Most cancers Immunotherapy. ACS Biomater Sci Eng. 2020;6(11):6036–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sadeghi Najafabadi SA, Bolhassani A, Aghasadeghi MR. Tumor cell-based vaccine: an efficient technique for eradication of most cancers cells. Immunotherapy. 2022;14(8):639–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Copier J, Dalgleish A. Overview of tumor cell-based vaccines. Int Rev Immunol. 2006;25(5–6):297–319.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bowen WS, Svrivastava AK, Batra L, Barsoumian H, Shirwan H. Present challenges for most cancers vaccine adjuvant growth. Skilled Rev Vaccines. 2018;17(3):207–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu J, Kindy MS, Gattoni-Celli S. Semi-allogeneic vaccines and tumor-induced immune tolerance. J Transl Med. 2009;7:3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu SY, Yu KD. Breast Most cancers Vaccines: disappointing or Promising? Entrance Immunol. 2022;13:828386.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine supply techniques towards lymph nodes. Adv Drug Deliv Rev. 2021;179:113914.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Gulijk M, Dammeijer F, Aerts J, Vroman H. Mixture methods to optimize efficacy of dendritic cell-based immunotherapy. Entrance Immunol. 2018;9:2759.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joshi MD, Unger WJ, Storm G, van Kooyk Y, Mastrobattista E. Concentrating on tumor antigens to dendritic cells utilizing particulate carriers. J Management Launch. 2012;161(1):25–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reis e Sousa C. Dendritic cells in a mature age. Nat Rev Immunol. 2006;6(6):476–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cresswell P, Ackerman AL, Giodini A, Peaper DR, Wearsch PA. Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol Rev. 2005;207:145–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banchereau J, Steinman RM. Dendritic cells and the management of immunity. Nature. 1998;392(6673):245–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heath WR, Carbone FR. Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol. 2001;19:47–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cifuentes-Rius A, Desai A, Yuen D, Johnston APR, Voelcker NH. Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nat Nanotechnol. 2021;16(1):37–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gocher AM, Workman CJ, Vignali DAA. Interferon-γ: teammate or opponent within the tumour microenvironment? Nat Rev Immunol. 2022;22(3):158–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong H, Su H, Chen L, Liu Ok, Hu HM, Yang W, Mou Y. Immunocompetence and mechanism of the DRibble-DCs vaccine for oral squamous cell carcinoma. Most cancers Manag Res. 2018;10:493–501.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27(1):74–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cruz FM, Colbert JD, Merino E, Kriegsman BA, Rock KL. The Biology and underlying mechanisms of Cross-Presentation of Exogenous Antigens on MHC-I Molecules. Annu Rev Immunol. 2017;35:149–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovacsovics-Bankowski M, Rock KL. A phagosome-to-cytosol pathway for exogenous antigens offered on MHC class I molecules. Science. 1995;267(5195):243–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma W, Zhang Y, Vigneron N, Stroobant V, Thielemans Ok, van der Bruggen P, Van den Eynde BJ. Lengthy-peptide cross-presentation by human dendritic cells happens in vacuoles by peptide alternate on nascent MHC class I Molecules. J Immunol. 2016;196(4):1711–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sleeman JP, Thiele W. Tumor metastasis and the lymphatic vasculature. Int J Most cancers. 2009;125(12):2747–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alitalo Ok. The lymphatic vasculature in illness. Nat Med. 2011;17(11):1371–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawada Ok, Taketo MM. Significance and mechanism of lymph node metastasis in most cancers development. Most cancers Res. 2011;71(4):1214–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaahtomeri Ok, Alitalo Ok. Lymphatic vessels in Tumor Dissemination versus Immunotherapy. Most cancers Res. 2020;80(17):3463–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dieterich LC, Tacconi C, Ducoli L, Detmar M. Lymphatic vessels in most cancers. Physiol Rev. 2022;102(4):1837–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. Lymphangiogenesis and lymphatic vessel remodelling in most cancers. Nat Rev Most cancers. 2014;14(3):159–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Q, Dieterich LC, Detmar M. A number of roles of lymphatic vessels in tumor development. Curr Opin Immunol. 2018;53:7–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rezzola S, Sigmund EC, Halin C, Ronca R. The lymphatic vasculature: an energetic and dynamic participant in most cancers development. Med Res Rev. 2022;42(1):576–614.

    Article 
    PubMed 

    Google Scholar
     

  • Cheng Z, Ma J, Yin L, Yu L, Yuan Z, Zhang B, Tian J, Du Y. Non-invasive molecular imaging for precision analysis of metastatic lymph nodes: alternatives from preclinical to scientific functions. Eur J Nucl Med Mol Imaging. 2023;50(4):1111–33.

    Article 
    PubMed 

    Google Scholar
     

  • Edge SB, Compton CC. The american Joint Committee on Most cancers: the seventh version of the AJCC most cancers staging guide and the way forward for TNM. Ann Surg Oncol. 2010;17(6):1471–4.

    Article 
    PubMed 

    Google Scholar
     

  • Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric most cancers. Lancet. 2020;396(10251):635–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alix-Panabieres C, Magliocco A, Cortes-Hernandez LE, Eslami SZ, Franklin D, Messina JL. Detection of most cancers metastasis: previous, current and future. Clin Exp Metastasis. 2022;39(1):21–8.

    Article 
    PubMed 

    Google Scholar
     

  • Arjmandi F, Mootz A, Farr D, Reddy S, Dogan B. New horizons in imaging and surgical evaluation of breast most cancers lymph node metastasis. Breast Most cancers Res Deal with. 2021;187(2):311–22.

    Article 
    PubMed 

    Google Scholar
     

  • Maisel Ok, Sasso MS, Potin L, Swartz MA. Exploiting lymphatic vessels for immunomodulation: Rationale, alternatives, and challenges. Adv Drug Deliv Rev. 2017;114:43–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vela Ramirez JE, Sharpe LA, Peppas NA. Present state and challenges in growing oral vaccines. Adv Drug Deliv Rev. 2017;114:116–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Smet R, Allais L, Cuvelier CA. Current advances in oral vaccine growth: yeast-derived β-glucan particles. Hum Vaccin Immunother. 2014;10(5):1309–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lesterhuis WJ, de Vries IJ, Schreibelt G, Lambeck AJ, Aarntzen EH, Jacobs JF, Scharenborg NM, van de Rakt MW, de Boer AJ, Croockewit S, et al. Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in superior melanoma sufferers. Clin Most cancers Res. 2011;17(17):5725–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes by means of lymphatic vessels. Nat Rev Immunol. 2005;5(8):617–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao S, von der Weid PY. Lymphatic system: an energetic pathway for immune safety. Semin Cell Dev Biol. 2015;38:83–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas SN, Schudel A. Overcoming transport boundaries for interstitial-, lymphatic-, and lymph node-targeted drug supply. Curr Opin Chem Eng. 2015;7:65–74.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon YJ, James E, Shastri N, Fréchet JM. In vivo focusing on of dendritic cells for activation of mobile immunity utilizing vaccine carriers primarily based on pH-responsive microparticles. Proc Natl Acad Sci U S A. 2005;102(51):18264–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du G, Solar X. Engineering nanoparticulate vaccines for enhancing antigen cross-presentation. Curr Opin Biotechnol. 2020;66:113–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Mooney DJ. Biomaterial-assisted focused modulation of immune cells in most cancers therapy. Nat Mater. 2018;17(9):761–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lynn GM, Laga R, Darrah PA, Ishizuka AS, Balaci AJ, Dulcey AE, Pechar M, Pola R, Gerner MY, Yamamoto A, et al. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that improve vaccine immunogenicity. Nat Biotechnol. 2015;33(11):1201–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ. Designer vaccine nanodiscs for customized most cancers immunotherapy. Nat Mater. 2017;16(4):489–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alberts CHAFFEYN, Johnson B, Lewis A, Raff J, Roberts M, Ok. and, Walter P. Molecular biology of the cell. Ann Botany. 2003;91(3):401–1. 4th ed.


    Google Scholar
     

  • Bachmann MF, Jennings GT. Vaccine supply: a matter of dimension, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2010;10(11):787–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luther SA, Bidgol A, Hargreaves DC, Schmidt A, Xu Y, Paniyadi J, Matloubian M, Cyster JG. Differing actions of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol. 2002;169(1):424–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson NS, El-Sukkari D, Belz GT, Smith CM, Steptoe RJ, Heath WR, Shortman Ok, Villadangos JA. Most lymphoid organ dendritic cell sorts are phenotypically and functionally immature. Blood. 2003;102(6):2187–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, Pabst R, Lutz MB, Sorokin L. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells within the T cell space of the lymph node. Immunity. 2005;22(1):19–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roozendaal R, Mebius RE, Kraal G. The conduit system of the lymph node. Int Immunol. 2008;20(12):1483–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rantakari P, Auvinen Ok, Jäppinen N, Kapraali M, Valtonen J, Karikoski M, Gerke H, Iftakhar EKI, Keuschnigg J, Umemoto E, et al. Erratum: the endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into lymph nodes. Nat Immunol. 2015;16(5):544.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du G, Solar X. 19 – Lymph node focusing on for improved efficiency of most cancers vaccine. In: Biomaterials for Most cancers Therapeutics (Second Version) edn. Edited by Park Ok: Woodhead Publishing; 2020: 527–548.

  • Rotman J, Koster BD, Jordanova ES, Heeren AM, de Gruijl TD. Unlocking the therapeutic potential of main tumor-draining lymph nodes. Most cancers Immunol Immunother. 2019;68(10):1681–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duong T, Koopman P, Francois M. Tumor lymphangiogenesis as a possible therapeutic goal. J Oncol. 2012;2012:204946.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munn DH, Mellor AL. The tumor-draining lymph node as an immune-privileged website. Immunol Rev. 2006;213:146–58.

    Article 
    PubMed 

    Google Scholar
     

  • van Pul KM, Fransen MF, van de Ven R, de Gruijl TD. Immunotherapy goes native: the Central Position of Lymph Nodes in driving Tumor Infiltration and Efficacy. Entrance Immunol. 2021;12:643291.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandrasekaran S, King MR. Microenvironment of tumor-draining lymph nodes: alternatives for liposome-based focused remedy. Int J Mol Sci. 2014;15(11):20209–39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee KL, Twyman RM, Fiering S, Steinmetz NF. Virus-based nanoparticles as platform applied sciences for contemporary vaccines. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(4):554–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ylösmäki E, Malorzo C, Capasso C, Honkasalo O, Fusciello M, Martins B, Ylösmäki L, Louna A, Feola S, Paavilainen H, et al. Customized Most cancers vaccine platform for clinically related Oncolytic Enveloped Viruses. Mol Ther. 2018;26(9):2315–25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fusciello M, Fontana F, Tähtinen S, Capasso C, Feola S, Martins B, Chiaro J, Peltonen Ok, Ylösmäki L, Ylösmäki E, et al. Artificially cloaked viral nanovaccine for most cancers immunotherapy. Nat Commun. 2019;10(1):5747.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris JC, Scully MA, Day ES. Most cancers Cell membrane-coated nanoparticles for Most cancers Administration. Cancers (Basel) 2019, 11(12).

  • Shoaib A, Azmi L, Pal S, Alqahtani SS, Rahamathulla M, Hani U, Alshehri S, Ghoneim MM, Shakeel F. Integrating nanotechnology with naturally occurring phytochemicalsin neuropathy induced by diabetes. J Mol Liq. 2022;350:118189.

    Article 
    CAS 

    Google Scholar
     

  • Gao A, Hu XL, Saeed M, Chen BF, Li YP, Yu HJ. Overview of latest advances in liposomal nanoparticle-based most cancers immunotherapy. Acta Pharmacol Sin. 2019;40(9):1129–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blume G, Cevc G, Crommelin MD, Bakker-Woudenberg IA, Kluft C, Storm G. Particular focusing on with poly(ethylene glycol)-modified liposomes: coupling of homing gadgets to the ends of the polymeric chains combines efficient goal binding with lengthy circulation instances. Biochim Biophys Acta. 1993;1149(1):180–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allen TM, Cullis PR. Liposomal drug supply techniques: from idea to scientific functions. Adv Drug Deliv Rev. 2013;65(1):36–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou L, Ding W, Zhang Y, Cheng S, Li F, Ruan R, Wei P, Qiu B. Peptide-modified vemurafenib-loaded liposomes for focused inhibition of melanoma through the pores and skin. Biomaterials. 2018;182:1–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Begines B, Ortiz T, Pérez-Aranda M, Martínez G, Merinero M, Argüelles-Arias F, Alcudia A. Polymeric nanoparticles for drug supply: latest developments and future prospects. Nanomaterials (Basel) 2020, 10(7).

  • Bhardwaj P, Bhatia E, Sharma S, Ahamad N, Banerjee R. Developments in prophylactic and therapeutic nanovaccines. Acta Biomater. 2020;108:1–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu H, Fu X, Zhai Y, Gao S, Yang X, Zhai G. Improvement of efficient tumor vaccine methods primarily based on Immune Response Cascade reactions. Adv Healthc Mater. 2021;10(13):e2100299.

    Article 
    PubMed 

    Google Scholar
     

  • Shi GN, Zhang CN, Xu R, Niu JF, Music HJ, Zhang XY, Wang WW, Wang YM, Li C, Wei XQ, et al. Enhanced antitumor immunity by focusing on dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials. 2017;113:191–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv M, Li S, Zhao H, Wang Ok, Chen Q, Guo Z, Liu Z, Xue W. Redox-responsive hyperbranched poly(amido amine) and polymer dots as a vaccine supply system for most cancers immunotherapy. J Mater Chem B. 2017;5(48):9532–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong N, Zhang Y, Teng X, Wang Y, Huo S, Qing G, Ni Q, Li X, Wang J, Ye X, et al. Proton-driven transformable nanovaccine for most cancers immunotherapy. Nat Nanotechnol. 2020;15(12):1053–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Wang J, Zhu D, Wang Y, Qing G, Zhang Y, Liu X, Liang XJ. Impact of physicochemical properties on in vivo destiny of nanoparticle-based most cancers immunotherapies. Acta Pharm Sin B. 2021;11(4):886–902.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mou Y, Xing Y, Ren H, Cui Z, Zhang Y, Yu G, Urba WJ, Hu Q, Hu H. The Impact of Superparamagnetic Iron Oxide Nanoparticle Floor Cost on Antigen Cross-Presentation. Nanoscale Res Lett. 2017;12(1):52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mueller SN, Tian S, DeSimone JM. Fast and Persistent Supply of Antigen by Lymph Node Concentrating on PRINT nanoparticle vaccine provider to advertise Humoral Immunity. Mol Pharm. 2015;12(5):1356–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomez S, Tabernacki T, Kobyra J, Roberts P, Chiappinelli KB. Combining epigenetic and immune remedy to beat most cancers resistance. Semin Most cancers Biol. 2020;65:99–113.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cardones AR, Leitner WW, Fang L, Murakami T, Kapoor V, Udey MC, Hwang ST. Genetic immunization with LYVE-1 cDNA yields function-blocking antibodies towards native protein. Microvasc Res. 2006;71(1):32–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown P. Lymphatic system: unlocking the drains. Nature. 2005;436(7050):456–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shah S, Rangaraj N, Singh SB, Srivastava S. Exploring the unexplored avenues of floor cost in nano-medicine. Colloid and Interface Science Communications. 2021;42:100406.

    Article 
    CAS 

    Google Scholar
     

  • Fogli S, Montis C, Paccosi S, Silvano A, Michelucci E, Berti D, Bosi A, Parenti A, Romagnoli P. Inorganic nanoparticles as potential regulators of immune response in dendritic cells. Nanomed (Lond). 2017;12(14):1647–60.

    Article 
    CAS 

    Google Scholar
     

  • Zhao Y, Zhao X, Cheng Y, Guo X, Yuan W. Iron Oxide Nanoparticles-Based mostly vaccine supply for Most cancers Remedy. Mol Pharm. 2018;15(5):1791–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang R, He Z, Cai P, Zhao Y, Gao L, Yang W, Zhao Y, Gao X, Gao F. Floor-functionalized modified copper sulfide nanoparticles improve checkpoint blockade Tumor Immunotherapy by Photothermal Remedy and Antigen capturing. ACS Appl Mater Interfaces. 2019;11(15):13964–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou B, Wu Q, Wang M, Hoover A, Wang X, Zhou F, Towner RA, Smith N, Saunders D, Music J et al. Immunologically modified MnFe(2)O(4) nanoparticles to synergize photothermal remedy and immunotherapy for most cancers therapy. Chem Eng J 2020, 396.

  • Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene remedy supply. Nat Rev Drug Discov. 2019;18(5):358–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye L, Park JJ, Dong MB, Yang Q, Chow RD, Peng L, Du Y, Guo J, Dai X, Wang G, et al. In vivo CRISPR screening in CD8 T cells with AAV-Sleeping Magnificence hybrid vectors identifies membrane targets for enhancing immunotherapy for glioblastoma. Nat Biotechnol. 2019;37(11):1302–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang G, Chow RD, Bai Z, Zhu L, Errami Y, Dai X, Dong MB, Ye L, Zhang X, Renauer PA, et al. Multiplexed activation of endogenous genes by CRISPRa elicits potent antitumor immunity. Nat Immunol. 2019;20(11):1494–505.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levy JM, Yeh WH, Pendse N, Davis JR, Hennessey E, Butcher R, Koblan LW, Comander J, Liu Q, Liu DR. Cytosine and adenine base modifying of the mind, liver, retina, coronary heart and skeletal muscle of mice through adeno-associated viruses. Nat Biomed Eng. 2020;4(1):97–110.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sayedahmed EE, Elkashif A, Alhashimi M, Sambhara S, Mittal SK. Adenoviral Vector-Based mostly vaccine platforms for growing the Subsequent Era of Influenza Vaccines. Vaccines (Basel) 2020, 8(4).

  • Yilmaz A, Marklund E, Andersson M, Nilsson S, Andersson LM, Lindh M, Gisslén M. Higher respiratory tract ranges of extreme Acute Respiratory Syndrome Coronavirus 2 RNA and period of viral RNA shedding don’t differ between sufferers with delicate and Extreme/Essential coronavirus Illness 2019. J Infect Dis. 2021;223(1):15–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassan AO, Kafai NM, Dmitriev IP, Fox JM, Smith BK, Harvey IB, Chen RE, Winkler ES, Wessel AW, Case JB, et al. A single-dose Intranasal ChAd Vaccine protects Higher and Decrease respiratory tracts towards SARS-CoV-2. Cell. 2020;183(1):169–184e113.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng L, Wang Q, Shan C, Yang C, Feng Y, Wu J, Liu X, Zhou Y, Jiang R, Hu P, et al. An adenovirus-vectored COVID-19 vaccine confers safety from SARS-COV-2 problem in rhesus macaques. Nat Commun. 2020;11(1):4207.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flemming A. mRNA vaccine reveals promise in autoimmunity. Nat Rev Immunol. 2021;21(2):72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Alternatives and Challenges within the supply of mRNA-based vaccines. Pharmaceutics 2020, 12(2).

  • Munis AM, Mattiuzzo G, Bentley EM, Collins MK, Eyles JE, Takeuchi Y. Use of Heterologous Vesiculovirus G Proteins circumvents the humoral anti-envelope immunity in Lentivector-Based mostly in vivo gene supply. Mol Ther Nucleic Acids. 2019;17:126–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chong G, Zang J, Han Y, Su R, Weeranoppanant N, Dong H, Li Y. Bioengineering of nano metal-organic frameworks for most cancers immunotherapy. Nano Res. 2021;14(5):1244–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan F, Feng X, Yang X, Solar W, Jin Y, Liu H, Ge Ok, Li Z, Zhang J. A easy and highly effective co-delivery system primarily based on pH-responsive metal-organic frameworks for enhanced most cancers immunotherapy. Biomaterials. 2017;122:23–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni Ok, Luo T, Lan G, Culbert A, Music Y, Wu T, Jiang X, Lin W. A Nanoscale Steel-Natural Framework to mediate photodynamic remedy and ship CpG oligodeoxynucleotides to Improve Antigen Presentation and Most cancers Immunotherapy. Angew Chem Int Ed Engl. 2020;59(3):1108–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benne N, van Duijn J, Kuiper J, Jiskoot W, Slütter B. Orchestrating immune responses: how dimension, form and rigidity have an effect on the immunogenicity of particulate vaccines. J Management Launch. 2016;234:124–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ali Khan A, Mudassir J, Mohtar N, Darwis Y. Superior drug supply to the lymphatic system: lipid-based nanoformulations. Int J Nanomedicine. 2013;8:2733–44.

    PubMed 

    Google Scholar
     

  • Supersaxo A, Hein WR, Steffen H. Impact of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res. 1990;7(2):167–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Irjala H, Johansson EL, Grenman R, Alanen Ok, Salmi M, Jalkanen S. Mannose receptor is a novel ligand for L-selectin and mediates lymphocyte binding to lymphatic endothelium. J Exp Med. 2001;194(8):1033–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai Y, Yu X, Wei J, Zeng F, Li Y, Yang X, Luo Q, Zhang Z. Metastatic standing of sentinel lymph nodes in breast most cancers decided with photoacoustic microscopy through dual-targeting nanoparticles. Mild Sci Appl. 2020;9:164.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian Y, Jin H, Qiao S, Dai Y, Huang C, Lu L, Luo Q, Zhang Z. Concentrating on dendritic cells in lymph node with an antigen peptide-based nanovaccine for most cancers immunotherapy. Biomaterials. 2016;98:171–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo H, Lu L, Liu N, Li Q, Yang X, Zhang Z. Curcumin loaded sub-30 nm focusing on therapeutic lipid nanoparticles for synergistically blocking nasopharyngeal most cancers progress and metastasis. J Nanobiotechnol. 2021;19(1):224.

    Article 
    CAS 

    Google Scholar
     

  • Liu X, Su Q, Music H, Shi X, Zhang Y, Zhang C, Huang P, Dong A, Kong D, Wang W. PolyTLR7/8a-conjugated, antigen-trapping gold nanorods elicit anticancer immunity towards abscopal tumors by photothermal therapy-induced in situ vaccination. Biomaterials. 2021;275:120921.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Lin S, Wang XY, Zhu G. Nanovaccines for most cancers immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(5):e1559.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pardoll DM. The blockade of immune checkpoints in most cancers immunotherapy. Nat Rev Most cancers. 2012;12(4):252–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic most cancers vaccines. Nat Rev Most cancers. 2021;21(6):360–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng Z, Zhang Y, She J, Zhou X, Xu J, Han X, Wang C, Zhu M, Liu Z. Ultrasound-mediated remotely managed Nanovaccine Supply for Tumor Vaccination and Individualized Most cancers Immunotherapy. Nano Lett. 2021;21(3):1228–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassani Najafabadi A, Zhang J, Aikins ME, Najaf Abadi ZI, Liao F, Qin Y, Okeke EB, Scheetz LM, Nam J, Xu Y, et al. Most cancers Immunotherapy through Concentrating on Most cancers Stem cells utilizing vaccine nanodiscs. Nano Lett. 2020;20(10):7783–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin X, Chen H, Xie Y, Zhou X, Wang Y, Zhou J, Lengthy S, Hu Z, Zhang S, Qiu W, et al. Mixture of CTLA-4 blockade with MUC1 mRNA nanovaccine induces enhanced anti-tumor CTL exercise by modulating tumor microenvironment of triple detrimental breast most cancers. Transl Oncol. 2022;15(1):101298.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang F, Zhao J, Wei Y, Wen Z, Zhang Y, Wang X, Shen Y, Wang LX, Pan N. Anti-Tumor Efficacy of an adjuvant Constructed-In nanovaccine primarily based on Ubiquitinated Proteins from Tumor cells. Int J Nanomedicine. 2020;15:1021–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan J, Wang Y, Zhang C, Wang X, Wang H, Wang J, Yuan Y, Wang X, Zhang X, Yu C et al. Antigen-Directed fabrication of a multifunctional nanovaccine with Ultrahigh Antigen Loading Effectivity for Tumor Photothermal-Immunotherapy. Adv Mater 2018, 30(8).

  • Zhao W, Hu X, Li W, Li R, Chen J, Zhou L, Qiang S, Wu W, Shi S, Dong C. M2-Like TAMs operate reversal contributes to breast Most cancers eradication by Mixture Twin Immune Checkpoint Blockade and Photothermal Remedy. Small. 2021;17(13):e2007051.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang Y, Huang J, Xu C, Pu Ok. Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of most cancers. Nat Commun. 2021;12(1):742.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar H, Zhang Q, Li J, Peng S, Wang X, Cai R. Close to-infrared photoactivated nanomedicines for photothermal synergistic most cancers remedy. Nano Right now. 2021;37:101073.

    Article 
    CAS 

    Google Scholar
     

  • Zhao Z, Yang F, Zhang X, Solar J, He Z, Luo C. Rising nanotherapeutics for antithrombotic therapy. Biomaterials. 2020;255:120200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin Y, Guo Q, Wu S, Huang C, Zhang Z, Zhang L, Zhang L, Zhu D. LHRH/TAT twin peptides-conjugated polymeric vesicles for PTT enhanced chemotherapy to beat hepatocellular carcinoma. Chin Chem Lett. 2020;31(12):3121–6.

    Article 
    CAS 

    Google Scholar
     

  • Xiao B, Li D, Xu H, Zhou X, Xu X, Qian Y, Yu F, Hu H, Zhou Z, Liu X, et al. An MRI-trackable therapeutic nanovaccine stopping most cancers liver metastasis. Biomaterials. 2021;274:120893.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles