Selkoe DJ, Hardy J. The amyloid speculation of Alzheimer’s illness at 25 years. EMBO Mol Med. 2016;8:595–608.
Perl DP. Neuropathology of Alzheimer’s illness. Mt Sinai J Med. 2010;77:32–42.
Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, Bejanin A, Bombois S, Epelbaum S, Teichmann M. Scientific prognosis of Alzheimer’s illness: suggestions of the Worldwide Working Group. Lancet Neurol. 2021;20:484–96.
Pemberton HG, Collij LE, Heeman F, Bollack A, Shekari M, Salvadó G, Alves IL, Garcia DV, Battle M, Buckley C. Quantification of amyloid PET for future scientific use: a state-of-the-art assessment. Eur J Nucl Med Mol Imag 2022:1–21.
Mattsson N, Carrillo MC, Dean RA, Devous Sr MD, Nikolcheva T, Pesini P, Salter H, Potter WZ, Sperling RS, Bateman RJ. Revolutionizing Alzheimer’s illness and scientific trials by way of biomarkers. Alzheimer’s & Dementia: Prognosis Evaluation & Illness Monitoring. 2015;1:412–9.
Maschio C, Ni R. Amyloid and tau Positron Emission Tomography Imaging in Alzheimer’s Illness and different tauopathies. Entrance Getting old Neurosci 2022, 14.
Chételat G, Arbizu J, Barthel H, Garibotto V, Regulation I, Morbelli S, van de Giessen E, Agosta F, Barkhof F, Brooks DJ. Amyloid-PET and 18F-FDG-PET within the diagnostic investigation of Alzheimer’s illness and different dementias. Lancet Neurol. 2020;19:951–62.
Cohen AD, Rabinovici GD, Mathis CA, Jagust WJ, Klunk WE, Ikonomovic MD. Utilizing Pittsburgh compound B for in vivo PET imaging of fibrillar amyloid-beta. Adv Pharmacol. 2012;64:27–81.
Fodero-Tavoletti MT, Rowe CC, McLean CA, Leone L, Li Q-X, Masters CL, Cappai R, Villemagne VL. Characterization of PiB binding to white matter in Alzheimer illness and different dementias. J Nucl Med. 2009;50:198–204.
Krishnadas N, Villemagne VL, Doré V, Rowe CC. Advances in mind amyloid imaging. Semin Nucl Med. Elsevier; 2021: 241–52.
Buckley RF. Latest advances in imaging of preclinical, sporadic, and autosomal Dominant Alzheimer’s Illness. Neurotherapeutics. 2021;18:709–27.
Pardo-Moreno T, González-Acedo A, Rivas-Domínguez A, García-Morales V, García-Cozar FJ. Ramos-Rodríguez JJ, Melguizo-Rodríguez L: Therapeutic Strategy to Alzheimer’s Illness: present therapies and new views. Pharmaceutics. 2022;14:1117.
Gabathuler R. Blood-brain barrier transport of medication for the therapy of mind illnesses. CNS & neurological Issues-Drug targets (previously present drug Targets-CNS & neurological Issues) 2009, 8:195–204.
Meng J, Agrahari V, Youm I. Advances in focused drug supply approaches for the central nervous system tumors: the inspiration of nanobiotechnology. J Neuroimmune Pharmacol. 2017;12:84–98.
Gao H. Progress and views on focusing on nanoparticles for mind drug supply. Acta Pharm Sinica B. 2016;6:268–86.
Kaur I, Kumar A, Behl T, Setia D. Latest advances in nanotechnology-based drug supply approaches for Alzheimer illness. Curr Drug Targets. 2021;22:1404–23.
Ma T-J, Gao J, Liu Y, Zhuang J-H, Yin C, Li P, Mao L, Xu J, Xu Y-X, Li Y-P. Nanomedicine methods for sustained, managed and focused therapy of Alzheimer’s illness. Mini Rev Med Chem. 2018;18:1035–46.
Vakilinezhad MA, Amini A, Akbari Javar H, Baha’addini Beigi Zarandi BF, Montaseri H, Dinarvand R. Nicotinamide loaded functionalized strong lipid nanoparticles improves cognition in Alzheimer’s illness animal mannequin by lowering tau hyperphosphorylation. DARU J Pharm Sci. 2018;26:165–77.
Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed. 2006;17:247–89.
Elmowafy EM, Tiboni M, Soliman ME. Biocompatibility, biodegradation and biomedical functions of poly (lactic acid)/poly (lactic-co-glycolic acid) micro and nanoparticles. J Pharm Make investments. 2019;49:347–80.
Wang Y, Qu W, Choi S. FDA’s regulatory science program for generic PLA/PLGA-based drug merchandise. Am Pharm Rev 2016.
Baltazar GC, Guha S, Lu W, Lim J, Boesze-Battaglia Okay, Laties AM, Tyagi P, Kompella UB, Mitchell CH. Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative perform to compromised ARPE-19 cells. PLoS ONE. 2012;7:e49635.
Anand B, Wu Q, Nakhaei-Nejad M, Karthivashan G, Dorosh L, Amidian S, Dahal A, Li X, Stepanova M, Wille H. Significance of native PLGA nanoparticles within the therapy of Alzheimer’s illness pathology. Bioactive Mater. 2022;17:506–25.
Wang Y, Wu Q, Anand BG, Karthivashan G, Phukan G, Yang J, Thinakaran G, Westaway D, Kar S. Significance of cytosolic cathepsin D in Alzheimer’s illness pathology: protecting mobile results of PLGA nanoparticles towards β-amyloid‐toxicity. Neuropathol Appl Neurobiol. 2020;46:686–706.
Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with 5 familial Alzheimer’s illness mutations: potential components in amyloid plaque formation. J Neurosci. 2006;26:10129–40.
Paul PS, Cho J-Y, Wu Q, Karthivashan G, Grabovac E, Wille H, Kulka M, Kar S. Unconjugated PLGA nanoparticles attenuate temperature-dependent β-amyloid aggregation and defend neurons towards toxicity: implications for Alzheimer’s illness pathology. J Nanobiotechnol. 2022;20:1–26.
Sarkar S, Raymick J, Cuevas E, Rosas-Hernandez H, Hanig J. Modification of strategies to make use of Congo-red stain to concurrently visualize amyloid plaques and tangles in human and rodent mind tissue sections. Metab Mind Dis. 2020;35:1371–83.
Younas N, Zafar S, Shafiq M, Noor A, Siegert A, Arora AS, Galkin A, Zafar A, Schmitz M, Stadelmann C. SFPQ and tau: vital components contributing to speedy development of Alzheimer’s illness. Acta Neuropathol. 2020;140:317–39.
Gallagher SR. Digital picture processing and evaluation with ImageJ. Present Protocols Important Laboratory Strategies 2010, 3:A. 3 C. 1-A. 3 C. 24.
Zeitvogel F, Obst M. ScatterJn: an ImageJ plugin for scatterplot-matrix evaluation and classification of spatially resolved analytical microscopy knowledge. Journal of Open Analysis Software program 2016, 4.
Clement S, Chen W, Deng W, Goldys EM. X-ray radiation-induced and focused photodynamic remedy with folic acid-conjugated biodegradable nanoconstructs. Int J Nanomed. 2018;13:3553.
Villemagne V, Burnham S, Bourgeat P, Brown B, Ellis Okay, Salvado O, Szoeke C, Macaulay S, Martins R, Maruff P. Australian imaging biomarkers and way of life (AIBL) Analysis Group. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s illness: a potential cohort research. Lancet Neurol. 2013;12:357–67.
Rowe CC, Ng S, Ackermann U, Gong SJ, Pike Okay, Savage G, Cowie TF, Dickinson KL, Maruff P, Darby D. Imaging β-amyloid burden in growing old and dementia. Neurology. 2007;68:1718–25.
Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Worth JC, Tsopelas ND, Lopresti BJ, Ziolko S, Bi W, Paljug WR. Put up-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s illness. Mind. 2008;131:1630–45.
Lockhart A, Ye L, Judd DB, Merritt AT, Lowe PN, Morgenstern JL, Hong G, Gee AD, Brown J. Proof for the presence of three distinct binding websites for the thioflavin T class of Alzheimer’s illness PET imaging brokers on β-amyloid peptide fibrils. J Biol Chem. 2005;280:7677–84.
Svedberg MM, Rahman O, Corridor H. Preclinical research of potential amyloid binding PET/SPECT ligands in Alzheimer’s illness. Nucl Med Biol. 2012;39:484–501.
Tune J, Zheng J, Li P, Lu X, Zhu G, Shen P. An efficient multimodal picture fusion methodology utilizing MRI and PET for Alzheimer’s illness prognosis. Entrance Digit Well being. 2021;3:637386.
Li C, Tune L, Zhu G, Hu B, Liu X, Wang Q. Alzheimer’s stage classification by 3D PMNet utilizing PET/MRI multi-modal photos. In 2022 IEEE Worldwide Convention on Electrical Engineering, Huge Knowledge and Algorithms (EEBDA). IEEE; 2022: 1068–1073.
Plascencia-Villa G, Ponce A, Collingwood JF, Arellano-Jiménez MJ, Zhu X, Rogers JT, Betancourt I, José-Yacamán M, Perry G. Excessive-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s illness. Sci Rep. 2016;6:1–12.
Hajipour MJ, Santoso MR, Rezaee F, Aghaverdi H, Mahmoudi M, Perry G. Advances in alzheimer’s prognosis and remedy: the implications of nanotechnology. Traits Biotechnol. 2017;35:937–53.
Ning S, Jorfi M, Patel SR, Kim DY, Tanzi RE. Neurotechnological approaches to the prognosis and therapy of Alzheimer’s Illness. Entrance NeuroSci 2022, 16.
Ruan Y, Xiong Y, Fang W, Yu Q, Mai Y, Cao Z, Wang Okay, Lei M, Xu J, Liu Y. Extremely delicate curcumin-conjugated nanotheranostic platform for detecting amyloid-beta plaques by magnetic resonance imaging and reversing cognitive deficits of Alzheimer’s illness through NLRP3-inhibition. J Nanobiotechnol. 2022;20:1–21.
Thapa A, Jett SD, Chi EY. Curcumin attenuates amyloid-β mixture toxicity and modulates amyloid-β aggregation pathway. ACS Chem Neurosci. 2016;7:56–68.
Andrade S, Ramalho MJ, Loureiro JA, Pereira MdC. Pure compounds for Alzheimer’s illness remedy: a scientific assessment of preclinical and scientific research. Int J Mol Sci. 2019;20:2313.
Li Y, Yan L, Cai J, Zhang W, Li L, Du Z, Dong C, Meunier B, Chen H. Improvement of novel theranostic brokers for in vivo amyloid imaging and protecting results on human neuroblastoma cells. Eur J Med Chem. 2019;181:111585.
Wang X, Wang C, Chan H-N, Ashok I, Krishnamoorthi SK, Li M, Li H-W, Wong MS. Amyloid-β oligomer focused theranostic probes for in vivo NIR imaging and inhibition of self-aggregation and amyloid-β induced ROS era. Talanta. 2021;224:121830.
Fan S, Zheng Y, Liu X, Fang W, Chen X, Liao W, Jing X, Lei M, Tao E, Ma Q. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s illness. Drug Deliv. 2018;25:1091–102.
Silva-Abreu M, Calpena AC, Andrés-Benito P, Aso E, Romero IA, Roig-Carles D, Gromnicova R, Espina M, Ferrer I, García ML. PPARγ agonist-loaded PLGA-PEG nanocarriers as a possible therapy for Alzheimer’s illness: in vitro and in vivo research. Int J Nanomed. 2018;13:5577.
Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y, Maekawa T, Venugopal Okay, Kumar DS. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s illness. PLoS ONE. 2012;7:e32616.
Sánchez-López E, Ettcheto M, Egea MA, Espina M, Cano A, Calpena AC, Camins A, Carmona N, Silva AM, Souto EB. Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s illness: in vitro and in vivo characterization. J Nanobiotechnol. 2018;16:1–16.
Jeon SG, Cha M-Y, Kim J-i, Hwang TW, Kim KA, Kim TH, Tune KC, Kim J-J, Moon M. Vitamin D-binding protein-loaded PLGA nanoparticles suppress Alzheimer’s disease-related pathology in 5XFAD mice. Nanomed Nanotechnol Biol Med. 2019;17:297–307.
Xu R, Wang J, Xu J, Tune X, Huang H, Feng Y, Fu C. Rhynchophylline loaded-mPEG-PLGA nanoparticles coated with tween-80 for preliminary research in Alzheimer’s illness. Worldwide J nanomedicine 2020:1149–60.
Strohbehn G, Coman D, Han L, Ragheb RR, Fahmy TM, Huttner AJ, Hyder F, Piepmeier JM, Saltzman WM, Zhou J. Imaging the supply of brain-penetrating PLGA nanoparticles within the mind utilizing magnetic resonance. J Neurooncol. 2015;121:441–9.
Sirianni RW, Zheng M-Q, Patel TR, Shafbauer T, Zhou J, Saltzman WM, Carson RE, Huang Y. Radiolabeling of poly (lactic-co-glycolic acid)(PLGA) nanoparticles with biotinylated F-18 prosthetic teams and imaging of their supply to the mind with positron emission tomography. Bioconj Chem. 2014;25:2157–65.
Fornaguera C, Feiner-Gracia N, Calderó G, García-Celma M, Solans C. Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel superior drug supply techniques to deal with neurodegenerative illnesses. Nanoscale. 2015;7:12076–84.
Solar D, Li N, Zhang W, Zhao Z, Mou Z, Huang D, Liu J, Wang W. Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s illness. Colloids Surf B Biointerfaces. 2016;148:116–29.
Baysal I, Ucar G, Gultekinoglu M, Ulubayram Okay, Yabanoglu-Ciftci S. Donepezil loaded PLGA-b-PEG nanoparticles: their capability to induce destabilization of amyloid fibrils and to cross blood mind barrier in vitro. J Neural Transm. 2017;124:33–45.
Bourdenx M, Daniel J, Genin E, Soria FN, Blanchard-Desce M, Bezard E, Dehay B. Nanoparticles restore lysosomal acidification defects: implications for Parkinson and different lysosomal-related illnesses. Autophagy. 2016;12:472–83.