Igarashi Y, Sasada T. Most cancers vaccines: towards the subsequent breakthrough in most cancers immunotherapy. J Immunol Res. 2020;2020:5825401.
Donninger H, Li C, Eaton JW, Yaddanapudi Okay. Most cancers vaccines: promising therapeutics or an unattainable dream. Vaccines. 2021. https://doi.org/10.3390/vaccines9060668.
Harari A, Graciotti M, Bassani-Sternberg M, Kandalaft LE. Antitumour dendritic cell vaccination in a priming and boosting strategy. Nat Rev Drug Discov. 2020;19(9):635–52.
Chiang CL, Coukos G, Kandalaft LE. Complete tumor antigen vaccines: the place are we? Vaccines. 2015;3(2):344–72.
Yaman S, Chintapula U, Rodriguez E, Ramachandramoorthy H, Nguyen KT. Cell-mediated and cell membrane-coated nanoparticles for drug supply and most cancers remedy. Most cancers Drug Resist. 2020;3(4):879–911.
Liu WL, Zou MZ, Liu T, Zeng JY, Li X, Yu WY, Li CX, Ye JJ, Tune W, Feng J, et al. Cytomembrane nanovaccines present therapeutic results by mimicking tumor cells and antigen presenting cells. Nat Commun. 2019;10(1):3199.
Zalba S, Ten Hagen TL. Cell membrane modulation as adjuvant in most cancers remedy. Most cancers Deal with Rev. 2017;52:48–57.
Zhang Y, Chen Q, Zhu Y, Pei M, Wang Okay, Qu X, Zhang Y, Gao J, Qin H. Focusing on inorganic nanoparticles to tumors utilizing organic membrane-coated expertise. MedComm. 2022;3(4):e192.
Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater. 2018;30(23):e1706759.
Kroll AV, Fang RH, Zhang L. Biointerfacing and functions of cell membrane-coated nanoparticles. Bioconjug Chem. 2017;28(1):23–32.
Allahyari M, Mohit E. Peptide/protein vaccine supply system based mostly on PLGA particles. Hum Vaccin Immunother. 2016;12(3):806–28.
Rocha CV, Gonçalves V, da Silva MC, Bañobre-López M, Gallo J. PLGA-based composites for numerous biomedical functions. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23042034.
Xiao L, Huang Y, Yang Y, Miao Z, Zhu J, Zhong M, Feng C, Tang W, Zhou J, Wang L, et al. Biomimetic cytomembrane nanovaccines forestall breast most cancers growth in the long run. Nanoscale. 2021;13(6):3594–601.
Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in most cancers immunology and immunotherapy. Nat Rev Immunol. 2020;20(1):7–24.
He H, Guo C, Liu W, Chen S, Wang XY, Yang H. Engineering nanostructured pure most cancers cell membrane-derived vesicles as a novel therapeutic most cancers vaccine. MedComm Biomater Appl. 2022. https://doi.org/10.1002/mba2.22.
Yang R, Xu J, Xu L, Solar X, Chen Q, Zhao Y, Peng R, Liu Z. Most cancers cell membrane-coated adjuvant nanoparticles with mannose modification for efficient anticancer vaccination. ACS Nano. 2018;12(6):5121–9.
Gou S, Liu W, Wang S, Chen G, Chen Z, Qiu L, Zhou X, Wu Y, Qi Y, Gao Y. Engineered nanovaccine focusing on Clec9a(+) dendritic cells remarkably enhances the most cancers immunotherapy results of STING agonist. Nano Lett. 2021;21(23):9939–50.
Zou MZ, Li ZH, Bai XF, Liu CJ, Zhang XZ. Hybrid vesicles based mostly on autologous tumor cell membrane and bacterial outer membrane to boost innate immune response and personalised tumor immunotherapy. Nano Lett. 2021;21(20):8609–18.
Chen L, Qin H, Zhao R, Zhao X, Lin L, Chen Y, Lin Y, Li Y, Qin Y, Li Y, et al. Bacterial cytoplasmic membranes synergistically improve the antitumor exercise of autologous most cancers vaccines. Sci Transl Med. 2021. https://doi.org/10.1126/scitranslmed.abc2816.
Ladoire S, Hannani D, Vetizou M, Locher C, Aymeric L, Apetoh L, Kepp O, Kroemer G, Ghiringhelli F, Zitvogel L. Cell-death-associated molecular patterns as determinants of most cancers immunogenicity. Antioxid Redox Sign. 2014;20(7):1098–116.
Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. Immunogenic cell demise in most cancers remedy: Current and rising inducers. J Cell Mol Med. 2019;23(8):4854–65.
Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell demise in most cancers remedy. Annu Rev Immunol. 2013;31:51–72.
Kepp O, Tesniere A, Zitvogel L, Kroemer G. The immunogenicity of tumor cell demise. Curr Opin Oncol. 2009;21(1):71–6.
Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and demise. Nat Immunol. 2022;23(4):487–500.
Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, et al. Calreticulin publicity dictates the immunogenicity of most cancers cell demise. Nat Med. 2007;13(1):54–61.
Garg AD, Dudek AM, Agostinis P. Most cancers immunogenicity, hazard alerts, and DAMPs: what, when, and the way? BioFactors. 2013;39(4):355–67.
Sáez PJ, Vargas P, Shoji KF, Harcha PA, Lennon-Duménil AM, Sáez JC. ATP promotes the quick migration of dendritic cells by the exercise of pannexin 1 channels and P2X(7) receptors. Sci Sign. 2017. https://doi.org/10.1126/scisignal.aah7107.
Zhang Q, Huang W, Yuan M, Li W, Hua L, Yang Z, Gao F, Li S, Ye C, Chen Y, et al. Using ATP as a brand new adjuvant promotes the induction of strong antitumor mobile immunity by a PLGA nanoparticle vaccine. ACS Appl Mater Interfaces. 2020;12(49):54399–414.
Aymeric L, Apetoh L, Ghiringhelli F, Tesniere A, Martins I, Kroemer G, Smyth MJ, Zitvogel L. Tumor cell demise and ATP launch prime dendritic cells and environment friendly anticancer immunity. Most cancers Res. 2010;70(3):855–8.
Lin KY, Guarnieri FG, Staveley-O’Carroll KF, Levitsky HI, August JT, Pardoll DM, Wu TC. Remedy of established tumors with a novel vaccine that enhances main histocompatibility class II presentation of tumor antigen. Most cancers Res. 1996;56(1):21–6.
Ma Y, Adjemian S, Yang H, Catani JP, Hannani D, Martins I, Michaud M, Kepp O, Sukkurwala AQ, Vacchelli E, et al. ATP-dependent recruitment, survival and differentiation of dendritic cell precursors within the tumor mattress after anticancer chemotherapy. Oncoimmunology. 2013;2(6):e24568.
Esfahani Okay, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N, Miller WH Jr. A overview of most cancers immunotherapy: from the previous, to the current, to the longer term. Curr Oncol. 2020;27(Suppl 2):S87-s97.
Kuhn NF, Purdon TJ, van Leeuwen DG, Lopez AV, Curran KJ, Daniyan AF, Brentjens RJ. CD40 ligand-modified chimeric antigen receptor T cells improve antitumor perform by eliciting an endogenous antitumor response. Most cancers Cell. 2019;35(3):473-488.e476.
Sterner RC, Sterner RM. CAR-T cell remedy: present limitations and potential methods. Blood Most cancers J. 2021;11(4):69.
Postow MA, Sidlow R, Hellmann MD. Immune-related adversarial occasions related to immune checkpoint blockade. N Engl J Med. 2018;378(2):158–68.
Waldman AD, Fritz JM, Lenardo MJ. A information to most cancers immunotherapy: from T cell primary science to medical apply. Nat Rev Immunol. 2020;20(11):651–68.
Sadeghi Najafabadi SA, Bolhassani A, Aghasadeghi MR. Tumor cell-based vaccine: an efficient technique for eradication of most cancers cells. Immunotherapy. 2022;14(8):639–54.
Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and penalties of genetic heterogeneity in most cancers evolution. Nature. 2013;501(7467):338–45.
Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27(1):74–95.
Rapoport BL, Anderson R. Realizing the medical potential of immunogenic cell demise in most cancers chemotherapy and radiotherapy. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20040959.
Kroll AV, Fang RH, Jiang Y, Zhou J, Wei X, Yu CL, Gao J, Luk BT, Dehaini D, Gao W, et al. Nanoparticulate supply of most cancers cell membrane elicits multiantigenic antitumor immunity. Adv Mater. 2017. https://doi.org/10.1002/adma.201703969.
Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell demise and DAMPs in most cancers remedy. Nat Rev Most cancers. 2012;12(12):860–75.
Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, Zhao L, Spisek R, Kroemer G, Galluzzi L. Detection of immunogenic cell demise and its relevance for most cancers remedy. Cell Demise Dis. 2020;11(11):1013.
Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L, Kroemer G. Molecular traits of immunogenic most cancers cell demise. Cell Demise Differ. 2008;15(1):3–12.
Singh-Jasuja H, Toes RE, Spee P, Münz C, Hilf N, Schoenberger SP, Ricciardi-Castagnoli P, Neefjes J, Rammensee HG, Arnold-Schild D, et al. Cross-presentation of glycoprotein 96-associated antigens on main histocompatibility complicated class I molecules requires receptor-mediated endocytosis. J Exp Med. 2000;191(11):1965–74.
Srivastava PK, Udono H, Blachere NE, Li Z. Warmth shock proteins switch peptides throughout antigen processing and CTL priming. Immunogenetics. 1994;39(2):93–8.
Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, Vermaelen Okay, Panaretakis T, Mignot G, Ullrich E, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity in opposition to tumors. Nat Med. 2009;15(10):1170–8.
Zhou J, Kroll AV, Holay M, Fang RH, Zhang L. Biomimetic nanotechnology towards personalised vaccines. Adv Mater. 2020;32(13):e1901255.
Ophir E, Bobisse S, Coukos G, Harari A, Kandalaft LE. Personalised approaches to energetic immunotherapy in most cancers. Biochim Biophys Acta. 2016;1865(1):72–82.
Hu Z, Ott PA, Wu CJ. In direction of personalised, tumour-specific, therapeutic vaccines for most cancers. Nat Rev Immunol. 2018;18(3):168–82.
Xie W, Deng WW, Zan M, Rao L, Yu GT, Zhu DM, Wu WT, Chen B, Ji LW, Chen L, et al. Most cancers cell membrane camouflaged nanoparticles to appreciate hunger remedy along with checkpoint blockades for enhancing most cancers remedy. ACS Nano. 2019;13(3):2849–57.
Fang RH, Hu CM, Luk BT, Gao W, Copp JA, Tai Y, O’Connor DE, Zhang L. Most cancers cell membrane-coated nanoparticles for anticancer vaccination and drug supply. Nano Lett. 2014;14(4):2181–8.
Wang D, Liu C, You S, Zhang Okay, Li M, Cao Y, Wang C, Dong H, Zhang X. Bacterial vesicle-cancer cell hybrid membrane-coated nanoparticles for tumor particular immune activation and photothermal remedy. ACS Appl Mater Interfaces. 2020;12(37):41138–47.
Zhu JY, Zheng DW, Zhang MK, Yu WY, Qiu WX, Hu JJ, Feng J, Zhang XZ. Preferential most cancers cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic most cancers cell membranes. Nano Lett. 2016;16(9):5895–901.
Rao L, Wu L, Liu Z, Tian R, Yu G, Zhou Z, Yang Okay, Xiong HG, Zhang A, Yu GT, et al. Hybrid mobile membrane nanovesicles amplify macrophage immune responses in opposition to most cancers recurrence and metastasis. Nat Commun. 2020;11(1):4909.
Meng QF, Zhao Y, Dong C, Liu L, Pan Y, Lai J, Liu Z, Yu GT, Chen X, Rao L. Genetically programmable fusion mobile vesicles for most cancers immunotherapy. Angew Chem Int Ed Engl. 2021;60(50):26320–6.
Rao L, Zhao SK, Wen C, Tian R, Lin L, Cai B, Solar Y, Kang F, Yang Z, He L, et al. Activating macrophage-mediated most cancers immunotherapy by genetically edited nanoparticles. Adv Mater. 2020;32(47):e2004853.