Exploiting immunostimulatory mechanisms of immunogenic cell demise to develop membrane-encapsulated nanoparticles as a potent tumor vaccine | Journal of Nanobiotechnology


  • Igarashi Y, Sasada T. Most cancers vaccines: towards the subsequent breakthrough in most cancers immunotherapy. J Immunol Res. 2020;2020:5825401.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donninger H, Li C, Eaton JW, Yaddanapudi Okay. Most cancers vaccines: promising therapeutics or an unattainable dream. Vaccines. 2021. https://doi.org/10.3390/vaccines9060668.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harari A, Graciotti M, Bassani-Sternberg M, Kandalaft LE. Antitumour dendritic cell vaccination in a priming and boosting strategy. Nat Rev Drug Discov. 2020;19(9):635–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiang CL, Coukos G, Kandalaft LE. Complete tumor antigen vaccines: the place are we? Vaccines. 2015;3(2):344–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yaman S, Chintapula U, Rodriguez E, Ramachandramoorthy H, Nguyen KT. Cell-mediated and cell membrane-coated nanoparticles for drug supply and most cancers remedy. Most cancers Drug Resist. 2020;3(4):879–911.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu WL, Zou MZ, Liu T, Zeng JY, Li X, Yu WY, Li CX, Ye JJ, Tune W, Feng J, et al. Cytomembrane nanovaccines present therapeutic results by mimicking tumor cells and antigen presenting cells. Nat Commun. 2019;10(1):3199.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zalba S, Ten Hagen TL. Cell membrane modulation as adjuvant in most cancers remedy. Most cancers Deal with Rev. 2017;52:48–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Chen Q, Zhu Y, Pei M, Wang Okay, Qu X, Zhang Y, Gao J, Qin H. Focusing on inorganic nanoparticles to tumors utilizing organic membrane-coated expertise. MedComm. 2022;3(4):e192.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater. 2018;30(23):e1706759.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kroll AV, Fang RH, Zhang L. Biointerfacing and functions of cell membrane-coated nanoparticles. Bioconjug Chem. 2017;28(1):23–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allahyari M, Mohit E. Peptide/protein vaccine supply system based mostly on PLGA particles. Hum Vaccin Immunother. 2016;12(3):806–28.

    Article 
    PubMed 

    Google Scholar
     

  • Rocha CV, Gonçalves V, da Silva MC, Bañobre-López M, Gallo J. PLGA-based composites for numerous biomedical functions. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23042034.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao L, Huang Y, Yang Y, Miao Z, Zhu J, Zhong M, Feng C, Tang W, Zhou J, Wang L, et al. Biomimetic cytomembrane nanovaccines forestall breast most cancers growth in the long run. Nanoscale. 2021;13(6):3594–601.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in most cancers immunology and immunotherapy. Nat Rev Immunol. 2020;20(1):7–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He H, Guo C, Liu W, Chen S, Wang XY, Yang H. Engineering nanostructured pure most cancers cell membrane-derived vesicles as a novel therapeutic most cancers vaccine. MedComm Biomater Appl. 2022. https://doi.org/10.1002/mba2.22.

    Article 

    Google Scholar
     

  • Yang R, Xu J, Xu L, Solar X, Chen Q, Zhao Y, Peng R, Liu Z. Most cancers cell membrane-coated adjuvant nanoparticles with mannose modification for efficient anticancer vaccination. ACS Nano. 2018;12(6):5121–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gou S, Liu W, Wang S, Chen G, Chen Z, Qiu L, Zhou X, Wu Y, Qi Y, Gao Y. Engineered nanovaccine focusing on Clec9a(+) dendritic cells remarkably enhances the most cancers immunotherapy results of STING agonist. Nano Lett. 2021;21(23):9939–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou MZ, Li ZH, Bai XF, Liu CJ, Zhang XZ. Hybrid vesicles based mostly on autologous tumor cell membrane and bacterial outer membrane to boost innate immune response and personalised tumor immunotherapy. Nano Lett. 2021;21(20):8609–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Qin H, Zhao R, Zhao X, Lin L, Chen Y, Lin Y, Li Y, Qin Y, Li Y, et al. Bacterial cytoplasmic membranes synergistically improve the antitumor exercise of autologous most cancers vaccines. Sci Transl Med. 2021. https://doi.org/10.1126/scitranslmed.abc2816.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ladoire S, Hannani D, Vetizou M, Locher C, Aymeric L, Apetoh L, Kepp O, Kroemer G, Ghiringhelli F, Zitvogel L. Cell-death-associated molecular patterns as determinants of most cancers immunogenicity. Antioxid Redox Sign. 2014;20(7):1098–116.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. Immunogenic cell demise in most cancers remedy: Current and rising inducers. J Cell Mol Med. 2019;23(8):4854–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell demise in most cancers remedy. Annu Rev Immunol. 2013;31:51–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kepp O, Tesniere A, Zitvogel L, Kroemer G. The immunogenicity of tumor cell demise. Curr Opin Oncol. 2009;21(1):71–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and demise. Nat Immunol. 2022;23(4):487–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, et al. Calreticulin publicity dictates the immunogenicity of most cancers cell demise. Nat Med. 2007;13(1):54–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garg AD, Dudek AM, Agostinis P. Most cancers immunogenicity, hazard alerts, and DAMPs: what, when, and the way? BioFactors. 2013;39(4):355–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sáez PJ, Vargas P, Shoji KF, Harcha PA, Lennon-Duménil AM, Sáez JC. ATP promotes the quick migration of dendritic cells by the exercise of pannexin 1 channels and P2X(7) receptors. Sci Sign. 2017. https://doi.org/10.1126/scisignal.aah7107.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Q, Huang W, Yuan M, Li W, Hua L, Yang Z, Gao F, Li S, Ye C, Chen Y, et al. Using ATP as a brand new adjuvant promotes the induction of strong antitumor mobile immunity by a PLGA nanoparticle vaccine. ACS Appl Mater Interfaces. 2020;12(49):54399–414.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aymeric L, Apetoh L, Ghiringhelli F, Tesniere A, Martins I, Kroemer G, Smyth MJ, Zitvogel L. Tumor cell demise and ATP launch prime dendritic cells and environment friendly anticancer immunity. Most cancers Res. 2010;70(3):855–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin KY, Guarnieri FG, Staveley-O’Carroll KF, Levitsky HI, August JT, Pardoll DM, Wu TC. Remedy of established tumors with a novel vaccine that enhances main histocompatibility class II presentation of tumor antigen. Most cancers Res. 1996;56(1):21–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Ma Y, Adjemian S, Yang H, Catani JP, Hannani D, Martins I, Michaud M, Kepp O, Sukkurwala AQ, Vacchelli E, et al. ATP-dependent recruitment, survival and differentiation of dendritic cell precursors within the tumor mattress after anticancer chemotherapy. Oncoimmunology. 2013;2(6):e24568.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esfahani Okay, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N, Miller WH Jr. A overview of most cancers immunotherapy: from the previous, to the current, to the longer term. Curr Oncol. 2020;27(Suppl 2):S87-s97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuhn NF, Purdon TJ, van Leeuwen DG, Lopez AV, Curran KJ, Daniyan AF, Brentjens RJ. CD40 ligand-modified chimeric antigen receptor T cells improve antitumor perform by eliciting an endogenous antitumor response. Most cancers Cell. 2019;35(3):473-488.e476.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sterner RC, Sterner RM. CAR-T cell remedy: present limitations and potential methods. Blood Most cancers J. 2021;11(4):69.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Postow MA, Sidlow R, Hellmann MD. Immune-related adversarial occasions related to immune checkpoint blockade. N Engl J Med. 2018;378(2):158–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waldman AD, Fritz JM, Lenardo MJ. A information to most cancers immunotherapy: from T cell primary science to medical apply. Nat Rev Immunol. 2020;20(11):651–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadeghi Najafabadi SA, Bolhassani A, Aghasadeghi MR. Tumor cell-based vaccine: an efficient technique for eradication of most cancers cells. Immunotherapy. 2022;14(8):639–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and penalties of genetic heterogeneity in most cancers evolution. Nature. 2013;501(7467):338–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27(1):74–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rapoport BL, Anderson R. Realizing the medical potential of immunogenic cell demise in most cancers chemotherapy and radiotherapy. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20040959.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kroll AV, Fang RH, Jiang Y, Zhou J, Wei X, Yu CL, Gao J, Luk BT, Dehaini D, Gao W, et al. Nanoparticulate supply of most cancers cell membrane elicits multiantigenic antitumor immunity. Adv Mater. 2017. https://doi.org/10.1002/adma.201703969.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell demise and DAMPs in most cancers remedy. Nat Rev Most cancers. 2012;12(12):860–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, Zhao L, Spisek R, Kroemer G, Galluzzi L. Detection of immunogenic cell demise and its relevance for most cancers remedy. Cell Demise Dis. 2020;11(11):1013.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L, Kroemer G. Molecular traits of immunogenic most cancers cell demise. Cell Demise Differ. 2008;15(1):3–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh-Jasuja H, Toes RE, Spee P, Münz C, Hilf N, Schoenberger SP, Ricciardi-Castagnoli P, Neefjes J, Rammensee HG, Arnold-Schild D, et al. Cross-presentation of glycoprotein 96-associated antigens on main histocompatibility complicated class I molecules requires receptor-mediated endocytosis. J Exp Med. 2000;191(11):1965–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srivastava PK, Udono H, Blachere NE, Li Z. Warmth shock proteins switch peptides throughout antigen processing and CTL priming. Immunogenetics. 1994;39(2):93–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, Vermaelen Okay, Panaretakis T, Mignot G, Ullrich E, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity in opposition to tumors. Nat Med. 2009;15(10):1170–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou J, Kroll AV, Holay M, Fang RH, Zhang L. Biomimetic nanotechnology towards personalised vaccines. Adv Mater. 2020;32(13):e1901255.

    Article 
    PubMed 

    Google Scholar
     

  • Ophir E, Bobisse S, Coukos G, Harari A, Kandalaft LE. Personalised approaches to energetic immunotherapy in most cancers. Biochim Biophys Acta. 2016;1865(1):72–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Hu Z, Ott PA, Wu CJ. In direction of personalised, tumour-specific, therapeutic vaccines for most cancers. Nat Rev Immunol. 2018;18(3):168–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie W, Deng WW, Zan M, Rao L, Yu GT, Zhu DM, Wu WT, Chen B, Ji LW, Chen L, et al. Most cancers cell membrane camouflaged nanoparticles to appreciate hunger remedy along with checkpoint blockades for enhancing most cancers remedy. ACS Nano. 2019;13(3):2849–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang RH, Hu CM, Luk BT, Gao W, Copp JA, Tai Y, O’Connor DE, Zhang L. Most cancers cell membrane-coated nanoparticles for anticancer vaccination and drug supply. Nano Lett. 2014;14(4):2181–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang D, Liu C, You S, Zhang Okay, Li M, Cao Y, Wang C, Dong H, Zhang X. Bacterial vesicle-cancer cell hybrid membrane-coated nanoparticles for tumor particular immune activation and photothermal remedy. ACS Appl Mater Interfaces. 2020;12(37):41138–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu JY, Zheng DW, Zhang MK, Yu WY, Qiu WX, Hu JJ, Feng J, Zhang XZ. Preferential most cancers cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic most cancers cell membranes. Nano Lett. 2016;16(9):5895–901.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao L, Wu L, Liu Z, Tian R, Yu G, Zhou Z, Yang Okay, Xiong HG, Zhang A, Yu GT, et al. Hybrid mobile membrane nanovesicles amplify macrophage immune responses in opposition to most cancers recurrence and metastasis. Nat Commun. 2020;11(1):4909.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng QF, Zhao Y, Dong C, Liu L, Pan Y, Lai J, Liu Z, Yu GT, Chen X, Rao L. Genetically programmable fusion mobile vesicles for most cancers immunotherapy. Angew Chem Int Ed Engl. 2021;60(50):26320–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao L, Zhao SK, Wen C, Tian R, Lin L, Cai B, Solar Y, Kang F, Yang Z, He L, et al. Activating macrophage-mediated most cancers immunotherapy by genetically edited nanoparticles. Adv Mater. 2020;32(47):e2004853.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles