Wodak, S. J. et al. Allostery in its many disguises: from principle to functions. Construction 27, 566–578 (2019).
Alberstein, R. G., Guo, A. B. & Kortemme, T. Design rules of protein switches. Curr. Opin. Struct. Biol. 72, 71–78 (2021).
Jackson, C., Anderson, A. & Alexandrov, Okay. The current and the way forward for protein biosensor engineering. Curr. Opin. Struct. Biol. 75, 102424 (2022).
Liu, G. Grand challenges in biosensors and biomolecular electronics. Entrance. Bioeng. Biotechnol. 9, 707615 (2021).
Merkx, M., Smith, B. & Jewett, M. Engineering sensor proteins. ACS Sens. 4, 3089–3091 (2019).
Masson, J.-F. & Pelletier, J. N. Will nanobiosensors change therapeutic drug monitoring? The case of methotrexate. Nanomedicine10, 521–524 (2015).
Katz, E. Enzyme‐Primarily based Computing Programs (Wiley, 2019).
Stein, V. & Alexandrov, Okay. Protease-based artificial sensing and sign amplification. Proc. Natl. Acad. Sci. USA 111, 15934–15939 (2014).
Fink, T. & Jerala, R. Designed protease-based signaling networks. Curr. Opin. Chem. Biol. 68, 102146 (2022).
Makhlynets, O. V., Raymond, E. A. & Korendovych, I. V. Design of allosterically regulated protein catalysts. Biochemistry 54, 1444–1456 (2015).
Nasu, Y., Shen, Y., Kramer, L. & Campbell, R. E. Construction- and mechanism-guided design of single fluorescent protein-based biosensors. Nat. Chem. Biol. 17, 509–518 (2021).
Clark, J. J., Benson, M. L., Smith, R. D. & Carlson, H. A. Inherent versus induced protein flexibility: comparisons inside and between apo and holo constructions. PLoS Comput. Biol. 15, e1006705 (2019).
Guo, Z. et al. Generalizable protein biosensors based mostly on artificial swap modules. J. Am. Chem. Soc. 141, 8128–8135 (2019).
Nadler, D. C., Morgan, S.-A., Flamholz, A., Kortright, Okay. E. & Savage, D. F. Speedy building of metabolite biosensors utilizing domain-insertion profiling. Nat. Commun. 7, 12266 (2016).
Guntas, G., Mansell, T. J., Kim, J. R. & Ostermeier, M. Directed evolution of protein switches and their utility to the creation of ligand-binding proteins. Proc. Natl Acad. Sci. USA 102, 11224–11229 (2005).
Ergun Ayva, C. et al. Exploring efficiency parameters of synthetic allosteric protein switches. J. Mol. Biol. 434, 167678 (2022).
Nishikawa, Okay. Okay., Hoppe, N., Smith, R., Bingman, C. & Raman, S. Epistasis shapes the health panorama of an allosteric specificity swap. Nat. Commun. 12, 5562 (2021).
Starr, T. N. & Thornton, J. W. Epistasis in protein evolution. Protein Sci. 25, 1204–1218 (2016).
Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–339 (2014).
Gruber, R. & Horovitz, A. Unpicking allosteric mechanisms of homo-oligomeric proteins by figuring out their successive ligand binding constants. Phil. Trans. R. Soc. B 373, 20170176 (2018).
Aroul-Selvam, R., Hubbard, T. & Sasidharan, R. Area insertions in protein constructions. J. Mol. Biol. 338, 633–641 (2004).
Salverda, M. L. M., De Visser, J. A. G. M. & Barlow, M. Pure evolution of TEM-1 β-lactamase: experimental reconstruction and scientific relevance. FEMS Microbiol. Rev. 34, 1015–1036 (2010).
Guo, Z. et al. Design of a methotrexate-controlled chemical dimerization system and its use in bio-electronic units. Nat. Commun. 12, 7137 (2021).
Rochelet, M. et al. Amperometric detection of extended-spectrum β-lactamase exercise: utility to the characterization of resistant E. coli strains. Analyst 140, 3551–3556 (2015).
Banaszynski, L. A., Liu, C. W. & Wandless, T. J. Characterization of the FKBP·rapamycin·FRB ternary complicated. J. Am. Chem. Soc. 127, 4715–4721 (2005).
Gräwe, A. & Merkx, M. Bioluminescence goes darkish: boosting the efficiency of bioluminescent sensor proteins utilizing complementation inhibitors. ACS Sens. 7, 3800–3808 (2022).
Dincer, C., Bruch, R., Kling, A., Dittrich, P. S. & City, G. A. Multiplexed point-of-care testing —xPOCT. Tendencies Biotechnol. 35, 728–742 (2017).