Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of β-Cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care. 2006;29(5):1130–9. https://doi.org/10.2337/dc05-2179.
Wu H, Ballantyne CM. Metabolic irritation and insulin resistance in weight problems. Circ Res. 2020;126(11):1549–64. https://doi.org/10.1161/CIRCRESAHA.119.315896.
Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking weight problems with heart problems. Nature. 2006;444(7121):875–80. https://doi.org/10.1038/nature05487.
Kusminski CM, Bickel PE, Scherer PE. Concentrating on adipose tissue within the therapy of obesity-associated diabetes. Nat Rev Drug Discov. 2016;15(9):639–60. https://doi.org/10.1038/nrd.2016.75.
Reilly SM, Saltiel AR. Adapting to weight problems with adipose tissue irritation. Nat Rev Endocrinol. 2017;13(11):633–43. https://doi.org/10.1038/nrendo.2017.90.
DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC, Testa MA, Weiss R. Kind 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1(1):1–22. https://doi.org/10.1038/nrdp.2015.19.
Berg AH, Scherer PE. Adipose tissue, irritation, and heart problems. Circ Res. 2005;96(9):939–49. https://doi.org/10.1161/01.RES.0000163635.62927.34.
Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW, Miller AH, Mantovani A, Weyand CM, Barzilai N, Goronzy JJ, Rando TA, Effros RB, Lucia A, Kleinstreuer N, Slavich GM. Continual irritation within the etiology of illness throughout the life span. Nat Med. 2019;25(12):1822–32. https://doi.org/10.1038/s41591-019-0675-0.
Koyama Y, Brenner DA. Liver irritation and fibrosis. J Clin Make investments. 2017;127(1):55–64. https://doi.org/10.1172/JCI88881.
Chitturi S, Abeygunasekera S, Farrell GC, Holmes-Walker J, Hui JM, Fung C, Karim R, Lin R, Samarasinghe D, Liddle C, Weltman M, George J. NASH and insulin resistance: insulin hypersecretion and particular affiliation with the insulin resistance syndrome. Hepatology. 2002;35(2):373–9. https://doi.org/10.1053/jhep.2002.30692.
Sibuyi NRS, Moabelo KL, Meyer M, Onani MO, Dube A, Madiehe AM. Nanotechnology advances in direction of growth of targeted-treatment for weight problems. J Nanobiotechnol. 2019;17(1):122. https://doi.org/10.1186/s12951-019-0554-3.
Puré E, Cuff CA. A Essential Position for CD44 in Irritation. Traits Mol Med. 2001;7(5):213–21. https://doi.org/10.1016/S1471-4914(01)01963-3.
Kuwahara G, Hashimoto T, Tsuneki M, Yamamoto Ok, Assi R, Foster TR, Hanisch JJ, Bai H, Hu H, Protack CD, Corridor MR, Schardt JS, Jay SM, Madri JA, Kodama S, Dardik A. CD44 promotes irritation and extracellular matrix manufacturing throughout arteriovenous fistula maturation. Arterioscler Thromb Vasc Biol. 2017;37(6):1147–56. https://doi.org/10.1161/ATVBAHA.117.309385.
Kang HS, Liao G, DeGraff LM, Gerrish Ok, Bortner CD, Garantziotis S, Jetten AM. CD44 performs a essential position in regulating diet-induced adipose irritation, hepatic steatosis, and insulin resistance. PLoS ONE. 2013;8(3):e58417. https://doi.org/10.1371/journal.pone.0058417.
Kodama Ok, Horikoshi M, Toda Ok, Yamada S, Hara Ok, Irie J, Sirota M, Morgan AA, Chen R, Ohtsu H, Maeda S, Kadowaki T, Butte AJ. Expression-based genome-wide affiliation examine hyperlinks the receptor CD44 in adipose tissue with sort 2 diabetes. Proc Natl Acad Sci. 2012;109(18):7049–54. https://doi.org/10.1073/pnas.1114513109.
Fang M, Yao M, Yang J, Zheng W-J, Wang L, Yao D-F. Irregular CD44 activation of hepatocytes with nonalcoholic fatty accumulation in rat hepatocarcinogenesis. World J Gastrointestinal Oncol. 2020;12(1):66–76. https://doi.org/10.4251/wjgo.v12.i1.66.
Patouraux S, Rousseau D, Bonnafous S, Lebeaupin C, Luci C, Canivet CM, Schneck A-S, Bertola A, Saint-Paul M-C, Iannelli A, Gugenheim J, Anty R, Tran A, Bailly-Maitre B, Gual P. CD44 Is a key participant in non-alcoholic steatohepatitis. J Hepatol. 2017;67(2):328–38. https://doi.org/10.1016/j.jhep.2017.03.003.
Kodama Ok, Toda Ok, Morinaga S, Yamada S, Butte AJ. Anti-CD44 antibody therapy lowers hyperglycemia and improves insulin resistance, adipose irritation, and hepatic steatosis in diet-induced overweight mice. Diabetes. 2014;64(3):867–75. https://doi.org/10.2337/db14-0149.
Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell floor receptor for hyaluronate. Cell. 1990;61(7):1303–13. https://doi.org/10.1016/0092-8674(90)90694-A.
Choi KY, Han HS, Lee ES, Shin JM, Almquist BD, Lee DS, Park JH. Hyaluronic acid-based activatable nanomaterials for stimuli-responsive imaging and therapeutics: past CD44-mediated drug supply. Adv Mater. 2019;31(34):1803549. https://doi.org/10.1002/adma.201803549.
Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical purposes. Adv Mater. 2011;23(12):H41–56. https://doi.org/10.1002/adma.201003963.
Huang G, Huang H. Utility of hyaluronic acid as carriers in drug supply. Drug Del. 2018;25(1):766–72. https://doi.org/10.1080/10717544.2018.1450910.
Lee GY, Kim J-H, Choi KY, Yoon HY, Kim Ok, Kwon IC, Choi Ok, Lee B-H, Park JH, Kim I-S. Hyaluronic acid nanoparticles for energetic concentrating on atherosclerosis. Biomaterials. 2015;53:341–8. https://doi.org/10.1016/j.biomaterials.2015.02.089.
Kim H-Y, Kim H-R, Kang M-G, Trang NTD, Baek H-J, Moon J-D, Shin J-H, Suh S-P, Ryang D-W, Kook H, Shin M-G. Profiling of biomarkers for the publicity of polycyclic fragrant hydrocarbons: lamin-A/C isoform 3, poly[ADP-Ribose] polymerase 1, and mitochondria copy quantity are recognized as common biomarkers. BioMed Res Int. 2014;2014:e605135. https://doi.org/10.1155/2014/605135.
Altman R, Bedi A, Manjoo A, Niazi F, Shaw P, Mease P. Anti-inflammatory results of intra-articular hyaluronic acid: a scientific assessment. Cartilage. 2019;10(1):43–52. https://doi.org/10.1177/1947603517749919.
Sengupta S, Pal S, Pal A, Maity S, Sarkar Ok, Das M. A assessment on synthesis, toxicity profile and biomedical purposes of graphene quantum dots (GQDs). Inorg Chim Acta. 2023;557:121677. https://doi.org/10.1016/j.ica.2023.121677.
Chen F, Gao W, Qiu X, Zhang H, Liu L, Liao P, Fu W, Luo Y. Graphene quantum dots in biomedical purposes: current advances and future challenges. Entrance Lab Med. 2017;1(4):192–9. https://doi.org/10.1016/j.flm.2017.12.006.
Feng L, Li Ok, Shi X, Gao M, Liu J, Liu Z. Sensible PH-Responsive nanocarriers based mostly on nano-graphene oxide for mixed chemo- and photothermal remedy overcoming drug resistance. Adv Healthcare Mater. 2014;3(8):1261–71. https://doi.org/10.1002/adhm.201300549.
Fasbender S, Zimmermann L, Cadeddu R-P, Luysberg M, Moll B, Janiak C, Heinzel T, Haas R. The low toxicity of graphene quantum dots is mirrored by marginal gene expression adjustments of main human hematopoietic stem cells. Sci Rep. 2019;9(1):12028. https://doi.org/10.1038/s41598-019-48567-6.
Zhao C, Track X, Liu Y, Fu Y, Ye L, Wang N, Wang F, Li L, Mohammadniaei M, Zhang M, Zhang Q, Liu J. Synthesis of graphene quantum dots and their purposes in drug supply. J Nanobiotechnol. 2020;18(1):142. https://doi.org/10.1186/s12951-020-00698-z.
Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug supply purposes. Acta Biomater. 2013;9(12):9243–57. https://doi.org/10.1016/j.actbio.2013.08.016.
Woo S-L, Xu H, Li H, Zhao Y, Hu X, Zhao J, Guo X, Guo T, Botchlett R, Qi T, Pei Y, Zheng J, Xu Y, An X, Chen L, Chen L, Li Q, Xiao X, Huo Y, Wu C. Metformin ameliorates hepatic steatosis and irritation with out altering adipose phenotype in diet-induced weight problems. PLoS ONE. 2014;9(3):e91111. https://doi.org/10.1371/journal.pone.0091111.
Vasamsetti SB, Karnewar S, Kanugula AK, Thatipalli AR, Kumar JM, Kotamraju S. Metformin inhibits monocyte-to-macrophage differentiation by way of AMPK-mediated inhibition of STAT3 activation: potential position in atherosclerosis. Diabetes. 2015;64(6):2028–41. https://doi.org/10.2337/db14-1225.
Rena G, Hardie DG, Pearson ER. The mechanisms of motion of metformin. Diabetologia. 2017;60(9):1577–85. https://doi.org/10.1007/s00125-017-4342-z.
Li T, Liu Z, Wang J, Ye H, Wan Y, Du X, Solar X, Zhou M, Lin Y, Jing P, Zhong Z. Nanoformulated metformin enhanced the therapy of spinal twine harm. Chem Eng J. 2022;446:137227. https://doi.org/10.1016/j.cej.2022.137227.
Bouriche S, Alonso-García A, Cárceles-Rodríguez CM, Rezgui F, Fernández-Varón E. An in vivo pharmacokinetic examine of metformin microparticles as an oral sustained launch formulation in rabbits. BMC Vet Res. 2021;17(1):315. https://doi.org/10.1186/s12917-021-03016-3.
Byrne JD, Betancourt T, Brannon-Peppas L. Lively concentrating on schemes for nanoparticle techniques in most cancers therapeutics. Adv Drug Deliv Rev. 2008;60(15):1615–26. https://doi.org/10.1016/j.addr.2008.08.005.
Track E, Han W, Li C, Cheng D, Li L, Liu L, Zhu G, Track Y, Tan W. Hyaluronic acid-decorated graphene oxide nanohybrids as nanocarriers for focused and ph-responsive anticancer drug supply. ACS Appl Mater Interf. 2014;6(15):11882–90. https://doi.org/10.1021/am502423r.
Abdullah-Al-Nahain J-EL, In I, Lee H, Lee KD, Jeong JH, Park SY. Goal supply and cell imaging utilizing hyaluronic acid-functionalized graphene quantum dots. Mol Pharmaceutics. 2013;10(10):3736–44. https://doi.org/10.1021/mp400219u.
Vahedi N, Tabandeh F, Mahmoudifard M. Hyaluronic acid-graphene quantum dot nanocomposite: potential goal drug supply and most cancers cell imaging. Biotechnol Appl Biochem. 2022;69(3):1068–79. https://doi.org/10.1002/bab.2178.
Wu H, Shi H, Wang Y, Jia X, Tang C, Zhang J, Yang S. Hyaluronic acid conjugated graphene oxide for focused drug supply. Carbon. 2014;69:379–89. https://doi.org/10.1016/j.carbon.2013.12.039.
Zhang X, Qu Q, Yang A, Wang J, Cheng W, Deng Y, Zhou A, Lu T, Xiong R, Huang C. Chitosan enhanced the soundness and antibiofilm exercise of self-propelled prussian blue micromotor. Carbohydrate Poly. 2023;299:120134. https://doi.org/10.1016/j.carbpol.2022.120134.
Qu Q, Zhang X, Yang A, Wang J, Cheng W, Zhou A, Deng Y, Xiong R, Huang C. Spatial confinement of multi-enzyme for cascade catalysis in cell-inspired all-aqueous multicompartmental microcapsules. J Colloid Interface Sci. 2022;626:768–74. https://doi.org/10.1016/j.jcis.2022.06.128.
Sarkar Ok, Dutta Ok, Chatterjee A, Sarkar J, Das D, Prasad A, Chattopadhyay D, Acharya Ok, Das M, Verma SK, De S. Nanotherapeutic potential of antibacterial folic acid-functionalized nanoceria for wound-healing purposes. Nanomedicine. 2023;18(2):109–23. https://doi.org/10.2217/nnm-2022-0233.
Bradford MM. A fast and delicate technique for the quantitation of microgram portions of protein using the precept of protein-dye binding. Anal Biochem. 1976;72(1):248–54. https://doi.org/10.1016/0003-2697(76)90527-3.
Draper, H. H.; Hadley, M. [43] Malondialdehyde Willpower as Index of Lipid Peroxidation. In Strategies in Enzymology; Oxygen Radicals in Organic Programs Half B: Oxygen Radicals and Antioxidants; Tutorial Press, 1990; Vol. 186, pp 421–431. https://doi.org/10.1016/0076-6879(90)86135-I.
Aebi, H. [13] Catalase in Vitro. In Strategies in Enzymology; Oxygen Radicals in Organic Programs; Tutorial Press, 1984; Vol. 105, pp 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3.
Das A, Financial institution S, Chatterjee S, Paul N, Sarkar Ok, Chatterjee A, Chakraborty S, Banerjee C, Majumdar A, Das M, Ghosh S. Bifenthrin disrupts cytochrome c oxidase exercise and reduces mitochondrial DNA copy quantity via oxidative harm in pool barb (Puntius Sophore). Chemosphere. 2023;332:138848. https://doi.org/10.1016/j.chemosphere.2023.138848.
Salbitani G, Bottone C, Carfagna S. Willpower of lowered and whole glutathione content material in extremophilic microalga galdieria phlegrea. Bio-Protoc. 2017;7(13):e2372–e2372.
Chatterjee A, Sarkar Ok, Financial institution S, Ghosh S, Pal D, Saraf S, Wakle D, Roy B, Chakraborty S, Bankura B, Debprasad C, Das M. Homozygous GRHPR C 494G>a mutation is deleterious that causes early onset of nephrolithiasis in West Bengal India. Entrance Mole Biosci. 2022. https://doi.org/10.3389/fmolb.2022.1049620.
Multifunctional Biocompatible Graphene Oxide Quantum Dots Adorned Magnetic Nanoplatform for Environment friendly Seize and Two-Photon Imaging of Uncommon Tumor Cells | ACS Utilized Supplies & Interfaces. https://pubs.acs.org/doi/https://doi.org/10.1021/acsami.5b02199 Accessed 15 July 2023.
Deng Y, Lu T, Zhang X, Zeng Z, Tao R, Qu Q, Zhang Y, Zhu M, Xiong R, Huang C. Multi-hierarchical nanofiber membrane with typical curved-ribbon construction fabricated by inexperienced electrospinning for environment friendly, breathable and sustainable air filtration. J Memb Sci. 2022;660:120857. https://doi.org/10.1016/j.memsci.2022.120857.
Dutta Ok, De S, Das B, Bera S, Guria B, Ali MS, Chattopadhyay D. Growth of an environment friendly immunosensing platform by exploring single-walled carbon nanohorns (SWCNHs) and nitrogen doped graphene quantum dot (N-GQD) nanocomposite for early detection of most cancers biomarker. ACS Biomater Sci Eng. 2021;7(12):5541–54. https://doi.org/10.1021/acsbiomaterials.1c00753.
Ghosh T, Prasad E. White-light emission from unmodified graphene oxide quantum dots. J Phys Chem C. 2015;119(5):2733–42. https://doi.org/10.1021/jp511787a.
Roy H, Brahma CK, Nandi S, Parida KR. Formulation and design of sustained launch matrix tablets of metformin hydrochloride: affect of hypromellose and polyacrylate polymers. Int J Appl Primary Med Res. 2013;3(1):55–63. https://doi.org/10.4103/2229-516X.112242.
Solar Ok, Kusminski CM, Scherer PE. Adipose tissue reworking and weight problems. J Clin Make investments. 2011;121(6):2094–101. https://doi.org/10.1172/JCI45887.
Lumeng CN, Saltiel AR. Inflammatory hyperlinks between weight problems and metabolic illness. J Clin Make investments. 2011;121(6):2111–7. https://doi.org/10.1172/JCI57132.
Petta S, Gastaldelli A, Rebelos E, Bugianesi E, Messa P, Miele L, Svegliati-Baroni G, Valenti L, Bonino F. Pathophysiology of non alcoholic fatty liver illness. Int J Mol Sci. 2016;17(12):2082. https://doi.org/10.3390/ijms17122082.
Carr RM, Oranu A, Khungar V. Nonalcoholic fatty liver illness: pathophysiology and administration. Gastroenterol Clin North Am. 2016;45(4):639–52. https://doi.org/10.1016/j.gtc.2016.07.003.
Vinaik R, Barayan D, Jeschke MG. NLRP3 inflammasome in irritation and metabolism: figuring out novel roles in postburn adipose dysfunction. Endocrinology. 2020;161(9):116. https://doi.org/10.1210/endocr/bqaa116.
Karasawa T, Kawashima A, Usui-Kawanishi F, Watanabe S, Kimura H, Kamata R, Shirasuna Ok, Koyama Y, Sato-Tomita A, Matsuzaka T, Tomoda H, Park S-Y, Shibayama N, Shimano H, Kasahara T, Takahashi M. Saturated fatty acids endure intracellular crystallization and activate the NLRP3 inflammasome in macrophages. Arterioscler Thromb Vasc Biol. 2018;38(4):744–56. https://doi.org/10.1161/ATVBAHA.117.310581.
Shi H, Kokoeva MV, Inouye Ok, Tzameli I, Yin H, Flier JS. TLR4 hyperlinks innate immunity and fatty acid-induced insulin resistance. J Clin Make investments. 2006;116(11):3015–25. https://doi.org/10.1172/JCI28898.
Shi X, Wang X, Li Q, Su M, Chew E, Wong ET, Lacza Z, Radda GK, Tergaonkar V, Han W. Nuclear issue ΚB (NF-ΚB) suppresses meals consumption and power expenditure in mice by instantly activating the pomc promoter. Diabetologia. 2013;56(4):925–36. https://doi.org/10.1007/s00125-013-2831-2.
Zhang L, Li G, Tao S, Xia P, Chaudhry N, Kaura S, Stone SS, Liu M. Ginkgo biloba extract reduces cardiac and mind irritation in rats fed a HFD and uncovered to persistent psychological stress via NF-κB inhibition. Med Inflam. 2022;2022:e2408598. https://doi.org/10.1155/2022/2408598.
Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W. IκB Kinases phosphorylate NF-ΚB P65 subunit on serine 536 within the transactivation area *. J Biol Chem. 1999;274(43):30353–6. https://doi.org/10.1074/jbc.274.43.30353.
Christian F, Smith EL, Carmody RJ. The regulation of NF-ΚB subunits by phosphorylation. Cells. 2016;5(1):12. https://doi.org/10.3390/cells5010012.
Lage R, Diéguez C, Vidal-Puig A, López M. AMPK: a metabolic gauge regulating whole-body power homeostasis. Traits Mol Med. 2008;14(12):539–49. https://doi.org/10.1016/j.molmed.2008.09.007.
Hattori Y, Suzuki Ok, Hattori S, Kasai Ok. Metformin inhibits cytokine-induced nuclear issue ΚB activation By way of AMP-activated protein kinase activation in vascular endothelial cells. Hypertension. 2006;47(6):1183–8. https://doi.org/10.1161/01.HYP.0000221429.94591.72.
del Fresno C, Otero Ok, Gómez-García L, González-León MC, Soler-Ranger L, Fuentes-Prior P, Escoll P, Baos R, Caveda L, García F, Arnalich F, López-Collazo E. Tumor cells deactivate human monocytes by up-regulating IL-1 receptor related kinase-M expression by way of CD44 and TLR4. J Immunol. 2005;174(5):3032–40. https://doi.org/10.4049/jimmunol.174.5.3032.
Hubbard LLN, Moore BB. IRAK-M regulation and performance in host protection and immune homeostasis. Infect Dis Rep. 2010;2(1):e9. https://doi.org/10.4081/idr.2010.e9.
Jia F, Chen L, Fang L, Chen W. IRAK-M deletion aggravates acute inflammatory response and mitochondrial respiratory dysfunction following myocardial infarction: a bioinformatics evaluation. J Proteomics. 2022;257:104512. https://doi.org/10.1016/j.jprot.2022.104512.
Solar A, Mu L, Hu X. Graphene oxide quantum dots as novel nanozymes for alcohol intoxication. ACS Appl Mater Interfaces. 2017;9(14):12241–52. https://doi.org/10.1021/acsami.7b00306.
Ren C, Hu X, Zhou Q. Graphene oxide quantum dots cut back oxidative stress and inhibit neurotoxicity in vitro and in vivo via catalase-like exercise and metabolic regulation. Adv Sci. 2018;5(5):1700595. https://doi.org/10.1002/advs.201700595.
Sudha PN, Rose MH. Chapter 9—useful results of hyaluronic acid. Adv Meals Nutr Res. 2014;72:137–76. https://doi.org/10.1016/B978-0-12-800269-8.00009-9.
Patiño-Herrera R, Louvier-Hernández JF, Escamilla-Silva EM, Chaumel J, Escobedo AGP, Pérez E. Extended launch of metformin by SiO2 nanoparticles pellets for sort II diabetes management. Eur J Pharm Sci. 2019;131:1–8. https://doi.org/10.1016/j.ejps.2019.02.003.
Lari AS, Zahedi P, Ghourchian H, Khatibi A. Microfluidic-based synthesized carboxymethyl chitosan nanoparticles containing metformin for diabetes remedy: in vitro and in vivo assessments. Carbohyd Polym. 2021;261:117889. https://doi.org/10.1016/j.carbpol.2021.117889.
Cesur S, Cam ME, Sayın FS, Su S, Harker A, Edirisinghe M, Gunduz O. Metformin-loaded polymer-based microbubbles/nanoparticles generated for the therapy of sort 2 diabetes mellitus. Langmuir. 2022;38(17):5040–51. https://doi.org/10.1021/acs.langmuir.1c00587.
Kumar S, Bhanjana G, Verma RK, Dhingra D, Dilbaghi N, Kim Ok-H. Metformin-loaded alginate nanoparticles as an efficient antidiabetic agent for managed drug launch. J Pharm Pharmacol. 2017;69(2):143–50. https://doi.org/10.1111/jphp.12672.
Kenechukwu FC, Nnamani DO, Duhu JC, Nmesirionye BU, Momoh MA, Akpa PA, Attama AA. Potential enhancement of metformin hydrochloride in solidified reverse micellar solution-based PEGylated lipid nanoparticles concentrating on therapeutic efficacy in diabetes therapy. Heliyon. 2022. https://doi.org/10.1016/j.heliyon.2022.e09099.
Jain AK, Upadhyay R, Mishra Ok, Jain SK. Gastroretentive metformin loaded nanoparticles for the efficient administration of type-2 diabetes mellitus. Present Drug Del. 2022;19(1):93–103.
Huang Ok, Liu X, Lv Z, Zhang D, Zhou Y, Lin Z, Guo J. MMP9-responsive graphene oxide quantum dot-based nano-in-micro drug supply system for combinatorial remedy of choroidal neovascularization. Small. 2023. https://doi.org/10.1002/smll.202207335.
Shahabi M, Raissi H. A brand new perception into the switch and supply of Anti-SARS-CoV-2 Drug Carmofur with the help of graphene oxide quantum dot as a extremely environment friendly nanovector towards COVID-19 by molecular dynamics simulation. RSC Adv. 2022;12(22):14167–74. https://doi.org/10.1039/D2RA01420C.
Gui W, Zhang J, Chen X, Yu D, Ma Q. N-Doped graphene quantum Dot@mesoporous silica nanoparticles modified with hyaluronic acid for fluorescent imaging of tumor cells and drug supply. Microchim Acta. 2017;185(1):66. https://doi.org/10.1007/s00604-017-2598-0.
Tao J, Feng S, Liu B, Pan J, Li C, Zheng Y. Hyaluronic acid conjugated nitrogen-doped graphene quantum dots for identification of human breast most cancers cells. Biomed Mater. 2021. https://doi.org/10.1088/1748-605X/ac0d93.
Asghari S, Mahmoudifard M. The detection of the captured circulating tumor cells on the core-shell nanofibrous membrane utilizing hyaluronic acid-functionalized graphene quantum dots. J Biomed Mater Res B Appl Biomater. 2023;111(5):1121–32. https://doi.org/10.1002/jbm.b.35219.
Rho JG, Han HS, Han JH, Lee H, Nguyen VQ, Lee WH, Kwon S, Heo S, Yoon J, Shin HH, Lee E, Kang H, Yang S, Lee EK, Park JH, Kim W. Self-assembled hyaluronic acid nanoparticles: implications as a nanomedicine for therapy of sort 2 diabetes. J Management Rel. 2018;279:89–98. https://doi.org/10.1016/j.jconrel.2018.04.006.
Yang L, Zhang L, Hu J, Wang W, Liu X. Promote anti-inflammatory and angiogenesis utilizing a hyaluronic acid-based hydrogel with MiRNA-laden nanoparticles for persistent diabetic wound therapy. Int J Biol Macromol. 2021;166:166–78. https://doi.org/10.1016/j.ijbiomac.2020.10.129.
Beldman TJ, Senders ML, Alaarg A, Pérez-Medina C, Tang J, Zhao Y, Fay F, Deichmöller J, Born B, Desclos E, van der Wel NN, Hoebe RA, Kohen F, Kartvelishvily E, Neeman M, Reiner T, Calcagno C, Fayad ZA, de Winther MPJ, Lutgens E, Mulder WJM, Kluza E. Hyaluronan nanoparticles selectively goal plaque-associated macrophages and enhance plaque stability in atherosclerosis. ACS Nano. 2017;11(6):5785–99. https://doi.org/10.1021/acsnano.7b01385.
Huang Z-W, Shi Y, Zhai Y-Y, Du C-C, Zhai J, Yu R-J, Kou L, Xiao J, Zhao Y-Z, Yao Q. Hyaluronic acid coated bilirubin nanoparticles attenuate ischemia reperfusion-induced acute kidney harm. J Management Rel. 2021;334:275–89. https://doi.org/10.1016/j.jconrel.2021.04.033.
