Hyaluronic acid-modified and verteporfin-loaded polylactic acid nanogels promote scarless wound therapeutic by accelerating wound re-epithelialization and controlling scar formation | Journal of Nanobiotechnology


  • Barros Almeida I, Garcez Barretto Teixeira L, Oliveira de Carvalho F, Ramos Silva E, Santos Nunes P. Viana Dos Santos MR, Antunes de Souza Araujo A: Sensible Dressings for Wound Therapeutic: a assessment. Adv Pores and skin Wound Care. 2021;34:1–8.

    Article 
    PubMed 

    Google Scholar
     

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound restore and regeneration. Nature. 2008;453:314–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xin P, Han S, Huang J, You X, Wu J. Pure soybean milk-derived bioactive Coatings for enhanced Wound Therapeutic. ACS Appl Mater Interfaces. 2022;14:34480–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Komi DEA, Khomtchouk Ok, Santa Maria PL. A assessment of the contribution of mast cells in Wound Therapeutic: concerned Molecular and Mobile Mechanisms. Clin Rev Allergy Immunol. 2020;58:298–312.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rousselle P, Braye F, Dayan G. Re-epithelialization of grownup pores and skin wounds: Mobile mechanisms and therapeutic methods. Adv Drug Deliv Rev. 2019;146:344–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eming SA, Martin P, Tomic-Canic M. Wound restore and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6:265sr266–6.

    Article 

    Google Scholar
     

  • Mascharak S, DesJardins-Park HE, Davitt MF, Griffin M, Borrelli MR, Moore AL, Chen Ok, Duoto B, Chinta M, Foster DS, et al. Stopping Engrailed-1 activation in fibroblasts yields wound regeneration with out scarring. Science. 2021;372:362–.

    Article 

    Google Scholar
     

  • Liu F, Lagares D, Choi KM, Stopfer L, Marinkovic A, Vrbanac V, Probst CK, Hiemer SE, Sisson TH, Horowitz JC, et al. Mechanosignaling by way of YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Lung Cell Mol Physiol. 2015;308:L344–357.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ju Y, Dai X, Tang Z, Ming Z, Ni N, Zhu D, Zhang J, Ma B, Wang J, Huang R, et al. Verteporfin-mediated on/off photoswitching capabilities synergistically to deal with choroidal vascular ailments. Bioact Mater. 2022;14:402–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia X, He L, Yang Z. Latest advances within the function of yes-associated protein in dermatosis. Pores and skin Res Technol. 2023;29:e13285.

    Article 
    PubMed 

    Google Scholar
     

  • Shi-Wen X, Racanelli M, Ali A, Simon A, Quesnel Ok, Stratton RJ, Leask A. Verteporfin inhibits the persistent fibrotic phenotype of lesional scleroderma dermal fibroblasts. J Cell Commun Sign. 2021;15:71–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mascharak S, Talbott HE, Januszyk M, Griffin M, Chen Ok, Davitt MF, Demeter J, Henn D, Bonham CA, Foster DS, et al. Multi-omic evaluation reveals divergent molecular occasions in scarring and regenerative wound therapeutic. Cell Stem Cell. 2022;29:315–327e316.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffin MF, desJardins-Park HE, Mascharak S, Borrelli MR, Longaker MT. Understanding the affect of fibroblast heterogeneity on pores and skin fibrosis. Dis Mannequin Mech 2020, 13.

  • Nethi SK, Das S, Patra CR, Mukherjee S. Latest advances in inorganic nanomaterials for wound-healing functions. Biomater Sci. 2019;7:2652–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bamburowicz-Klimkowska M, Poplawska M, Grudzinski IP. Nanocomposites as biomolecules supply brokers in nanomedicine. J Nanobiotechnol. 2019;17:1–32.

    Article 

    Google Scholar
     

  • Liu B, Jin Z, Chen H, Liang L, Li Y, Wang G, Zhang J, Xu T. Electrospun poly (L-lactic acid)/gelatine membranes loaded with doxorubicin for efficient suppression of glioblastoma cell development in vitro and in vivo. Regen Biomater. 2021;8:rbab043.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Padilla-Gainza V, Rodriguez-Tobias H, Morales G, Ledezma-Perez A, Alvarado-Canche C, Loera-Valencia R, Rodriguez C, Gilkerson R, De Leo CT, Lozano Ok. Improvement of zinc oxide/hydroxyapatite/poly(D,L-lactic acid) fibrous scaffold for tissue engineering functions. Biomater Adv. 2022;133:112594.

    Article 
    PubMed 

    Google Scholar
     

  • Da Costa D, Exbrayat-Heritier C, Rambaud B, Megy S, Terreux R, Verrier B, Primard C. Floor cost modulation of rifampicin-loaded PLA nanoparticles to enhance antibiotic supply in Staphylococcus aureus biofilms. J Nanobiotechnol. 2021;19:12.

    Article 

    Google Scholar
     

  • Ishikawa T, Sasaki D, Aizawa R, Yamamoto M, Yaegashi T, Irie T, Sasaki M. The function of Lactic Acid on Wound Therapeutic, Cell Development, Cell Cycle Kinetics, and Gene expression of cultured junctional epithelium cells within the pathophysiology of Periodontal Illness. Pathogens 2021, 10.

  • Puiggali-Jou A, Ordono J, Del Valle LJ, Perez-Amodio S, Engel E, Aleman C. Tuning multilayered polymeric self-standing movies for managed launch of L-lactate by electrical stimulation. J Management Launch. 2021;330:669–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu H, Pu F, Liu Z, Liu X, Dong Ok, Liu C, Ren J, Qu X. Hydrogel-based synthetic enzyme for combating micro organism and accelerating wound therapeutic. Nano Res. 2020;13:496–502.

    Article 
    CAS 

    Google Scholar
     

  • Chakrabarti S, Chattopadhyay P, Islam J, Ray S, Raju PS, Mazumder B. Features of Nanomaterials in Wound Therapeutic. Curr Drug Deliv. 2019;16:26–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong C, Wu Q, Wang Y, Zhang D, Luo F, Zhao X, Wei Y, Qian Z. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound therapeutic. Biomaterials. 2013;34:6377–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hwang J, Kiick KL, Sullivan MO. Modified hyaluronic acid-collagen matrices set off environment friendly gene switch and prohealing conduct in fibroblasts for improved wound restore. Acta Biomater. 2022;150:138–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding YW, Wang ZY, Ren ZW, Zhang XW, Wei DX. Advances in modified hyaluronic acid-based hydrogels for pores and skin wound therapeutic. Biomater Sci. 2022;10:3393–409.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Zhang Z, Xin Y, Zhou R, Jiang Ok, Solar X, He D, Track J, Zhang Y. Synergistic transdermal supply of nanoethosomes embedded in hyaluronic acid nanogels for enhancing photodynamic remedy. Nanoscale. 2020;12:15435–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie J, Ji Y, Xue W, Ma D, Hu Y. Hyaluronic acid-containing ethosomes as a possible provider for transdermal drug supply. Colloids Surf B Biointerfaces. 2018;172:323–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu S, Zheng Y, Liu R, Tian C. Preparation and characterization of a novel polylactic acid/hydroxyapatite composite scaffold with biomimetic micro-nanofibrous porous construction. J Mater Sci Mater Med. 2020;31:74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doustkhah E, Najafi Zare R, Yamauchi Y, Taheri-Kafrani A, Mohtasham H, Esmat M, Ide Y, Fukata N, Rostamnia S, Sadeghi MH, Assadi MHN. Template-oriented synthesis of hydroxyapatite nanoplates for 3D bone printing. J Mater Chem B. 2019;7:7228–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang R, Zhai Q, An T, Gong S, Cheng W. Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat. Talanta. 2021;222:121484.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain DS, Bajaj AN, Athawale RB, Shikhande SS, Pandey A, Goel PN, Gude RP, Patil S, Raut P. Thermosensitive PLA primarily based nanodispersion for concentrating on mind tumor through intranasal route. Mater Sci Eng C Mater Biol Appl. 2016;63:411–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rennick JJ, Johnston APR, Parton RG. Key ideas and strategies for finding out the endocytosis of organic and nanoparticle therapeutics. Nat Nanotechnol. 2021;16:266–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alsamman S, Christenson SA, Yu A, Ayad NME, Mooring MS, Segal JM, Hu JK, Schaub JR, Ho SS, Rao V et al. Focusing on acid ceramidase inhibits YAP/TAZ signaling to cut back fibrosis in mice. Sci Transl Med 2020, 12.

  • Wilson SL, Guilbert M, Sule-Suso J, Torbet J, Jeannesson P, Sockalingum GD, Yang Y. A microscopic and macroscopic research of growing old collagen on its molecular construction, mechanical properties, and mobile response. FASEB J. 2014;28:14–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Zheng Y, Lee J, Hua J, Li S, Panchamukhi A, Yue J, Gou X, Xia Z, Zhu L. A pulsatile launch platform primarily based on photo-induced imine-crosslinking hydrogel promotes scarless wound therapeutic. Nat Commun. 2021;12:1670.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim H, Kim DE, Han G, Lim NR, Kim EH, Jang Y, Cho H, Jang H, Kim KH, Kim SH, Yang Y. Harnessing the Pure Therapeutic Energy of Colostrum: bovine milk-derived extracellular vesicles from Colostrum facilitating the transition from irritation to tissue regeneration for accelerating Cutaneous Wound Therapeutic. Adv Healthc Mater. 2022;11:e2102027.

    Article 
    PubMed 

    Google Scholar
     

  • Saiding Q, Lian J, Cui W. Mechanotransduction blocking: a march to scarless wound therapeutic. Matter. 2022;5:2493–4.

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles