Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental functions of semiconductor photocatalysis. Chem Rev. 1995;95:69–96. https://doi.org/10.1021/cr00033a004.
Huang X, El-Sayed IH, Qian W, El-Sayed MA. Most cancers cell imaging and photothermal remedy within the near-infrared area by utilizing gold nanorods. J Am Chem Soc. 2006;128:2115–20. https://doi.org/10.1021/ja057254a.
Kim JS, Kuk E, Yu KN, et al. Antimicrobial results of silver nanoparticles. Nanomed Nanotechnol Biol Med. 2007;3:95–101. https://doi.org/10.1016/j.nano.2006.12.001.
Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and organic functions. Chem Rev. 2008;108:2064–110. https://doi.org/10.1021/cr068445e.
Livage J, Henry M, Sanchez C. Sol–gel chemistry of transition metallic oxides. Prog Stable State Chem. 1988;18:259–341. https://doi.org/10.1016/0079-6786(88)90005-2.
O’Neal DP, Hirsch LR, Halas NJ, et al. Photograph-thermal tumor ablation in mice utilizing close to infrared-absorbing nanoparticles. Most cancers Lett. 2016;209:171–6. https://doi.org/10.1016/j.canlet.2004.02.004.
Oskam G. Steel oxide nanoparticles: synthesis, characterization and utility. J Sol–gel Sci Technol. 2006;37:161–4.
Sastry M, Ahmad A, Khan MI, Kumar R. Biosynthesis of metallic nanoparticles utilizing fungi and actinomycete. Curr Sci. 2003;85:162–70. https://doi.org/10.1016/S0927-7765(02)00174-1.
Su X-Y, Liu P-D, Wu H, Gu N. Enhancement of radiosensitization by metal-based nanoparticles in most cancers radiation remedy. Most cancers Biol Med. 2014;11:86–91. https://doi.org/10.7497/j.issn.2095-3941.2014.02.003.
Cao G. Nanastructures and nanomaterials—synthesis, properties and functions. Singapore: World Scientific; 2004.
Doble M, Kruthiventi AK. Inexperienced chemistry and engineering. Cambridge: Tutorial Press; 2007.
Aguilar Z. Nanomaterials for medical functions. Boston: Elsevier; 2013.
Dahoumane SA, Yéprémian C, Djédiat C, et al. Enchancment of kinetics, yield, and colloidal stability of biogenic gold nanoparticles utilizing dwelling cells of Euglena gracilis microalga. J Nanoparticle Res. 2016. https://doi.org/10.1007/s11051-016-3378-1.
El-Rafie HM, El-Rafie MH, Zahran MK. Inexperienced synthesis of silver nanoparticles utilizing polysaccharides extracted from marine macro algae. Carbohydr Polym. 2013;96:403–10. https://doi.org/10.1016/j.carbpol.2013.03.071.
Husen A, Siddiqi KS. Crops and microbes assisted selenium nanoparticles: characterization and utility. J Nanobiotechnol. 2014;12:28.
Khan M, Al-Marri AH, Khan M, et al. Inexperienced method for the efficient discount of graphene oxide utilizing Salvadora persica L. root (Miswak) extract. Nanoscale Res Lett. 2015;10:1–9. https://doi.org/10.1186/s11671-015-0987-z.
Patel V, Berthold D, Puranik P, Gantar M. Screening of cyanobacteria and microalgae for his or her means to synthesize silver nanoparticles with antibacterial exercise. Biotechnol Studies. 2015;5:112–9. https://doi.org/10.1016/j.btre.2014.12.001.
Siddiqi KS, Husen A. Fabrication of metallic nanoparticles from fungi and metallic salts: scope and utility. Nanoscale Res Lett. 2016;11:1–15.
Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA. Biogenic selenium nanoparticles: present standing and future prospects. Appl Microbiol Biotechnol. 2016;100:2555–66.
Gericke M, Pinches A. Microbial manufacturing of gold nanoparticles. Gold Bull. 2006;39:22–8. https://doi.org/10.1007/BF03215529.
Iravani S. Micro organism in nanoparticle synthesis: present standing and future prospects. Int Sch Res Not. 2014;2014:1–18. https://doi.org/10.1155/2014/359316.
Thakkar KN, Mhatre SS, Parikh RY. Organic synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med. 2010;6:257–62.
Chen Y-L, Tuan H-Y, Tien C-W, et al. Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. Biotechnol Prog. 2009;25:1260–6. https://doi.org/10.1002/btpr.199.
Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological ideas and future functions. J Nanoparticle Res. 2008;10:507–17.
Narayanan KB, Sakthivel N. Synthesis and characterization of nano-gold composite utilizing Cylindrocladium floridanum and its heterogeneous catalysis within the degradation of 4-nitrophenol. J Hazard Mater. 2011;189:519–25. https://doi.org/10.1016/j.jhazmat.2011.02.069.
Yurkov AM, Kemler M, Begerow D. Species accumulation curves and incidence-based species richness estimators to appraise the variety of cultivable yeasts from beech forest soils. PLoS ONE. 2011;1:1. https://doi.org/10.1371/journal.pone.0023671.
Marchiol L. Synthesis of metallic nanoparticles in dwelling vegetation. Ital J Agron. 2012;7:274–82.
Anastas PT, Warner JC. 12 rules of inexperienced chemistry. Inexperienced chemistry: idea and apply. Oxford: Oxford College Press; 1998.
Vidya C, Hiremath S, Chandraprabha MN, et al. Inexperienced synthesis of ZnO nanoparticles by Calotropis gigantea. Int J Curr Eng Technol. 2013;1:118–20.
Gnanasangeetha D, Saralathambavani D. Biogenic manufacturing of zinc oxide nanoparticles utilizing Acalypha indica. J Chem Biol Phys Sci. 2014;4:238–46.
Devi HS, Singh TD. Synthesis of copper oxide nanoparticles by a novel technique and its utility within the degradation of methyl orange. Adv Electron Electr Eng. 2014;4:83–8.
Maensiri S, Laokul P, Klinkaewnarong J, et al. Indium oxide (in 2O3) nanoparticles utilizing aloe vera plant extract: synthesis and optical properties. J Optoelectron Adv Mater. 2008;10:161–5.
Gunalan S, Sivaraj R, Rajendran V. Inexperienced synthesized ZnO nanoparticles in opposition to bacterial and fungal pathogens. Prog Nat Sci Mater Int. 2012;22:693–700. https://doi.org/10.1016/j.pnsc.2012.11.015.
Iravani S. Inexperienced synthesis of metallic nanoparticles utilizing vegetation. Inexperienced Chem. 2011;13:2638. https://doi.org/10.1039/c1gc15386b.
Shanker U, Jassal V, Rani M, Kaith BS. In direction of inexperienced synthesis of nanoparticles: from bio-assisted sources to benign solvents. A overview. Int J Environ Anal Chem. 2016;96:801–35.
Yoosaf Ok, Ipe BI, Suresh CH, Thomas KG. In situ synthesis of metallic nanoparticles and selective naked-eye detection of lead ions from aqueous media. J Phys Chem C. 2007;111:12839–47. https://doi.org/10.1021/jp073923q.
Sylvestre J, Poulin S, Kabashin AV, et al. Floor chemistry of gold nanoparticles produced by laser ablation in aqueous media. J Phys Chem B. 2004;108:16864–9. https://doi.org/10.1021/jp047134.
Er H, Yasuda H, Harada M, et al. Formation of silver nanoparticles from ionic liquids comprising N-alkylethylenediamine: results of dissolution modes of the silver(I) ions within the ionic liquids. Colloids Surf A Physicochem Eng Asp. 2017;522:503–13. https://doi.org/10.1016/j.colsurfa.2017.03.046.
Srivastava V. In situ era of ru nanoparticles to catalyze CO2 hydrogenation to formic acid. Catal Lett. 2014;144:1745–50. https://doi.org/10.1007/s10562-014-1321-6.
Vollmer C, Redel E, Abu-Shandi Ok, et al. Microwave irradiation for the facile synthesis of transition-metal nanoparticles (NPs) in ionic liquids (ILs) from metal-carbonyl precursors and Ru-, Rh-, and Ir-NP/IL dispersions as biphasic liquid-liquid hydrogenation nanocatalysts for cyclohexene. Chem A Eur J. 2010;16:3849–58. https://doi.org/10.1002/chem.200903214.
Zhang H, Cui H. Synthesis and characterization of functionalized ionic liquid-stabilized metallic (gold and platinum) nanoparticles and metallic nanoparticle/carbon nanotube hybrids. Langmuir. 2009;25:2604–12. https://doi.org/10.1021/la803347h.
Zhang ZC. Catalysis in ionic liquids. Adv Catal. 2006;49:153–237.
Dupont J, De Souza RF, Suarez PAZ. Ionic liquid (molten salt) part organometallic catalysis. Chem Rev. 2002;102:3667–92. https://doi.org/10.1021/cr010338r.
van Rantwijk F, Sheldon RA. Biocatalysis in ionic liquids. Chem Rev. 2007;107:2757–85.
Welton T. Ionic liquids in catalysis. Coord Chem Rev. 2004;248:2459–77.
Bussamara R, Melo WWM, Scholten JD, et al. Managed synthesis of Mn3O4 nanoparticles in ionic liquids. Dalton Trans. 2013;42:14473. https://doi.org/10.1039/c3dt32348j.
Lazarus LL, Riche CT, Malmstadt N, Brutchey RL. Impact of ionic liquid impurities on the synthesis of silver nanoparticles. Langmuir. 2012;28:15987–93. https://doi.org/10.1021/la303617f.
Li N, Bai X, Zhang S, et al. Synthesis of silver nanoparticles in ionic liquid by a easy efficient electrochemical technique. J Dispers Sci Technol. 2008;29:1059–61. https://doi.org/10.1080/01932690701815606.
Kim Ok-S, Demberelnyamba D, Lee H. Measurement-selective synthesis of gold and platinum nanoparticles utilizing novel thiol-functionalized ionic liquids. Langmuir. 2004;20:556–60. https://doi.org/10.1021/la0355848.
Dupont J, Fonseca GS, Umpierre AP, et al. Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions. J Am Chem Soc. 2002;124:4228–9. https://doi.org/10.1021/ja025818u.
Bouquillon S, Courant T, Dean D, et al. Biodegradable ionic liquids: chosen artificial functions. Aust J Chem. 2007;60:843–7. https://doi.org/10.1071/CH07257.
Carter EB, Culver SL, Fox PA, et al. Candy success: ionic liquids derived from non-nutritive sweeteners. Chem Commun (Camb). 2004. https://doi.org/10.1039/b313068a.
Harjani JR, Singer RD, Garcia MT, Scammells PJ. Biodegradable pyridinium ionic liquids: design, synthesis and analysis. Inexperienced Chem. 2009;11:83–90. https://doi.org/10.1039/B811814K.
Imperato G, König B, Chiappe C. Ionic inexperienced solvents from renewable sources. Eur J Org Chem. 2007;2007:1049–58.
Fürstner A, Ackermann L, Beck Ok, et al. Olefin metathesis in supercritical carbon dioxide. J Am Chem Soc. 2001;123:9000–6. https://doi.org/10.1021/ja010952k.
Wittmann Ok, Wisniewski W, Mynott R, et al. Supercritical carbon dioxide as solvent and short-term defending group for rhodium-catalyzed hydroaminomethylation. Chem A Eur J. 2001;7:4584–9. https://doi.org/10.1002/1521-3765(20011105)7:21percent3c4584:AID-CHEM4584percent3e3.0.CO;2-P.
Pollet P, Eckert CA, Liotta CL. Solvents for sustainable chemical processes. WIT Trans Ecol Environ. 2011;154:21–31. https://doi.org/10.2495/CHEM110031.
Ohde H, Hunt F, Wai CM. Synthesis of silver and copper nanoparticles in a water-in-supercritical-carbon dioxide microemulsion. Chem Mater. 2001;13:4130–5. https://doi.org/10.1021/cm010030g.
Sue Ok, Adschiri T, Arai Ok. Predictive mannequin for equilibrium constants of aqueous inorganic species at subcritical and supercritical situations. Ind Eng Chem Res. 2002;41:3298–306. https://doi.org/10.1021/ie010956y.
Kim M, Lee BY, Ham HC, et al. Facile one-pot synthesis of tungsten oxide (WO3− x) nanoparticles utilizing sub and supercritical fluids. J Supercrit Fluids. 2016;111:8–13. https://doi.org/10.1016/j.supflu.2016.01.011.
Solar Q, Cai X, Li J, et al. Inexperienced synthesis of silver nanoparticles utilizing tea leaf extract and analysis of their stability and antibacterial exercise. Colloids Surf A Physicochem Eng Asp. 2014;444:226–31. https://doi.org/10.1016/j.colsurfa.2013.12.065.
Sadeghi B, Gholamhoseinpoor F. A research on the steadiness and inexperienced synthesis of silver nanoparticles utilizing Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta Half A Mol Biomol Spectrosc. 2015;134:310–5. https://doi.org/10.1016/j.saa.2014.06.046.
Fukushi Ok, Sato T. Utilizing a floor complexation mannequin to foretell the character and stability of nanoparticles. Environ Sci Technol. 2005;39:1250–6. https://doi.org/10.1021/es0491984.
Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL. Natural-coated silver nanoparticles in organic and environmental situations: destiny, stability and toxicity. Adv Colloid Interface Sci. 2014;204:15–34. https://doi.org/10.1016/j.cis.2013.12.002.
Tejamaya M, Römer I, Merrifield RC, Lead JR. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol. 2012;46:7011–7. https://doi.org/10.1021/es2038596.
Levard C, Hotze EM, Lowry GV, Brown GE. Environmental transformations of silver nanoparticles: impression on stability and toxicity. Environ Sci Technol. 2012;46:6900–14.
Leonard Ok, Ahmmad B, Okamura H, Kurawaki J. In situ inexperienced synthesis of biocompatible ginseng capped gold nanoparticles with outstanding stability. Colloids Surf B Biointerfaces. 2011;82:391–6. https://doi.org/10.1016/j.colsurfb.2010.09.020.
Virkutyte J, Varma RS. Inexperienced synthesis of metallic nanoparticles: biodegradable polymers and enzymes in stabilization and floor functionalization. Chem Sci. 2011;2:837. https://doi.org/10.1039/c0sc00338g.
Banerjee P, Satapathy M, Mukhopahayay A, Das P. Leaf extract mediated inexperienced synthesis of silver nanoparticles from broadly obtainable Indian vegetation: synthesis, characterization, antimicrobial property and toxicity evaluation. Bioresour Bioprocess. 2014;1:1–10. https://doi.org/10.1186/s40643-014-0003-y.
Sneha Ok, Sathishkumar M, Mao J, et al. Corynebacterium glutamicum-mediated crystallization of silver ions via sorption and discount processes. Chem Eng J. 2010;162:989–96. https://doi.org/10.1016/j.cej.2010.07.006.
Kalishwaralal Ok, Deepak V, Ramkumarpandian S, et al. Extracellular biosynthesis of silver nanoparticles by the tradition supernatant of Bacillus licheniformis. Mater Lett. 2008;62:4411–3. https://doi.org/10.1016/j.matlet.2008.06.051.
Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles utilizing plant extracts. Biotechnol Adv. 2013;31:346–56.
Dwivedi AD, Gopal Ok. Biosynthesis of silver and gold nanoparticles utilizing Chenopodium album leaf extract. Colloids Surf A Physicochem Eng Asp. 2010;369:27–33. https://doi.org/10.1016/j.colsurfa.2010.07.020.
Jha AK, Prasad Ok, Kumar V, Prasad Ok. Biosynthesis of silver nanoparticles utilizing eclipta leaf. Biotechnol Prog. 2009;25:1476–9. https://doi.org/10.1002/btpr.233.
Malik P, Shankar R, Malik V, et al. Inexperienced chemistry primarily based benign routes for nanoparticle synthesis. J Nanoparticles. 2014;2014:1–14. https://doi.org/10.1155/2014/302429.
Li X, Xu H, Chen ZS, Chen G. Biosynthesis of nanoparticles by microorganisms and their functions. J Nanomater. 2011. https://doi.org/10.1155/2011/270974.
Mukunthan KS, Balaji S. Cashew apple juice (Anacardium occidentale L.) accelerates the synthesis of silver nanoparticles. Int J Inexperienced Nanotechnol. 2012;4:71–9. https://doi.org/10.1080/19430892.2012.676900.
Prathna TC, Mathew L, Chandrasekaran N, et al. Biomimetic synthesis of nanoparticles: science, expertise and applicability. Biomimetics Study Nat. 2010. https://doi.org/10.5772/8776.
Ahmad N, Sharma S, Alam MK, et al. Speedy synthesis of silver nanoparticles utilizing dried medicinal plant of basil. Colloids Surf B Biointerfaces. 2010;81:81–6. https://doi.org/10.1016/j.colsurfb.2010.06.029.
Panigrahi S, Kundu S, Ghosh S, et al. Common technique of synthesis for metallic nanoparticles. J Nanoparticle Res. 2004;6:411–4. https://doi.org/10.1007/s11051-004-6575-2.
Zayed MF, Eisa WH, Shabaka AA. Malva parviflora extract assisted inexperienced synthesis of silver nanoparticles. Spectrochim Acta Half A Mol Biomol Spectrosc. 2012;98:423–8. https://doi.org/10.1016/j.saa.2012.08.072.
Gruen LC. Interplay of amino acids with silver(I) ions. BBA Protein Struct. 1975;386:270–4. https://doi.org/10.1016/0005-2795(75)90268-8.
Tan YN, Lee JY, Wang DIC. Uncovering the design guidelines for peptide synthesis of metallic nanoparticles. J Am Chem Soc. 2010;132:5677–86. https://doi.org/10.1021/Ja907454f.
Li S, Shen Y, Xie A, et al. Inexperienced synthesis of silver nanoparticles utilizing Capsicum annuum L. extract. Inexperienced Chem. 2007;9:852. https://doi.org/10.1039/b615357g.
Huang Q, Li D, Solar Y, et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnol. 2007;1:1. https://doi.org/10.1088/0957-4484/18/10/105104.
Mude N, Ingle A, Gade A, Rai M. Synthesis of silver nanoparticles utilizing callus extract of Carica papaya—a primary report. J Plant Biochem Biotechnol. 2009;18:83–6. https://doi.org/10.1007/BF03263300.
Kesharwani J, Yoon KY, Hwang J, Rai M. Phytofabrication of silver nanoparticles by leaf extract of Datura metel: hypothetical mechanism concerned in synthesis. J Bionanosci. 2009;3:39–44. https://doi.org/10.1166/jbns.2009.1008.
Shankar SS, Ahmad A, Pasricha R, Sastry M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of various shapes. J Mater Chem. 2003;13:1822. https://doi.org/10.1039/b303808b.
Singh AK, Talat M, Singh DP, Srivastava ON. Biosynthesis of gold and silver nanoparticles by pure precursor clove and their functionalization with amine group. J Nanoparticle Res. 2010;12:1667–75. https://doi.org/10.1007/s11051-009-9835-3.
Glusker JP, Katz AK, Bock CW. Steel ions in organic techniques. Rigaku J. 1999;16:8–17.
Si S, Mandal TK. Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic research. Chem A Eur J. 2007;13:3160–8. https://doi.org/10.1002/chem.200601492.
Shah M, Fawcett D, Sharma S, et al. Inexperienced synthesis of metallic nanoparticles through organic entities. Supplies (Basel). 2015;8:7278–308.
Dizaj SM, Lotfipour F, Barzegar-Jalali M, et al. Antimicrobial exercise of the metals and metallic oxide nanoparticles. Mater Sci Eng C. 2014;44:278–84.
Truthful RJ, Tor Y. Antibiotics and bacterial resistance within the twenty first century. Perspect Med Chem. 2014. https://doi.org/10.4137/pmc.s14459.
Jayaraman R. Antibiotic resistance: an outline of mechanisms and a paradigm shift. Curr Sci. 2009;96:1475–84.
Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic device to fight microbial resistance. Adv Drug Deliv Rev. 2013;65:1803–15.
Zinjarde S. Bio-inspired nanomaterials and their functions as antimicrobial brokers. Chron Younger Sci. 2012;3:74. https://doi.org/10.4103/2229-5186.94314.
Lok C, Ho C, Chen R, et al. Proteomic evaluation of the mode of antibacterial motion of silver nanoparticles. J Proteome Res. 2006;5:916–24. https://doi.org/10.1021/pr0504079.
Iavicoli I, Fontana L, Leso V, Bergamaschi A. The results of nanomaterials as endocrine disruptors. Int J Mol Sci. 2013;14:16732–801. https://doi.org/10.3390/ijms140816732.
Yun H, Kim JD, Choi HC, Lee CW. Antibacterial exercise of CNT-Ag and GO-Ag nanocomposites in opposition to gram-negative and gram-positive micro organism. Bull Korean Chem Soc. 2013;34:3261–4. https://doi.org/10.5012/bkcs.2013.34.11.3261.
Egger S, Lehmann RP, Top MJ, et al. Antimicrobial properties of a novel silver-silica nanocomposite materials. Appl Environ Microbiol. 2009;75:2973–6. https://doi.org/10.1128/AEM.01658-08.
Tak YK, Pal S, Naoghare PK, et al. Form-dependent pores and skin penetration of silver nanoparticles: does it actually matter. Sci Rep. 2015. https://doi.org/10.1038/srep16908.
Lima E, Guerra R, Lara V, Guzmán A. Gold nanoparticles as environment friendly antimicrobial brokers for Escherichia coli and Salmonella typhi. Chem Cent J. 2013. https://doi.org/10.1186/1752-153x-7-11.
Tiwari PM, Vig Ok, Dennis VA, Singh SR. Functionalized gold nanoparticles and their biomedical functions. Nanomaterials. 2011;1:31–63. https://doi.org/10.3390/nano1010031.
Zhou Y, Kong Y, Kundu S, et al. Antibacterial actions of gold and silver nanoparticles in opposition to Escherichia coli and bacillus Calmette-Guérin. J Nanobiotechnol. 2012;1:1. https://doi.org/10.1186/1477-3155-10-19.
Cui Y, Zhao Y, Tian Y, et al. The molecular mechanism of motion of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 2012;33:2327–33. https://doi.org/10.1016/j.biomaterials.2011.11.057.
Azam A, Ahmed AS, Oves M, et al. Antimicrobial exercise of metallic oxide nanoparticles in opposition to Gram-positive and Gram-negative micro organism: a comparative research. Int J Nanomed. 2012;7:6003–9. https://doi.org/10.2147/IJN.S35347.
Buzea C, Pacheco II, Robbie Ok. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2:MR17–71.
Mahapatra O, Bhagat M, Gopalakrishnan C, Arunachalam KD. Ultrafine dispersed CuO nanoparticles and their antibacterial exercise. J Exp Nanosci. 2008;3:185–93. https://doi.org/10.1080/17458080802395460.
Ramteke C, Chakrabarti T, Sarangi BK, Pandey R. Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial exercise. Hindawi Publ Corp J Chem. 2013;2013:1–8. https://doi.org/10.1155/2013/278925.
Verma A, Mehata MS. Controllable synthesis of silver nanoparticles utilizing neem leaves and their antimicrobial exercise. J Radiat Res Appl Sci. 2016;9:109–15. https://doi.org/10.1016/j.jrras.2015.11.001.
Velmurugan P, Hong S-C, Aravinthan A, et al. Comparability of the bodily traits of green-synthesized and industrial silver nanoparticles: analysis of antimicrobial and cytotoxic results. Arab J Sci Eng. 2017;42:201–8. https://doi.org/10.1007/s13369-016-2254-8.
Panigrahi S, Basu S, Praharaj S, et al. Synthesis and size-selective catalysis by supported gold nanoparticles: research on heterogeneous and homogeneous catalytic course of. J Phys Chem C. 2007;111:4596–605. https://doi.org/10.1021/jp067554u.
Woo Y, Lai DY. Fragrant amino and nitro–amino compounds and their halogenated derivatives. In: Bingham E, Cohrssen B, Powell CH, editors. Patty’s toxicology. Wiley; 2012. https://doi.org/10.1002/0471435139.tox058.pub2.
Lim SH, Ahn E-Y, Park Y. Inexperienced synthesis and catalytic exercise of gold nanoparticles synthesized by Artemisia capillaris water extract. Nanoscale Res Lett. 2016;11:474. https://doi.org/10.1186/s11671-016-1694-0.
Rostami-Vartooni A, Nasrollahzadeh M, Alizadeh M. Inexperienced synthesis of perlite supported silver nanoparticles utilizing Hamamelis virginiana leaf extract and investigation of its catalytic exercise for the discount of 4-nitrophenol and Congo pink. J Alloys Compd. 2016;680:309–14. https://doi.org/10.1016/j.jallcom.2016.04.008.
Sharma JK, Akhtar MS, Ameen S, et al. Inexperienced synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized photo voltaic cells functions. J Alloys Compd. 2015;632:321–5. https://doi.org/10.1016/j.jallcom.2015.01.172.
Gopalakrishnan R, Loganathan B, Dinesh S, Raghu Ok. Strategic inexperienced synthesis, characterization and catalytic utility to 4-nitrophenol discount of palladium nanoparticles. J Clust Sci. 2017;28:2123–31. https://doi.org/10.1007/s10876-017-1207-z.
Gangula A, Podila R, Rao AM, et al. Catalytic discount of 4-nitrophenol utilizing biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir. 2011;27:15268–74. https://doi.org/10.1021/la2034559.
Singh J, Kukkar P, Sammi H, et al. Enhanced catalytic discount of 4-nitrophenol and congo pink dye By silver nanoparticles ready from Azadirachta indica leaf extract underneath direct daylight publicity. Half Sci Technol. 2017. https://doi.org/10.1080/02726351.2017.1390512.
Yuan CG, Huo C, Gui B, et al. Inexperienced synthesis of silver nanoparticles utilizing Chenopodium aristatum L. stem extract and their catalytic/antibacterial actions. J Clust Sci. 2017;28:1319–33. https://doi.org/10.1007/s10876-016-1147-z.
Habibi MH, Rezvani Z. Photocatalytic degradation of an azo textile dye (C.I. Reactive Pink 195 (3BF)) in aqueous resolution over copper cobaltite nanocomposite coated on glass by Physician Blade technique. Spectrochim Acta Half A Mol Biomol Spectrosc. 2015;147:173–7. https://doi.org/10.1016/j.saa.2015.03.077.
Carmen Z, Daniel S. Textile natural dyes—traits, polluting results and separation/elimination procedures from industrial effluents—a crucial overview. Natural pollution ten years after the Stockholm conference—environmental and analytical replace. London: InTech; 2012.
Ratna PBS. Air pollution as a result of artificial dyes toxicity and carcinogenicity research and remediation. Int J Environ Sci. 2012;3:940–55. https://doi.org/10.6088/ijes.2012030133002.
Dutta AK, Maji SK, Adhikary B. γ-Fe2O3 nanoparticles: an simply recoverable efficient photo-catalyst for the degradation of rose bengal and methylene blue dyes within the waste-water remedy plant. Mater Res Bull. 2014;49:28–34. https://doi.org/10.1016/j.materresbull.2013.08.024.
Gonawala KH, Mehta MJ. Removing of coloration from totally different dye wastewater by utilizing ferric oxide as an adsorbent. Int J Eng Res Appl. 2014;4:102–9.
Jyoti Ok, Singh A. Inexperienced synthesis of nanostructured silver particles and their catalytic utility in dye degradation. J Genet Eng Biotechnol. 2016;14:311–7. https://doi.org/10.1016/j.jgeb.2016.09.005.
Wesenberg D, Kyriakides I, Agathos SN. White-rot fungi and their enzymes for the remedy of business dye effluents. Biotechnol Adv. 2003;22:161–87. https://doi.org/10.1016/j.biotechadv.2003.08.011.
Fowsiya J, Madhumitha G, Al-Dhabi NA, Arasu MV. Photocatalytic degradation of Congo pink utilizing Carissa edulis extract capped zinc oxide nanoparticles. J Photochem Photobiol B Biol. 2016;162:395–401. https://doi.org/10.1016/j.jphotobiol.2016.07.011.
Nakkala JR, Bhagat E, Suchiang Ok, Sadras SR. Comparative research of antioxidant and catalytic exercise of silver and gold nanoparticles synthesized from Costus pictus leaf extract. J Mater Sci Technol. 2015;31:986–94. https://doi.org/10.1016/j.jmst.2015.07.002.
Varadavenkatesan T, Selvaraj R, Vinayagam R. Phyto-synthesis of silver nanoparticles from Mussaenda erythrophylla leaf extract and their utility in catalytic degradation of methyl orange dye. J Mol Liquids. 2016;221:1063–70. https://doi.org/10.1016/j.molliq.2016.06.064.
Bhuyan T, Mishra Ok, Khanuja M, et al. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic functions. Mater Sci Semicond Course of. 2015;32:55–61. https://doi.org/10.1016/j.mssp.2014.12.053.
Stan M, Popa A, Toloman D, et al. Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by utilizing plant extracts. Mater Sci Semicond Course of. 2015;39:23–9. https://doi.org/10.1016/j.mssp.2015.04.038.
Thandapani Ok, Kathiravan M, Namasivayam E, et al. Enhanced larvicidal, antibacterial, and photocatalytic efficacy of TiO2 nanohybrids inexperienced synthesized utilizing the aqueous leaf extract of Parthenium hysterophorus. Environ Sci Pollut Res. 2017;25:1–12. https://doi.org/10.1007/s11356-017-9177-0.
Astruc D. Nanoparticles and catalysis. Weinheim: Wiley; 2008.
Dror I, Baram D, Berkowitz B. Use of nanosized catalysts for transformation of chloro-organic pollution. Environ Sci Technol. 2005;39:1283–90. https://doi.org/10.1021/es0490222.
Pradeep T, Anshup. Noble metallic nanoparticles for water purification: a crucial overview. Skinny Stable Movies. 2009;517:6441–78.
Tsuda A, Konduru NV. The function of pure processes and floor vitality of inhaled engineered nanoparticles on aggregation and corona formation. NanoImpact. 2016;2:38–44.
Zhang M, Liu Y-Q, Ye B-C. Colorimetric assay for parallel detection of Cd2+, Ni2+ and Co2+ utilizing peptide-modified gold nanoparticles. Analyst. 2012;137:601–7. https://doi.org/10.1039/c1an15909g.
Mehta VN, Kumar MA, Kailasa SK. Colorimetric detection of copper in water samples utilizing dopamine dithiocarbamate-functionalized au nanoparticles. Ind Eng Chem Res. 2013;52:4414–20. https://doi.org/10.1021/ie302651f.
Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev. 2008;108:1517–49.
Aragay G, Pons J, Merkoçi A. Current tendencies in macro-, micro-, and nanomaterial-based instruments and methods for heavy-metal detection. Chem Rev. 2011;111:3433–58. https://doi.org/10.1021/cr100383r.
Nolan EM, Lippard SJ. Instruments and techniques for the optical detection of mercuric ion. Chem Rev. 2008;108:3443–80.
Ray PC. Measurement and form dependent second order nonlinear optical properties of nanomaterials and their utility in organic and chemical sensing. Chem Rev. 2010;110:5332–65. https://doi.org/10.1021/cr900335q.
Annadhasan M, Muthukumarasamyvel T, Sankar Babu VR, Rajendiran N. Inexperienced synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium. ACS Maintain Chem Eng. 2014;2:887–96. https://doi.org/10.1021/sc400500z.
Maiti S, Gadadhar B, Laha JK. Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver nanoparticles. Appl Nanosci. 2016;6:529–38. https://doi.org/10.1007/s13204-015-0452-4.
Karthiga D, Anthony SP. Selective colorimetric sensing of poisonous metallic cations by inexperienced synthesized silver nanoparticles over a large pH vary. RSC Adv. 2013;3:16765–74. https://doi.org/10.1039/C3RA42308E.
Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles utilizing microbes—a overview. Colloids Surf B Biointerfaces. 2014;121:474–83.
Setua P, Pramanik R, Sarkar S, et al. Synthesis of silver nanoparticle in imidazolium and pyrolidium primarily based ionic liquid reverse micelles: a step ahead in nanostructure inorganic materials in room temperature ionic liquid subject. J Mol Liq. 2011;162:33–7. https://doi.org/10.1016/j.molliq.2011.05.015.
Ge L, Chen L, Guo R. Microstructure and lubrication properties of lamellar liquid crystal in Brij30/[Bmim]PF6/H2O system. Tribol Lett. 2007;28:123–30. https://doi.org/10.1007/s11249-007-9256-3.
Obliosca JM, Arellano IHJ, Huang MH, Arco SD. Double layer micellar stabilization of gold nanocrystals by greener ionic liquid 1-butyl-3-methylimidazolium lauryl sulfate. Mater Lett. 2010;64:1109–12. https://doi.org/10.1016/j.matlet.2010.02.029.
Itoh H, Naka Ok, Chujo Y. Synthesis of gold nanoparticles modified with ionic liquid primarily based on the imidazolium cation. J Am Chem Soc. 2004;126:3026–7. https://doi.org/10.1021/ja039895g.
Lazarus LL, Yang AS-J, Chu S, et al. Movement-focused synthesis of monodisperse gold nanoparticles utilizing ionic liquids on a microfluidic platform. Lab Chip. 2010;10:3377. https://doi.org/10.1039/c0lc00297f.
Khare V, Li ZH, Mantion A, et al. Robust anion results on gold nanoparticle formation in ionic liquids. J Mater Chem. 2010;20:1332–9. https://doi.org/10.1039/B917467b.
Bhatt AI, Mechler Á, Martin LL, Bond AM. Synthesis of Ag and Au nanostructures in an ionic liquid: thermodynamic and kinetic results underlying nanoparticle, cluster and nanowire formation. J Mater Chem. 2007;17:2241. https://doi.org/10.1039/b618036a.
Raut D, Wankhede Ok, Vaidya V, et al. Copper nanoparticles in ionic liquids: recyclable and environment friendly catalytic system for 1,3-dipolar cycloaddition response. Catal Commun. 2009;10:1240–3. https://doi.org/10.1016/j.catcom.2009.01.027.
Sunkar S, Nachiyar CV. Biogenesis of antibacterial silver nanoparticles utilizing the endophytic bacterium Bacillus cereus remoted from Garcinia xanthochymus. Asian Pac J Trop Biomed. 2012;2:953–9. https://doi.org/10.1016/S2221-1691(13)60006-4.
Shivaji S, Madhu S, Singh S. Extracellular synthesis of antibacterial silver nanoparticles utilizing psychrophilic micro organism. Course of Biochem. 2011;46:1800–7. https://doi.org/10.1016/j.procbio.2011.06.008.
Korbekandi H, Iravani S, Abbasi S. Optimization of organic synthesis of silver nanoparticles utilizing Lactobacillus casei subsp. casei. J Chem Technol Biotechnol. 2012;87:932–7. https://doi.org/10.1002/jctb.3702.
Fu M, Li Q, Solar D, et al. Speedy preparation means of silver nanoparticles by bioreduction and their characterizations. Chin J Chem Eng. 2006;14:114–7. https://doi.org/10.1016/S1004-9541(06)60046-3.
Lengke MF, Fleet ME, Southam G. Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)− thiosulfate and gold(III)− chloride complexes. Nano. 2006. https://doi.org/10.1021/es061040r.
Southam G, Beveridge TJ. The in vitro formation of placer gold by micro organism. Geochim Cosmochim Acta. 1994;58:4527–30. https://doi.org/10.1016/0016-7037(94)90355-7.
Wen L, Lin Z, Gu P, et al. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. J Nanoparticle Res. 2009;11:279–88. https://doi.org/10.1007/s11051-008-9378-z.
Konishi Y, Tsukiyama T, Tachimi T, et al. Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim Acta. 2007;53:186–92. https://doi.org/10.1016/j.electacta.2007.02.073.
Du L, Jiang H, Liu X, Wang E. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its utility on direct electrochemistry of hemoglobin. Electrochem Commun. 2007;9:1165–70. https://doi.org/10.1016/j.elecom.2007.01.007.
Deplanche Ok, Macaskie LE. Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Bioeng. 2008;99:1055–64. https://doi.org/10.1002/bit.21688.
He S, Guo Z, Zhang Y, et al. Biosynthesis of gold nanoparticles utilizing the micro organism Rhodopseudomonas capsulata. Mater Lett. 2007;61:3984–7. https://doi.org/10.1016/j.matlet.2007.01.018.
Philipse AP, Maas D. Magnetic colloids from magnetotactic micro organism: chain formation and colloidal stability. Langmuir. 2002;18:9977–84. https://doi.org/10.1021/la0205811.
Mann S, Frankel RB, Blakemore RP. Construction, morphology and crystal progress of bacterial magnetite. Nature. 1984;310:405–7. https://doi.org/10.1038/310405a0.
Marshall MJ, Beliaev AS, Dohnalkova AC, et al. c-Kind cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol. 2006;4:1324–33. https://doi.org/10.1371/journal.pbio.0040268.
Holmes JD, Smith PR, Richardson DJ, et al. Power-dispersive X-ray evaluation of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch Microbiol. 1995;163:143–7.
Ravindra BK, Rajasab AH. A comparative research on biosynthesis of silver nanoparticles utilizing 4 totally different fungal species. Int J Pharm Pharm Sci. 2014;6(1):372–6.
Mukherjee P, Ahmad A, Mandal D, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization within the mycelial matrix: a novel organic method to nanoparticle synthesis. Nano Lett. 2001;1:515–9. https://doi.org/10.1021/nl0155274.
Bhainsa KC, D’Souza SF. Extracellular biosynthesis of silver nanoparticles utilizing the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces. 2006;47:160–4. https://doi.org/10.1016/j.colsurfb.2005.11.026.
Vigneshwaran N, Ashtaputre NM, Varadarajan PV, et al. Organic synthesis of silver nanoparticles utilizing the fungus Aspergillus flavus. Mater Lett. 2007;61:1413–8. https://doi.org/10.1016/j.matlet.2006.07.042.
Vigneshwaran N, Kathe AA, Varadarajan PV, et al. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces. 2006;53:55–9. https://doi.org/10.1016/j.colsurfb.2006.07.014.
Gade AK, Bonde P, Ingle AP, et al. Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy. 2008;2:243–7. https://doi.org/10.1166/jbmb.2008.401.
Basavaraja S, Balaji SD, Lagashetty A, et al. Extracellular biosynthesis of silver nanoparticles utilizing the fungus Fusarium semitectum. Mater Res Bull. 2008;43:1164–70. https://doi.org/10.1016/j.materresbull.2007.06.020.
Balaji DS, Basavaraja S, Deshpande R, et al. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces. 2009;68:88–92. https://doi.org/10.1016/j.colsurfb.2008.09.022.
Sanghi R, Verma P. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol. 2009;100:501–4. https://doi.org/10.1016/j.biortech.2008.05.048.
Ingle A, Rai M, Gade A, Bawaskar M. Fusarium solani: a novel organic agent for the extracellular synthesis of silver nanoparticles. J Nanoparticle Res. 2009;11:2079–85. https://doi.org/10.1007/s11051-008-9573-y.
Shaligram NS, Bule M, Bhambure R, et al. Biosynthesis of silver nanoparticles utilizing aqueous extract from the compactin producing fungal pressure. Course of Biochem. 2009;44:939–43. https://doi.org/10.1016/j.procbio.2009.04.009.
Kathiresan Ok, Manivannan S, Nabeel MA, Dhivya B. Research on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum remoted from coastal mangrove sediment. Colloids Surf B Biointerfaces. 2009;71:133–7. https://doi.org/10.1016/j.colsurfb.2009.01.016.
Birla SS, Tiwari VV, Gade AK, et al. Fabrication of silver nanoparticles by Phoma glomerata and its mixed impact in opposition to Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol. 2009;48:173–9. https://doi.org/10.1111/j.1472-765X.2008.02510.x.
Gajbhiye M, Kesharwani J, Ingle A, et al. Fungus-mediated synthesis of silver nanoparticles and their exercise in opposition to pathogenic fungi together with fluconazole. Nanomed Nanotechnol Biol Med. 2009;5:382–6. https://doi.org/10.1016/j.nano.2009.06.005.
Fayaz AM, Balaji Ok, Girilal M, et al. Biogenic synthesis of silver nanoparticles and their synergistic impact with antibiotics: a research in opposition to gram-positive and gram-negative micro organism. Nanomed Nanotechnol Biol Med. 2010. https://doi.org/10.1016/j.nano.2009.04.006.
Binupriya AR, Sathishkumar M, Yun SI. Biocrystallization of silver and gold ions by inactive cell filtrate of Rhizopus stolonifer. Colloids Surf B Biointerfaces. 2010;79:531–4. https://doi.org/10.1016/j.colsurfb.2010.05.021.
Ahmad A, Senapati S, Khan MI, et al. Further-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol. 2005;1:47–53. https://doi.org/10.1166/jbn.2005.012.
Senapati S, Ahmad A, Khan MI, et al. Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small. 2005;1:517–20. https://doi.org/10.1002/smll.200400053.
Raliya R, Tarafdar JC. Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly method. Int Nano Lett. 2014;4:93. https://doi.org/10.1007/s40089-014-0093-8.
Raliya R, Biswas P, Tarafdar JC. TiO2 nanoparticle biosynthesis and its physiological impact on mung bean (Vigna radiata L.). Biotechnol Rep. 2015;5:22–6. https://doi.org/10.1016/j.btre.2014.10.009.
Kowshik M, Vogel W, City J, et al. Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater. 2002;14:815–8. https://doi.org/10.1002/1521-4095(20020605)14:11percent3c815:AID-ADMA815percent3e3.0.CO;2-Ok.
Mourato A, Gadanho M, Lino AR, Tenreiro R. Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl. 2011;1:1. https://doi.org/10.1155/2011/546074.
Chandran SP, Chaudhary M, Pasricha R, et al. Synthesis of gold nanotriangles and silver nanoparticles utilizing aloe vera plant extract. Biotechnol Prog. 2006. https://doi.org/10.1021/bp0501423.
Krishnaraj C, Jagan EG, Rajasekar S, et al. Synthesis of silver nanoparticles utilizing Acalypha indica leaf extracts and its antibacterial exercise in opposition to water borne pathogens. Colloids Surf B Biointerfaces. 2010;1:1. https://doi.org/10.1016/j.colsurfb.2009.10.008.
Kasthuri J, Veerapandian S, Rajendiran N. Organic synthesis of silver and gold nanoparticles utilizing apiin as decreasing agent. Colloids Surf B Biointerfaces. 2009;68:55–60. https://doi.org/10.1016/j.colsurfb.2008.09.021.
Armendariz V, Herrera I, Peralta-Videa JR, et al. Measurement managed gold nanoparticle formation by Avena sativa biomass: use of vegetation in nanobiotechnology. J Nanoparticle Res. 2004;6:377–82. https://doi.org/10.1007/s11051-004-0741-4.
Shankar SS, Rai A, Ahmad A, Sastry M. Speedy synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles utilizing Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;1:1. https://doi.org/10.1016/j.jcis.2004.03.003.
Mondal S, Roy N, Laskar RA, et al. Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles utilizing aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids Surfaces B Biointerfaces. 2011;82:497–504. https://doi.org/10.1016/j.colsurfb.2010.10.007.
Haverkamp RG, Marshall AT. The mechanism of metallic nanoparticle formation in vegetation: limits on accumulation. J Nanoparticle Res. 2009;11:1453–63. https://doi.org/10.1007/s11051-008-9533-6.
Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle measurement. Colloids Surf B Biointerfaces. 2011;82:152–9. https://doi.org/10.1016/j.colsurfb.2010.08.036.
Narayanan KB, Sakthivel N. Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett. 2008;62:4588–90. https://doi.org/10.1016/j.matlet.2008.08.044.
Shankar SS, Rai A, Ahmad A, Sastry M. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential utility in infrared-absorbing optical coatings. Chem Mater. 2005;17:566–72. https://doi.org/10.1021/cm048292g.
Jha AK, Prasad Ok. Inexperienced synthesis of silver nanoparticles utilizing cycas leaf. Int J Inexperienced Nanotechnol Phys Chem. 2010;1:110–7. https://doi.org/10.1080/19430871003684572.
Track JY, Kim BS. Organic synthesis of bimetallic Au/Ag nanoparticles utilizing Persimmon (Diopyros kaki) leaf extract. Korean J Chem Eng. 2008;25:808–11. https://doi.org/10.1007/s11814-008-0133-z.
Ankamwar B, Chaudhary M, Sastry M. Gold nanotriangles biologically synthesized utilizing tamarind leaf extract and potential utility in vapor sensing. Synth React Inorg Steel Org Nano-Steel Chem. 2005;35:19–26. https://doi.org/10.1081/SIM-200047527.
Ravindra S, Murali Mohan Y, Narayana Reddy N, Mohana Raju Ok. Fabrication of antibacterial cotton fibres loaded with silver nanoparticles through “inexperienced method”. Colloids Surf A Physicochem Eng Asp. 2010;367:31–40. https://doi.org/10.1016/j.colsurfa.2010.06.013.
Dubey M, Bhadauria S, Kushwah BS. Inexperienced synthesis of nanosilver particles from extract of Eucalyptus hybrida (Safeda) leaf. Dig J Nanomater Biostruct. 2009;4:537–43.
Veerasamy R, Xin TZ, Gunasagaran S, et al. Biosynthesis of silver nanoparticles utilizing mangosteen leaf extract and analysis of their antimicrobial actions. J Saudi Chem Soc. 2010. https://doi.org/10.1016/j.jscs.2010.06.004.
Jia L, Zhang Q, Li Q, Track H. The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: lengthy lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology. 2009. https://doi.org/10.1088/0957-4484/20/38/385601.
Raghunandan D, Bedre MD, Basavaraja S, et al. Speedy biosynthesis of irregular formed gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) resolution. Colloids Surf B Biointerfaces. 2010;79:235–40. https://doi.org/10.1016/j.colsurfb.2010.04.003.
Bar H, Bhui DK, Sahoo GP, et al. Inexperienced synthesis of silver nanoparticles utilizing latex of Jatropha curcas. Colloids Surf A Physicochem Eng Asp. 2009. https://doi.org/10.1016/j.colsurfa.2009.02.008.
Mochochoko T, Oluwafemi OS, Jumbam DN, Songca SP. Inexperienced synthesis of silver nanoparticles utilizing cellulose extracted from an aquatic weed; water hyacinth. Carbohydr Polym. 2013;98:290–4. https://doi.org/10.1016/j.carbpol.2013.05.038.
Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, et al. Alfalfa sprouts: a pure supply for the synthesis of silver nanoparticles. Langmuir. 2003. https://doi.org/10.1021/la020835i.
Gardea-Torresdey JL, Parsons JG, Gomez E, et al. Formation and progress of au nanoparticles inside reside alfalfa vegetation. Nano Lett. 2002;2:397–401. https://doi.org/10.1021/nl015673+.
Gardea-Torresdey JL, Tiemann KJ, Gamez G, et al. Gold nanoparticles obtained by bio-precipitation from gold(III) options. J Nanoparticle Res. 1999;1:397–404. https://doi.org/10.1023/A:1010008915465.
Parashar UK, Saxena PS. Bioinspired synthesis of silver nanoparticles. J Nanomater. 2009;4:159–66.
Herrera-Becerra R, Zorrilla C, Rius JL, Ascencio JA. Electron microscopy characterization of biosynthesized iron oxide nanoparticles. Appl Phys A Mater Sci Course of. 2008;91:241–6.
Singh J, Singh N, Rathi A, et al. Facile method to synthesize and characterization of silver nanoparticles by utilizing mulberry leaves extract in aqueous medium and its utility in antimicrobial exercise. J Nanostructures. 2017;7:134–40. https://doi.org/10.22052/jns.2017.02.007.
Santhoshkumar T, Rahuman AA, Rajakumar G, et al. Synthesis of silver nanoparticles utilizing Nelumbo nucifera leaf extract and its larvicidal exercise in opposition to malaria and filariasis vectors. Parasitol Res. 2011;108:693–702. https://doi.org/10.1007/s00436-010-2115-4.
Singh J, Mehta A, Rawat M, Basu S. Inexperienced synthesis of silver nanoparticles utilizing solar dried tulsi leaves and its catalytic utility for 4-nitrophenol discount. J Environ Chem Eng. 2018;6:1468–74. https://doi.org/10.1016/j.jece.2018.01.054.
Philip D, Unni C. Extracellular biosynthesis of gold and silver nanoparticles utilizing Krishna tulsi (Ocimum sanctum) leaf. Phys E Low Dimens Syst Nanostructures. 2011;43:1318–22. https://doi.org/10.1016/j.physe.2010.10.006.
Ghodake GS, Deshpande NG, Lee YP, Jin ES. Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids Surf B Biointerfaces. 2010;75:584–9. https://doi.org/10.1016/j.colsurfb.2009.09.040.
Raghunandan D, Basavaraja S, Mahesh B, et al. Biosynthesis of steady polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract. NanoBiotechnology. 2009;5:34–41. https://doi.org/10.1007/s12030-009-9030-8.
Qu J, Luo C, Hou J. Synthesis of ZnO nanoparticles from Zn-hyperaccumulator (Sedum alfredii Hance) vegetation. IET Micro Nano Lett. 2011;6:174–6.
Dubey SP, Lahtinen M, Sillanpää M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Course of Biochem. 2010;45:1065–71. https://doi.org/10.1016/j.procbio.2010.03.024.
Ankamwar B. Biosynthesis of gold nanoparticles (green-gold) utilizing leaf extract of Terminalia catappa. J Chem. 2010;7:1334–9. https://doi.org/10.1155/2010/745120.
Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME et al. “Inexperienced” nanotechnologies: synthesis of metallic nanoparticles utilizing vegetation. Acta Naturae. 2014;6:35–44.
Sudhasree S, Shakila Banu A, Brindha P, Kurian GA. Synthesis of nickel nanoparticles by chemical and inexperienced route and their comparability in respect to organic impact and toxicity. Toxicol Environ Chem. 2014;96:743–54.