Managed supply of a neurotransmitter–agonist conjugate for practical restoration after extreme spinal wire damage


  • David, S. & Kroner, A. Repertoire of microglial and macrophage responses after spinal wire damage. Nat. Rev. Neurosci. 12, 388–399 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Block, M. L., Zecca, L. & Hong, J. S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57–69 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Ulndreaj, A., Badner, A. & Fehlings, M. G. Promising neuroprotective methods for traumatic spinal wire damage with a concentrate on the differential results amongst anatomical ranges of damage. F1000Research 6, 1907 (2017).

    Article 

    Google Scholar
     

  • Li, L. et al. A MnO2 nanoparticle-dotted hydrogel promotes spinal wire restore by way of regulating reactive oxygen species microenvironment and synergizing with mesenchymal stem cells. ACS Nano 13, 14283–14293 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, N. et al. A 3D fiber-hydrogel based mostly non-viral gene supply platform reveals that microRNAs promote axon regeneration and improve practical restoration following spinal wire damage. Adv. Sci. 8, e2100805 (2021).

    Article 

    Google Scholar
     

  • Chen, B. et al. Reactivation of dormant relay pathways in injured spinal wire by KCC2 manipulations. Cell 174, 521–535.e13 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wilson, J. M., Blagovechtchenski, E. & Brownstone, R. M. Genetically outlined inhibitory neurons within the mouse spinal wire dorsal horn: a potential supply of rhythmic inhibition of motoneurons throughout fictive locomotion. J. Neurosci. 30, 1137–1148 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Haring, M. et al. Neuronal atlas of the dorsal horn defines its structure and hyperlinks sensory enter to transcriptional cell varieties. Nat. Neurosci. 21, 869–880 (2018).

    Article 

    Google Scholar
     

  • Brommer, B. et al. Enhancing hindlimb locomotor operate by non-invasive AAV-mediated manipulations of propriospinal neurons in mice with full spinal wire damage. Nat. Commun. 12, 781 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Courtine, G. & Sofroniew, M. V. Spinal wire restore: advances in biology and expertise. Nat. Med. 25, 898–908 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ramirez-Jarquin, U. N., Lazo-Gomez, R., Tovar, Y. R. L. B. & Tapia, R. Spinal inhibitory circuits and their position in motor neuron degeneration. Neuropharmacology 82, 101–107 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Matsuya, R., Ushiyama, J. & Ushiba, J. Inhibitory interneuron circuits at cortical and spinal ranges are related to particular person variations in corticomuscular coherence throughout isometric voluntary contraction. Sci. Rep. 7, 44417 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ramirez-Jarquin, U. N. & Tapia, R. Excitatory and inhibitory neuronal circuits within the spinal wire and their position within the management of motor neuron operate and degeneration. ACS Chem. Neurosci. 9, 211–216 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rivera, C. et al. The Okay+/Cl co-transporter KCC2 renders GABA hyperpolarizing throughout neuronal maturation. Nature 397, 251–255 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Boulenguez, P. et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal wire damage. Nat. Med. 16, 302–307 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Gagnon, M. et al. Chloride extrusion enhancers as novel therapeutics for neurological ailments. Nat. Med. 19, 1524–1528 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Reinig, S., Driever, W. & Arrenberg, A. B. The descending diencephalic dopamine system is tuned to sensory stimuli. Curr. Biol. 27, 318–333 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Pericytes impair capillary blood stream and motor operate after power spinal wire damage. Nat. Med. 23, 733–741 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sharples, S. A. et al. A dynamic position for dopamine receptors within the management of mammalian spinal networks. Sci. Rep. 10, 16429 (2020).

    Article 

    Google Scholar
     

  • Grillner, S. & Jessell, T. M. Measured movement: looking for simplicity in spinal locomotor networks. Curr. Opin. Neurobiol. 19, 572–586 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Li, W. C. & Moult, P. R. The management of locomotor frequency by excitation and inhibition. J. Neurosci. 32, 6220–6230 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kiehn, O. Decoding the group of spinal circuits that management locomotion. Nat. Rev. Neurosci. 17, 224–238 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, X. C. et al. Neural stem cells transfected with reactive oxygen species–responsive polyplexes for efficient therapy of ischemic stroke. Adv. Mater. 31, e1807591 (2019).

    Article 

    Google Scholar
     

  • Liu, P. et al. Biomimetic dendrimer–peptide conjugates for early multi-target remedy of Alzheimer’s illness by inflammatory microenvironment modulation. Adv. Mater. 33, e2100746 (2021).

    Article 

    Google Scholar
     

  • Lu, Y. et al. Microenvironment transforming micelles for Alzheimer’s illness remedy by early modulation of activated microglia. Adv. Sci. 6, 1801586 (2019).

    Article 

    Google Scholar
     

  • Xu, W. et al. Elevated manufacturing of reactive oxygen species contributes to motor neuron loss of life in a compression mouse mannequin of spinal wire damage. Spinal Twine 43, 204–213 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, M. et al. Oxidation and temperature twin responsive polymers based mostly on phenylboronic acid and N-isopropylacrylamide motifs. Polym. Chem. 7, 1494–1504 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lin, L. et al. Nanodrug with ROS and pH dual-sensitivity ameliorates liver fibrosis by way of multicellular regulation. Adv. Sci. 7, 1903138 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, D., Fan, Y., Chen, H., Trepout, S. & Li, M. H. CO2-activated reversible transition between polymersomes and micelles with AIE fluorescence. Angew. Chem. Int. Ed. 58, 10260–10265 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a technique for enhancing nanoparticle-based drug and gene supply. Adv. Drug Deliv. Rev. 99, 28–51 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hu, J. et al. Lengthy circulating polymeric nanoparticles for gene/drug supply. Curr. Drug Metab. 19, 723–738 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Circulatory disturbance of rat spinal wire induced by occluding ligation of the dorsal spinal vein. Acta Neuropathol. 102, 335–338 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Farrar, M. J., Rubin, J. D., Diago, D. M. & Schaffer, C. B. Characterization of blood stream within the mouse dorsal spinal venous system earlier than and after dorsal spinal vein occlusion. J. Cereb. Blood Circulate. Metab. 35, 667–675 (2015).

    Article 

    Google Scholar
     

  • Bartanusz, V., Jezova, D., Alajajian, B. & Digicaylioglu, M. The blood–spinal wire barrier: morphology and medical implications. Ann. Neurol. 70, 194–206 (2011).

    Article 

    Google Scholar
     

  • Jin, L. Y. et al. Blood–spinal wire barrier in spinal wire damage: a evaluate. J. Neurotrauma 38, 1203–1224 (2021).

    Article 

    Google Scholar
     

  • Zrzavy, T. et al. Acute and non-resolving irritation affiliate with oxidative damage after human spinal wire damage. Mind 144, 144–161 (2021).

    Article 

    Google Scholar
     

  • Cooney, S. J., Zhao, Y. & Byrnes, Okay. R. Characterization of the expression and inflammatory exercise of NADPH oxidase after spinal wire damage. Free Radic. Res. 48, 929–939 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Bakh, N. A. et al. Glucose-responsive insulin by molecular and bodily design. Nat. Chem. 9, 937–943 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chou, D. H. et al. Glucose-responsive insulin exercise by covalent modification with aliphatic phenylboronic acid conjugates. Proc. Natl Acad. Sci. USA 112, 2401–2406 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ahuja, C. S. et al. Traumatic spinal wire damage. Nat. Rev. Dis. Prim. 3, 17018 (2017).

    Article 

    Google Scholar
     

  • Li, X. et al. The impact of a nanofiber-hydrogel composite on neural tissue restore and regeneration within the contused spinal wire. Biomaterials 245, 119978 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schucht, P., Raineteau, O., Schwab, M. E. & Fouad, Okay. Anatomical correlates of locomotor restoration following dorsal and ventral lesions of the rat spinal wire. Exp. Neurol. 176, 143–153 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Qiao, Y. et al. Spinal dopaminergic mechanisms regulating the micturition reflex in male rats with full spinal wire damage. J. Neurotrauma 38, 803–817 (2021).

    Article 

    Google Scholar
     

  • Shi, Y. et al. Efficient restore of traumatically injured spinal wire by nanoscale block copolymer micelles. Nat. Nanotechnol. 5, 80–87 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Ye, J. et al. Rationally designed, self-assembling, multifunctional hydrogel depot repairs extreme spinal wire damage. Adv. Well being. Mater. 10, e2100242 (2021).

    Article 

    Google Scholar
     

  • Watson, C. et al. in The Spinal Twine Ch 15 (Educational Press, 2008).

  • Hong, L. T. A. et al. An injectable hydrogel enhances tissue restore after spinal wire damage by selling extracellular matrix transforming. Nat. Commun. 8, 533 (2017).

    Article 

    Google Scholar
     

  • Basso, D. M., Beattie, M. S. & Bresnahan, J. C. Graded histological and locomotor outcomes after spinal wire contusion utilizing the NYU weight-drop system versus transection. Exp. Neurol. 139, 244–256 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Wenger, N. et al. Spatiotemporal neuromodulation therapies participating muscle synergies enhance motor management after spinal wire damage. Nat. Med. 22, 138–145 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles