Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007).
Tsutsumi, M. et al. Mechanical-stimulation-evoked calcium waves in proliferating and differentiated human keratinocytes. Cell Tissue Res. 338, 99–106 (2009).
Screaton, R. A. et al. The CREB coactivator TORC2 features as a calcium- and cAMP-sensitive coincidence detector. Cell 119, 61–74 (2004).
Carrasco, M. A. & Hidalgo, C. Calcium microdomains and gene expression in neurons and skeletal muscle cells. Cell Calcium 40, 575–583 (2006).
Glaser, T. et al. ATP and spontaneous calcium oscillations management neural stem cell destiny willpower in Huntington’s illness: a novel strategy for cell clock analysis. Mol. Psychiatry 26, 2633–2650 (2021).
Tada, M. & Concha, M. L. Vertebrate gastrulation: calcium waves orchestrate cell actions. Curr. Biol. 11, R470–R472 (2001).
McCormack, J. G., Halestrap, A. P. & Denton, R. M. Position of calcium ions in regulation of mammalian intramitochondrial metabolism. Phys. Rev. 70, 391–425 (1990).
Leybaert, L. & Sanderson, M. J. Intercellular Ca2+ waves: mechanisms and performance. Phys. Rev. 92, 1359–1392 (2012).
Eng, G. et al. Autonomous beating fee adaptation in human stem cell-derived cardiomyocytes. Nat. Commun. 7, 10312 (2016).
Llano, I. et al. Presynaptic calcium shops underlie large-amplitude miniature IPSCs and spontaneous calcium transients. Nat. Neurosci. 3, 1256–1265 (2000).
Takano, T. et al. Astrocyte-mediated management of cerebral blood stream. Nat. Neurosci. 9, 260–267 (2006).
Drumm, B. T. et al. The results of mitochondrial inhibitors on Ca2+ signalling and electrical conductances required for pacemaking in interstitial cells of Cajal within the mouse small gut. Cell Calcium 72, 1–17 (2018).
Gourine, A. V. et al. Astrocytes management respiratory by pH-dependent launch of ATP. Science 329, 571–575 (2010).
Berridge, M. J. Calcium signaling transforming and illness. Biochem. Soc. Trans. 40, 297–309 (2012).
Stewart, T. A., Yapa, Ok. T. D. S. & Monteith, G. R. Altered calcium signaling in most cancers cells. Biochim. Biophys. Acta Biomembr. 1848, 2502–2511 (2015).
Berridge, M. J., Lipp, P. & Bootman, M. D. The flexibility and universality of calcium signaling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000).
Cornell-Bell, A. H. et al. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470–473 (1990).
Sanderson, M. J., Charles, A. C. & Dirksen, E. R. Mechanical stimulation and intercellular communication will increase intracellular Ca2+ in epithelial cells. Cell Regul. 1, 585–596 (1990).
Klok, M. et al. MHz unidirectional rotation of molecular rotary motors. J. Am. Chem. Soc. 130, 10484–10485 (2008).
García-López, V. et al. Unimolecular submersible nanomachines. synthesis, actuation, and monitoring. Nano Lett. 15, 8229–8239 (2015).
García-López, V. et al. Molecular machines open cell membranes. Nature 548, 567–572 (2017).
Zheng, Y. et al. Optoregulated drive utility to mobile receptors utilizing molecular motors. Nat. Commun. 12, 3580 (2021).
García-López, V., Liu, D. & Tour, J. M. Mild-activated natural molecular motors and their purposes. Chem. Rev. 120, 79–124 (2020).
Pollard, M. M., Klok, M., Pijper, D. & Feringa, B. L. Charge acceleration of light-driven rotary molecular motors. Adv. Func. Mater. 17, 718–729 (2007).
Alaya-Orozco, C. et al. Seen-light-activated molecular nanomachines kill pancreatic most cancers cells. ACS Appl. Mater. Int. 12, 410–417 (2020).
Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J. & Kroemer, G. Cell loss of life assays for drug discovery. Nat. Rev. Drug Discov. 10, 221–237 (2011).
Galbadage, T. et al. Molecular nanomachines disrupt bacterial cell wall, rising sensitivity of extensively drug-resistant Klebsiella pneumoniae to meropenem. ACS Nano 13, 14377–14387 (2019).
Santos, A. L. et al. Mild-activated molecular machines are fast-acting broad-spectrum antibacterials that focus on the membrane. Sci. Adv. 8, eabm2055 (2022).
Vriens, J., Appendino, G. & Nilius, B. Pharmacology of vanilloid transient receptor potential cation channels. Mol. Pharmacol. 75, 1262–1279 (2009).
Hamill, O. P. & McBride, D. W. Jr The pharmacology of mechanogated membrane ion channels. Pharmacol. Rev. 48, 231–252 (1996).
Thastrup, O., Cullen, P. J., Drøbak, B. Ok., Hanley, M. R. & Dawson, A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ shops by particular inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc. Natl Acad. Sci. USA 87, 2466–2470 (1990).
Bock, G. R. & Ackrill, Ok. Calcium Waves, Gradients and Oscillations (Wiley, 2008).
Gafni, J. et al. Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron 19, 723–733 (1997).
Ribeiro, C. M. P., Reece, J. & Putney, J. W. Position of the cytoskeleton in calcium signaling in NIH 3T3 cells. J. Biol. Chem. 272, 26555–26561 (1997).
Xu, J. et al. GPR68 senses stream and is crucial for vascular physiology. Cell 173, 762–775.e16 (2018).
Feher, J. Quantitative Human Physiology: An Introduction 351–361 (Elsevier, 2007).
Stuyvers, B. D., Boyden, P. A. & ter Keurs, H. E. D. J. Calcium waves. Circ. Res. 86, 1016–1018 (2000).
Wang, H. et al. An entire biomechanical mannequin of Hydra contractile behaviors, from neural drive to muscle to motion. Proc. Natl Acad. Sci. 120, e2210439120 (2023).
Goel, T., Wang, R., Martin, S. & Collins, E.-M. S. Linalool acts as a quick and reversible anesthetic in Hydra. PLoS ONE 14, e0224221 (2019).
Takaku, Y. et al. Innexin hole junctions in nerve cells coordinate spontaneous contractile conduct in Hydra polyps. Sci. Rep. 4, 3573 (2014).
Kinnamon, J. C. & Westfall, J. A. A 3 dimensional serial reconstruction of neuronal distributions within the hypostome of a Hydra. J. Morphol. 168, 321–329 (1981).
Kinnamon, J. C. & Westfall, J. A. Forms of neurons and synaptic connections at hypostome-tentacle junctions in Hydra. J. Morphol. 173, 119–128 (1982).
Dupre, C. & Yuste, R. Non-overlapping neural networks in Hydra vulgaris. Curr. Biol. 27, 1085–1097 (2017).
Badhiwala, Ok. N., Primack, A. S., Juliano, C. E. & Robinson, J. T. A number of neuronal networks coordinate Hydra mechanosensory conduct. eLife 10, e64108 (2020).
Guertin, S. & Kass-Simon, G. Extraocular spectral photosensitivity within the tentacles of Hydra vulgaris. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 184, 163–170 (2015).
van Venrooy, A. et al. Probing the rotary cycle of amine-substituted molecular motors. J. Org. Chem. 88, 762–770 (2023).
Garcia-Lopez, V. et al. Synthesis of light-driven motorized nanocars for linear trajectories and their detailed NMR structural willpower. Tetrahedron 73, 4864–4873 (2017).
Sinnecker, D. & Schaefer, M. Actual-time evaluation of phospholipase C exercise throughout totally different patterns of receptor-induced Ca2+ responses in HEK293 cells. Cell Calcium 35, 29–38 (2004).
Lancon, A. et al. Human hepatic cell uptake of resveratrol: involvement of each passive diffusion and carrier-mediated course of. Biochem. Biophys. Res. Commun. 4, 1132–1137 (2004).
Roke, D. et al. Mild-gated rotation in a molecular motor functionalized with a dithienylethene change. Angew. Chem. Int. Ed. 57, 10515–10519 (2018).
Saywell, A. et al. Mild-induced translation of motorized molecules on a floor. ACS Nano 10, 10945–10952 (2016).
Frisch, M. J. et al. Gaussian 16 Rev. A.03 (Wallingford, 2016).
Dennington, R., Keith, T. A and Millam, J. M. GaussView model 6 (Semichem, 2019).
Tao, J., Perdew, J. P., Staroverov, V. N. & Scuseria, G. E. Climbing the density practical concept ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401 (2003).
Weigend, F. & Ahlrichs, R. Balanced foundation units of break up valence, triple zeta valence and quadruple zeta valence high quality for H to Rn: design and evaluation of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).
Grimme, S., Ehrlich, S. & Georigk, L. Impact of the damping perform in dispersion corrected density practical concept. J. Comp. Chem. 32, 1456–1465 (2011).
Dunlap, B. I. Strong and variational becoming: eradicating the four-center integrals from middle stage in quantum chemistry. J. Mol. Struct. THEOCHEM 529, 37–40 (2000).
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density practical dispersion correction (DFT-D) for the 94 components H-Pu. J. Chem. Phys. 132, 154104 (2010).
Stratmann, R. E., Scuseria, G. E. & Frisch, M. J. Attaining linear scaling in exchange-correlation density practical quadratures. Chem. Phys. Lett. 257, 213–223 (1996).
Zhao, X., Fan, B., Hassan, S., Veeraraghavan, A. & Robinson, J. T. Close to area optical sensing of single cell exercise with built-in micro-ring resonators. In Biophotonics Congress 2021 paper BTu3B.4 (Optical Society of America, 2021).
Gunasekera, R. S. et al. Molecular nanomachines can destroy tissue or kill multicellular eukaryotes. ACS Appl. Mater. Int. 12, 13657–13670 (2020).
Hajnoczky, G., Davies, E. & Madesh, M. Calcium signaling and apoptosis. Biochem. Biophys. Ref. Commun. 304, 445–454 (2003).
Cnossen, A., Kistemaker, J. C. M., Kojima, T. & Feringa, B. L. Structural dynamics of overcrowded alkene-based molecular motors throughout thermal isomerization. J. Org. Chem. 79, 927–935 (2014).
Nagaraja, D. et al. Solvent impact on the relative quantum yield and fluorescence quenching of a newly synthesized coumarin spinoff. Luminescence 30, 495–502 (2014).
Tzouanas, C. N. et al. Hydra present steady responses to thermal stimulation regardless of massive modifications within the variety of neurons. iScience 24, 102490 (2021).
Grunder, S. & Assmann, M. Peptide-gated ion channels and the straightforward nervous system of Hydra. J. Exp. Biol. 218, 551–561 (2015).
Grigoryan, B. et al. Improvement, characterization, and purposes of multi-material stereolithography bioprinting. Sci. Rep. 11, 3171 (2021).
Mizuno, Ok., Kurokawa, Ok. & Ohkuma, S. Regulation of kind 1 IP3 receptor expression by dopamine D2-like receptors by way of AP-1 and NFATc4 activation. Neuropharmacology 71, 264–272 (2013).
