Nacre-mimetic cerium-doped nano-hydroxyapatite/chitosan layered composite scaffolds regulate bone regeneration by way of OPG/RANKL signaling pathway | Journal of Nanobiotechnology


  • Fernandez de Grado G, Keller L, Idoux-Gillet Y, Wagner Q, Musset AM, Benkirane-Jessel N, Bornert F, Offner D. Bone substitutes: a overview of their traits, scientific use, and views for big bone defects administration. J Tissue Eng. 2018;9:2041731418776819.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: a overview of in vivo research in bone defect fashions. Acta Biomater. 2017;62:01–28.

    Article 
    CAS 

    Google Scholar
     

  • Lu H, Liu Y, Guo J, Wu H, Wang J, Wu G. Biomaterials with Antibacterial and Osteoinductive Properties to Restore contaminated bone defects. Int J Mol Sci. 2016;17:334.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Safari B, Davaran S, Aghanejad A. Osteogenic potential of the expansion elements and bioactive molecules in bone regeneration. Int J Biol Macromol. 2021;175:544–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toogood P, Miclau T. Important-sized bone defects: sequence and planning. J Orthop Trauma. 2017;31(Suppl 5):23–S26.

    Article 

    Google Scholar
     

  • Bezstarosti H, Metsemakers WJ, van Lieshout EMM, Voskamp LW, Kortram Okay, McNally MA, Marais LC, Verhofstad MHJ. Administration of critical-sized bone defects within the remedy of fracture-related an infection: a scientific overview and pooled evaluation. Arch Orthop Trauma Surg. 2021;141:1215–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nauth A, Schemitsch E, Norris B, Nollin Z, Watson JT. Important-size bone defects: is there a Consensus for analysis and remedy? J Orthop Trauma. 2018;32(Suppl 1):07–S11.

    Article 

    Google Scholar
     

  • Mauffrey C, Barlow BT, Smith W. Administration of segmental bone defects. J Am Acad Orthop Surg. 2015;23:143–53.

    PubMed 

    Google Scholar
     

  • Collaborators GBDF. World, regional, and nationwide burden of bone fractures in 204 nations and territories, 1990–2019: a scientific evaluation from the worldwide burden of Illness Examine 2019. Lancet Wholesome Longev. 2021;2:e580–92.

    Article 

    Google Scholar
     

  • Stahl A, Yang YP. Regenerative approaches for the remedy of enormous bone defects. Tissue Eng Half B Rev. 2021;27:539–47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auregan JC, Begue T. Induced membrane for remedy of essential sized bone defect: a overview of experimental and scientific experiences. Int Orthop. 2014;38:1971–8.

    Article 
    PubMed 

    Google Scholar
     

  • Sohn HS, Oh JK. Evaluate of bone graft and bone substitutes with an emphasis on fracture surgical procedures. Biomater Res. 2019;23:9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee SH, Lee KG, Hwang JH, Cho YS, Lee KS, Jeong HJ, Park SH, Park Y, Cho YS, Lee BK. Analysis of mechanical power and bone regeneration skill of 3D printed kagome-structure scaffold utilizing rabbit calvarial defect mannequin. Mater Sci Eng C Mater Biol Appl. 2019;98:949–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hopp SG, Dahners LE, Gilbert JA. A research of the mechanical power of lengthy bone defects handled with varied bone autograft substitutes: an experimental investigation within the rabbit. J Orthop Res. 1989;7:579–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: current advances and challenges. Crit Rev Biomed Eng. 2012;40:363–408.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: present ideas and future instructions. BMC Med. 2011;9:66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szczes A, Holysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical functions. Adv Colloid Interface Sci. 2017;249:321–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bohner M, Santoni BLG, Dobelin N. beta-tricalcium phosphate for bone substitution: synthesis and properties. Acta Biomater. 2020;113:23–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N. A overview of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym. 2016;151:172–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu Y, Kong L, Farhadi F, Xia W, Chang J, He Y, Li H. An injectable steady stratified structurally and functionally biomimetic assemble for enhancing osteochondral regeneration. Biomaterials. 2019;192:149–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen W, Shen X, Hu Y, Xu Okay, Ran Q, Yu Y, Dai L, Yuan Z, Huang L, Shen T, Cai Okay. Floor functionalization of titanium implants with chitosan-catechol conjugate for suppression of ROS-induced cells harm and enchancment of osteogenesis. Biomaterials. 2017;114:82–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao H, Wu C, Gao D, Chen S, Zhu Y, Solar J, Luo H, Yu Okay, Fan H, Zhang X. Antitumor Impact by Hydroxyapatite Nanospheres: activation of Mitochondria-Dependent apoptosis and damaging regulation of Phosphatidylinositol-3-Kinase/Protein kinase B pathway. ACS Nano. 2018;12:7838–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B. Scaffolds for bone tissue Engineering: state-of-the-art and new views. Mater Sci Eng C Mater Biol Appl. 2017;78:1246–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin S, Zhang W, Zhang Z, Jiang X. Current advances in Scaffold Design and Materials for Vascularized Tissue-Engineered Bone Regeneration. Adv Healthc Mater. 2019;8:e1801433.

    Article 
    PubMed 

    Google Scholar
     

  • Nair AK, Gautieri A, Chang SW, Buehler MJ. Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun. 2013;4:1724.

    Article 
    PubMed 

    Google Scholar
     

  • Nair AK, Gautieri A, Buehler MJ. Position of intrafibrillar collagen mineralization in defining the compressive properties of nascent bone. Biomacromolecules. 2014;15:2494–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woo JY, Oh JH, Jo S, Han CS. Nacre-Mimetic Graphene Oxide/Cross-Linking Agent Composite Movies with Superior Mechanical Properties. ACS Nano. 2019;13:4522–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi Y, Jeon D, Choi Y, Kim D, Kim N, Gu M, Bae S, Lee T, Lee HW, Kim BS, Ryu J. Interface Engineering of Hematite with Nacre-like Catalytic Multilayers for Photo voltaic Water Oxidation. ACS Nano. 2019;13:467–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi X, Wang H, Xie X, Xue Q, Zhang J, Kang S, Wang C, Liang J, Chen Y. Bioinspired Ultrasensitive and Stretchable MXene-Based mostly pressure Sensor by way of Nacre-Mimetic Microscale “Brick-and-Mortar” Structure. ACS Nano. 2019;13:649–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Tian J, Zhong J, Shi X. Skinny nacre-biomimetic coating with Tremendous-Anticorrosion Efficiency. ACS Nano. 2018;12:10189–200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eckert A, Rudolph T, Guo J, Mang T, Walther A. Exceptionally ductile and hard biomimetic Synthetic Nacre with fuel barrier perform. Adv Mater. 2018;30:e1802477.

    Article 
    PubMed 

    Google Scholar
     

  • Li T, Ma B, Xue J, Zhai D, Zhao P, Chang J, Wu C. Bioinspired Biomaterials with a Brick-and-Mortar microstructure combining mechanical and organic efficiency. Adv Healthc Mater. 2020;9:e1901211.

    Article 
    PubMed 

    Google Scholar
     

  • Cartwright JHE, Checa AG, Sainz-Diaz CI. Nacre is a Liquid-Crystal Thermometer of the Oceans. ACS Nano. 2020;14:9277–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Cheng Q, Tang Z. Layered nanocomposites impressed by the construction and mechanical properties of nacre. Chem Soc Rev. 2012;41:1111–29.

    Article 
    PubMed 

    Google Scholar
     

  • Kim HD, Amirthalingam S, Kim SL, Lee SS, Rangasamy J, Hwang NS. Biomimetic supplies and fabrication approaches for bone tissue Engineering. Adv Healthc Mater 2017, 6.

  • Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials. 2018;185:240–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba Okay. Chitosan as a bioactive polymer: Processing, properties and functions. Int J Biol Macromol. 2017;105:1358–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui ZK, Kim S, Baljon JJ, Wu BM, Aghaloo T, Lee M. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat Commun. 2019;10:3523.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang M, Wan T, Fan P, Shi Okay, Chen X, Yang H, Liu X, Xu W, Zhou Y. Photopolymerizable chitosan hydrogels with improved power and 3D printability. Int J Biol Macromol. 2021;193:109–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang CJ, Hu M, Ke QF, Guo CX, Guo YJ, Guo YP. Nacre-inspired hydroxyapatite/chitosan layered composites successfully take away lead ions in continuous-flow wastewater. J Hazard Mater. 2020;386:121999.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banerjee S, Bagchi B, Bhandary S, Kool A, Hoque NA, Biswas P, Pal Okay, Thakur P, Das Okay, Karmakar P, Das S. Antimicrobial and biocompatible fluorescent hydroxyapatite-chitosan nanocomposite movies for biomedical functions. Colloids Surf B Biointerfaces. 2018;171:300–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zafeiris Okay, Brasinika D, Karatza A, Koumoulos E, Karoussis IK, Kyriakidou Okay, Charitidis CA. Additive manufacturing of hydroxyapatite-chitosan-genipin composite scaffolds for bone tissue engineering functions. Mater Sci Eng C Mater Biol Appl. 2021;119:111639.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, Tang Y, Ke Q, Yin W, Zhang C, Guo Y, Guan J. Magnetic lanthanum-doped hydroxyapatite/chitosan scaffolds with endogenous stem cell-recruiting and immunomodulatory properties for bone regeneration. J Mater Chem B. 2020;8:5280–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou D, Qi C, Chen YX, Zhu YJ, Solar TW, Chen F, Zhang CQ. Comparative research of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects. Int J Nanomedicine. 2017;12:2673–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan J, Herzog JW, Tsang Okay, Brennan CA, Bower MA, Garrett WS, Sartor BR, Aliprantis AO, Charles JF. Intestine microbiota induce IGF-1 and promote bone formation and development. Proc Natl Acad Sci U S A. 2016;113:E7554–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang Y, Hu M, Xu Y, Chen F, Chen S, Chen M, Qi Y, Shen M, Wang C, Lu Y, et al. Megakaryocytes promote bone formation by way of coupling osteogenesis with angiogenesis by secreting TGF-beta1. Theranostics. 2020;10:2229–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonewald LF, Mundy GR. Position of reworking development factor-beta in bone reworking. Clin Orthop Relat Res 1990:261–76.

  • Zaichick S, Zaichick V, Karandashev V, Nosenko S. Accumulation of uncommon earth components in human bone throughout the lifespan. Metallomics. 2011;3:186–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang X, Track H. Synthesis of cerium oxide nanoparticles loaded on chitosan for enhanced auto-catalytic regenerative skill and biocompatibility for the spinal wire harm restore. J Photochem Photobiol B. 2019;191:83–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marino A, Tonda-Turo C, De Pasquale D, Ruini F, Genchi G, Nitti S, Cappello V, Gemmi M, Mattoli V, Ciardelli G, Ciofani G. Gelatin/nanoceria nanocomposite fibers as antioxidant scaffolds for neuronal regeneration. Biochim Biophys Acta Gen Subj. 2017;1861:386–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao P-P, Hu H-R, Liu J-Y, Ke Q-F, Peng X-Y, Ding H, Guo Y-P. Gadolinium phosphate/chitosan scaffolds promote new bone regeneration by way of Smad/Runx2 pathway. Chem Eng J. 2019;359:1120–9.

    Article 
    CAS 

    Google Scholar
     

  • Lu B, Zhu DY, Yin JH, Xu H, Zhang CQ, Ke QF, Gao YS, Guo YP. Incorporation of cerium oxide in hole mesoporous bioglass scaffolds for enhanced bone regeneration by activating the ERK signaling pathway. Biofabrication. 2019;11:025012.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Kang F, Gong X, Bai Y, Dai J, Zhao C, Dou C, Cao Z, Liang M, Dong R, et al. Ceria nanoparticles improve endochondral ossification-based critical-sized bone defect regeneration by selling the hypertrophic differentiation of BMSCs by way of DHX15 activation. FASEB J. 2019;33:6378–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, Kim HY, Track SY, Go SH, Sohn HS, Baik S, Soh M, Kim Okay, Kim D, Kim HC, et al. Synergistic oxygen technology and reactive oxygen species scavenging by Manganese Ferrite/Ceria co-decorated nanoparticles for rheumatoid arthritis remedy. ACS Nano. 2019;13:3206–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng F, Wu Y, Li X, Ge X, Guo Q, Lou X, Cao Z, Hu B, Lengthy NJ, Mao Y, Li C. Customized-made Ceria Nanoparticles present a neuroprotective impact by modulating phenotypic polarization of the Microglia. Angew Chem Int Ed Engl. 2018;57:5808–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Celardo I, Pedersen JZ, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale. 2011;3:1411–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan Okay, Mei J, Shao D, Zhou F, Qiao H, Liang Y, Li Okay, Tang T. Cerium Oxide Nanoparticles regulate osteoclast differentiation bidirectionally by modulating the Mobile manufacturing of reactive oxygen species. Int J Nanomedicine. 2020;15:6355–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turk S, Altinsoy I, Celebi Efe G, Ipek M, Ozacar M, Bindal C. 3D porous collagen/functionalized multiwalled carbon nanotube/chitosan/hydroxyapatite composite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018;92:757–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li M, Wang Y, Liu Q, Li Q, Cheng Y, Zheng Y, Xi T, Wei S. In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. J Mater Chem B. 2013;1:475–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Divband B, Aghazadeh M, Al-Qaim ZH, Samiei M, Hussein FH, Shaabani A, Shahi S, Sedghi R. Bioactive chitosan biguanidine-based injectable hydrogels as a novel BMP-2 and VEGF provider for osteogenesis of dental pulp stem cells. Carbohydr Polym. 2021;273:118589.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmadi P, Nazeri N, Derakhshan MA, Ghanbari H. Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering. Int J Biol Macromol. 2021;180:590–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brossier T, Volpi G, Vasquez-Villegas J, Petitjean N, Guillaume O, Lapinte V, Blanquer S. Photoprintable gelatin-graft-Poly(trimethylene carbonate) by stereolithography for tissue Engineering Purposes. Biomacromolecules. 2021;22:3873–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM. Anti-inflammatory properties of cerium oxide nanoparticles. Small. 2009;5:2848–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles