Fernandez de Grado G, Keller L, Idoux-Gillet Y, Wagner Q, Musset AM, Benkirane-Jessel N, Bornert F, Offner D. Bone substitutes: a overview of their traits, scientific use, and views for big bone defects administration. J Tissue Eng. 2018;9:2041731418776819.
El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: a overview of in vivo research in bone defect fashions. Acta Biomater. 2017;62:01–28.
Lu H, Liu Y, Guo J, Wu H, Wang J, Wu G. Biomaterials with Antibacterial and Osteoinductive Properties to Restore contaminated bone defects. Int J Mol Sci. 2016;17:334.
Safari B, Davaran S, Aghanejad A. Osteogenic potential of the expansion elements and bioactive molecules in bone regeneration. Int J Biol Macromol. 2021;175:544–57.
Toogood P, Miclau T. Important-sized bone defects: sequence and planning. J Orthop Trauma. 2017;31(Suppl 5):23–S26.
Bezstarosti H, Metsemakers WJ, van Lieshout EMM, Voskamp LW, Kortram Okay, McNally MA, Marais LC, Verhofstad MHJ. Administration of critical-sized bone defects within the remedy of fracture-related an infection: a scientific overview and pooled evaluation. Arch Orthop Trauma Surg. 2021;141:1215–30.
Nauth A, Schemitsch E, Norris B, Nollin Z, Watson JT. Important-size bone defects: is there a Consensus for analysis and remedy? J Orthop Trauma. 2018;32(Suppl 1):07–S11.
Mauffrey C, Barlow BT, Smith W. Administration of segmental bone defects. J Am Acad Orthop Surg. 2015;23:143–53.
Collaborators GBDF. World, regional, and nationwide burden of bone fractures in 204 nations and territories, 1990–2019: a scientific evaluation from the worldwide burden of Illness Examine 2019. Lancet Wholesome Longev. 2021;2:e580–92.
Stahl A, Yang YP. Regenerative approaches for the remedy of enormous bone defects. Tissue Eng Half B Rev. 2021;27:539–47.
Auregan JC, Begue T. Induced membrane for remedy of essential sized bone defect: a overview of experimental and scientific experiences. Int Orthop. 2014;38:1971–8.
Sohn HS, Oh JK. Evaluate of bone graft and bone substitutes with an emphasis on fracture surgical procedures. Biomater Res. 2019;23:9.
Lee SH, Lee KG, Hwang JH, Cho YS, Lee KS, Jeong HJ, Park SH, Park Y, Cho YS, Lee BK. Analysis of mechanical power and bone regeneration skill of 3D printed kagome-structure scaffold utilizing rabbit calvarial defect mannequin. Mater Sci Eng C Mater Biol Appl. 2019;98:949–59.
Hopp SG, Dahners LE, Gilbert JA. A research of the mechanical power of lengthy bone defects handled with varied bone autograft substitutes: an experimental investigation within the rabbit. J Orthop Res. 1989;7:579–84.
Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: current advances and challenges. Crit Rev Biomed Eng. 2012;40:363–408.
Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: present ideas and future instructions. BMC Med. 2011;9:66.
Szczes A, Holysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical functions. Adv Colloid Interface Sci. 2017;249:321–30.
Bohner M, Santoni BLG, Dobelin N. beta-tricalcium phosphate for bone substitution: synthesis and properties. Acta Biomater. 2020;113:23–41.
LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N. A overview of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym. 2016;151:172–88.
Zhu Y, Kong L, Farhadi F, Xia W, Chang J, He Y, Li H. An injectable steady stratified structurally and functionally biomimetic assemble for enhancing osteochondral regeneration. Biomaterials. 2019;192:149–58.
Chen W, Shen X, Hu Y, Xu Okay, Ran Q, Yu Y, Dai L, Yuan Z, Huang L, Shen T, Cai Okay. Floor functionalization of titanium implants with chitosan-catechol conjugate for suppression of ROS-induced cells harm and enchancment of osteogenesis. Biomaterials. 2017;114:82–96.
Zhao H, Wu C, Gao D, Chen S, Zhu Y, Solar J, Luo H, Yu Okay, Fan H, Zhang X. Antitumor Impact by Hydroxyapatite Nanospheres: activation of Mitochondria-Dependent apoptosis and damaging regulation of Phosphatidylinositol-3-Kinase/Protein kinase B pathway. ACS Nano. 2018;12:7838–54.
Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B. Scaffolds for bone tissue Engineering: state-of-the-art and new views. Mater Sci Eng C Mater Biol Appl. 2017;78:1246–62.
Yin S, Zhang W, Zhang Z, Jiang X. Current advances in Scaffold Design and Materials for Vascularized Tissue-Engineered Bone Regeneration. Adv Healthc Mater. 2019;8:e1801433.
Nair AK, Gautieri A, Chang SW, Buehler MJ. Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun. 2013;4:1724.
Nair AK, Gautieri A, Buehler MJ. Position of intrafibrillar collagen mineralization in defining the compressive properties of nascent bone. Biomacromolecules. 2014;15:2494–500.
Woo JY, Oh JH, Jo S, Han CS. Nacre-Mimetic Graphene Oxide/Cross-Linking Agent Composite Movies with Superior Mechanical Properties. ACS Nano. 2019;13:4522–9.
Choi Y, Jeon D, Choi Y, Kim D, Kim N, Gu M, Bae S, Lee T, Lee HW, Kim BS, Ryu J. Interface Engineering of Hematite with Nacre-like Catalytic Multilayers for Photo voltaic Water Oxidation. ACS Nano. 2019;13:467–75.
Shi X, Wang H, Xie X, Xue Q, Zhang J, Kang S, Wang C, Liang J, Chen Y. Bioinspired Ultrasensitive and Stretchable MXene-Based mostly pressure Sensor by way of Nacre-Mimetic Microscale “Brick-and-Mortar” Structure. ACS Nano. 2019;13:649–59.
Zhang Y, Tian J, Zhong J, Shi X. Skinny nacre-biomimetic coating with Tremendous-Anticorrosion Efficiency. ACS Nano. 2018;12:10189–200.
Eckert A, Rudolph T, Guo J, Mang T, Walther A. Exceptionally ductile and hard biomimetic Synthetic Nacre with fuel barrier perform. Adv Mater. 2018;30:e1802477.
Li T, Ma B, Xue J, Zhai D, Zhao P, Chang J, Wu C. Bioinspired Biomaterials with a Brick-and-Mortar microstructure combining mechanical and organic efficiency. Adv Healthc Mater. 2020;9:e1901211.
Cartwright JHE, Checa AG, Sainz-Diaz CI. Nacre is a Liquid-Crystal Thermometer of the Oceans. ACS Nano. 2020;14:9277–81.
Wang J, Cheng Q, Tang Z. Layered nanocomposites impressed by the construction and mechanical properties of nacre. Chem Soc Rev. 2012;41:1111–29.
Kim HD, Amirthalingam S, Kim SL, Lee SS, Rangasamy J, Hwang NS. Biomimetic supplies and fabrication approaches for bone tissue Engineering. Adv Healthc Mater 2017, 6.
Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials. 2018;185:240–75.
Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba Okay. Chitosan as a bioactive polymer: Processing, properties and functions. Int J Biol Macromol. 2017;105:1358–68.
Cui ZK, Kim S, Baljon JJ, Wu BM, Aghaloo T, Lee M. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat Commun. 2019;10:3523.
Zhang M, Wan T, Fan P, Shi Okay, Chen X, Yang H, Liu X, Xu W, Zhou Y. Photopolymerizable chitosan hydrogels with improved power and 3D printability. Int J Biol Macromol. 2021;193:109–16.
Zhang CJ, Hu M, Ke QF, Guo CX, Guo YJ, Guo YP. Nacre-inspired hydroxyapatite/chitosan layered composites successfully take away lead ions in continuous-flow wastewater. J Hazard Mater. 2020;386:121999.
Banerjee S, Bagchi B, Bhandary S, Kool A, Hoque NA, Biswas P, Pal Okay, Thakur P, Das Okay, Karmakar P, Das S. Antimicrobial and biocompatible fluorescent hydroxyapatite-chitosan nanocomposite movies for biomedical functions. Colloids Surf B Biointerfaces. 2018;171:300–7.
Zafeiris Okay, Brasinika D, Karatza A, Koumoulos E, Karoussis IK, Kyriakidou Okay, Charitidis CA. Additive manufacturing of hydroxyapatite-chitosan-genipin composite scaffolds for bone tissue engineering functions. Mater Sci Eng C Mater Biol Appl. 2021;119:111639.
Wang Q, Tang Y, Ke Q, Yin W, Zhang C, Guo Y, Guan J. Magnetic lanthanum-doped hydroxyapatite/chitosan scaffolds with endogenous stem cell-recruiting and immunomodulatory properties for bone regeneration. J Mater Chem B. 2020;8:5280–92.
Zhou D, Qi C, Chen YX, Zhu YJ, Solar TW, Chen F, Zhang CQ. Comparative research of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects. Int J Nanomedicine. 2017;12:2673–87.
Yan J, Herzog JW, Tsang Okay, Brennan CA, Bower MA, Garrett WS, Sartor BR, Aliprantis AO, Charles JF. Intestine microbiota induce IGF-1 and promote bone formation and development. Proc Natl Acad Sci U S A. 2016;113:E7554–63.
Tang Y, Hu M, Xu Y, Chen F, Chen S, Chen M, Qi Y, Shen M, Wang C, Lu Y, et al. Megakaryocytes promote bone formation by way of coupling osteogenesis with angiogenesis by secreting TGF-beta1. Theranostics. 2020;10:2229–42.
Bonewald LF, Mundy GR. Position of reworking development factor-beta in bone reworking. Clin Orthop Relat Res 1990:261–76.
Zaichick S, Zaichick V, Karandashev V, Nosenko S. Accumulation of uncommon earth components in human bone throughout the lifespan. Metallomics. 2011;3:186–94.
Fang X, Track H. Synthesis of cerium oxide nanoparticles loaded on chitosan for enhanced auto-catalytic regenerative skill and biocompatibility for the spinal wire harm restore. J Photochem Photobiol B. 2019;191:83–7.
Marino A, Tonda-Turo C, De Pasquale D, Ruini F, Genchi G, Nitti S, Cappello V, Gemmi M, Mattoli V, Ciardelli G, Ciofani G. Gelatin/nanoceria nanocomposite fibers as antioxidant scaffolds for neuronal regeneration. Biochim Biophys Acta Gen Subj. 2017;1861:386–95.
Zhao P-P, Hu H-R, Liu J-Y, Ke Q-F, Peng X-Y, Ding H, Guo Y-P. Gadolinium phosphate/chitosan scaffolds promote new bone regeneration by way of Smad/Runx2 pathway. Chem Eng J. 2019;359:1120–9.
Lu B, Zhu DY, Yin JH, Xu H, Zhang CQ, Ke QF, Gao YS, Guo YP. Incorporation of cerium oxide in hole mesoporous bioglass scaffolds for enhanced bone regeneration by activating the ERK signaling pathway. Biofabrication. 2019;11:025012.
Li J, Kang F, Gong X, Bai Y, Dai J, Zhao C, Dou C, Cao Z, Liang M, Dong R, et al. Ceria nanoparticles improve endochondral ossification-based critical-sized bone defect regeneration by selling the hypertrophic differentiation of BMSCs by way of DHX15 activation. FASEB J. 2019;33:6378–89.
Kim J, Kim HY, Track SY, Go SH, Sohn HS, Baik S, Soh M, Kim Okay, Kim D, Kim HC, et al. Synergistic oxygen technology and reactive oxygen species scavenging by Manganese Ferrite/Ceria co-decorated nanoparticles for rheumatoid arthritis remedy. ACS Nano. 2019;13:3206–17.
Zeng F, Wu Y, Li X, Ge X, Guo Q, Lou X, Cao Z, Hu B, Lengthy NJ, Mao Y, Li C. Customized-made Ceria Nanoparticles present a neuroprotective impact by modulating phenotypic polarization of the Microglia. Angew Chem Int Ed Engl. 2018;57:5808–12.
Celardo I, Pedersen JZ, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale. 2011;3:1411–20.
Yuan Okay, Mei J, Shao D, Zhou F, Qiao H, Liang Y, Li Okay, Tang T. Cerium Oxide Nanoparticles regulate osteoclast differentiation bidirectionally by modulating the Mobile manufacturing of reactive oxygen species. Int J Nanomedicine. 2020;15:6355–72.
Turk S, Altinsoy I, Celebi Efe G, Ipek M, Ozacar M, Bindal C. 3D porous collagen/functionalized multiwalled carbon nanotube/chitosan/hydroxyapatite composite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018;92:757–68.
Li M, Wang Y, Liu Q, Li Q, Cheng Y, Zheng Y, Xi T, Wei S. In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. J Mater Chem B. 2013;1:475–84.
Divband B, Aghazadeh M, Al-Qaim ZH, Samiei M, Hussein FH, Shaabani A, Shahi S, Sedghi R. Bioactive chitosan biguanidine-based injectable hydrogels as a novel BMP-2 and VEGF provider for osteogenesis of dental pulp stem cells. Carbohydr Polym. 2021;273:118589.
Ahmadi P, Nazeri N, Derakhshan MA, Ghanbari H. Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering. Int J Biol Macromol. 2021;180:590–8.
Brossier T, Volpi G, Vasquez-Villegas J, Petitjean N, Guillaume O, Lapinte V, Blanquer S. Photoprintable gelatin-graft-Poly(trimethylene carbonate) by stereolithography for tissue Engineering Purposes. Biomacromolecules. 2021;22:3873–83.
Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM. Anti-inflammatory properties of cerium oxide nanoparticles. Small. 2009;5:2848–56.