Nano drug supply programs: a promising strategy to scar prevention and therapy | Journal of Nanobiotechnology


  • Lin X, Li YZ, Chen T, Min SH, Wang DF, Ding MM, Jiang G. Results of carrying private protecting tools throughout COVID-19 pandemic on composition and variety of pores and skin micro organism and fungi of medical employees. J Eur Acad Dermatol Venereol. 2022;36(9):1612–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tenno M, Shiroguchi Ok, Muroi S, Kawakami E, Koseki Ok, Kryukov Ok, Imanishi T, Ginhoux F, Taniuchi I. Cbfβ2 deficiency preserves Langerhans cell precursors by lack of selective TGFβ receptor signaling. J Exp Med. 2017;214(10):2933–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao Y, Xu D, Music H, Shu F, Wei P, Yang X, Zhong C, Wang X, Müller WE, Zheng Y, Xiao S, Xia Z. Cuprous oxide nanoparticles reduces hypertrophic scarring by inducing fibroblast apoptosis. Int J Nanomedicine. 2019;14:5989–6000.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandes MG, da Silva LP, Cerqueira MT, Ibañez R, Murphy CM, Reis RL, Brien O, Marques FJ. Mechanomodulatory biomaterials prospects in scar prevention and therapy. Acta Biomater. 2022;150:22–33.

    Article 
    PubMed 

    Google Scholar
     

  • Dunn MG, Silver FH, Swann DA. Mechanical evaluation of hypertrophic scar tissue: structural foundation for obvious elevated rigidity. J Make investments Dermatol. 1985;84(1):9–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tredget EE, Nedelec B, Scott PG, Ghahary A. Hypertrophic scars, keloids, and contractures. The mobile and molecular foundation for remedy. Surg Clin North Am. 1997;77(3):701–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castleberry SA, Golberg A, Sharkh MA, Khan S, Almquist BD, Austen WG Jr, Yarmush ML, Hammond PT. Nanolayered siRNA supply platforms for native silencing of CTGF scale back cutaneous scar contraction in third-degree burns. Biomaterials. 2016;95:22–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Zuijlen PP, Ruurda JJ, van Veen HA, van Marle J, van Trier AJ, Groenevelt F, Kreis RW, Middelkoop E. Collagen morphology in human pores and skin and scar tissue: no variations in response to mechanical loading at joints. Burns. 2003;29(5):423–31.

    Article 
    PubMed 

    Google Scholar
     

  • Greaves NS, Ashcroft KJ, Baguneid M, Bayat A. Present understanding of molecular and mobile mechanisms in fibroplasia and angiogenesis throughout acute wound therapeutic. J Dermatol Sci. 2013;72(3):206–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singer AJ, Clark RA. Cutaneous wound therapeutic. N Engl J Med. 1999;341(10):738–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Profyris C, Tziotzios C, Do Vale I. Cutaneous scarring: pathophysiology, molecular mechanisms, and scar discount therapeutics half I. The molecular foundation of scar formation. J Am Acad Dermatol. 2012;66(1):1–10. quiz 11 – 2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shirakami E, Yamakawa S, Hayashida Ok. Methods to stop hypertrophic scar formation: a evaluate of therapeutic interventions based mostly on molecular proof. Burns Trauma. 2020;8:tkz003.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang C, Yang D, Wang TB, Nie X, Chen G, Wang LH, You YZ, Wang Q. Biodegradable hydrogels with photodynamic antibacterial exercise promote wound therapeutic and mitigate scar formation. Biomater Sci. 2022;11(1):288–97.

    Article 
    PubMed 

    Google Scholar
     

  • Haq A, Kumar S, Mao Y, Berthiaume F, Michniak-Kohn B. Thymoquinone-loaded polymeric Movies and Hydrogels for Bacterial Disinfection and Wound Therapeutic. Biomedicines. 2020;8(10):386.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang D, Music SJ, Wu ZZ, Wu W, Cui XY, Chen JN, Zeng MS, Su SC. Epstein-Barr Virus-Induced VEGF and GM-CSF Drive Nasopharyngeal Carcinoma Metastasis by way of Recruitment and activation of macrophages. Most cancers Res. 2017;77(13):3591–604.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones EM, Cochrane CA, Percival SL. The Impact of pH on the Extracellular Matrix and Biofilms. Adv Wound Care (New Rochelle). 2015;4(7):431–9.

    Article 
    PubMed 

    Google Scholar
     

  • Wu H, Li F, Wang S, Lu J, Li J, Du Y, Solar X, Chen X, Gao J, Ling D. Ceria nanocrystals embellished mesoporous silica nanoparticle-based ROS-scavenging tissue adhesive for extremely environment friendly regenerative wound therapeutic. Biomaterials. 2018;151:66–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giroux X, Su WL, Bredeche MF, Matic I. Maladaptive DNA restore is the last word contributor to the demise of trimethoprim-treated cells underneath cardio and anaerobic situations. Proc Natl Acad Sci U S A. 2017;114(43):11512–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi H, Feng T, Li B, Han Y. In Vitro and in vivo comparability examine of Electrospun PLA and PLA/PVA/SA Fiber membranes for Wound Therapeutic. Polym (Basel). 2020;12(4):839.

    Article 
    CAS 

    Google Scholar
     

  • Hesketh M, Sahin KB, West ZE, Murray RZ. Macrophage phenotypes regulate scar formation and continual Wound Therapeutic. Int J Mol Sci. 2017;18(7):1545.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reel B, Sala-Newby GB, Huang WC, Newby AC. Numerous patterns of cyclooxygenase-independent metalloproteinase gene regulation in human monocytes. Br J Pharmacol. 2011;163(8):1679–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Silva MR, Cabrera-Cabrera F, das Neves RF, Souto-Padrón T, de Souza W, Cayota A. Gene expression adjustments induced by Trypanosoma cruzi shed microvesicles in mammalian host cells: relevance of tRNA-derived halves. Biomed Res Int. 2014;2014:305239.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan J, Wu J. Present progress in understanding the molecular pathogenesis of burn scar contracture. Burns Trauma. 2017;5:14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Higashi AY, Aronow BJ, Dressler GR. Expression profiling of fibroblasts in continual and Acute Illness Fashions reveals novel pathways in kidney fibrosis. J Am Soc Nephrol. 2019;30(1):80–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eves PC, Beck AJ, Shard AG, Mac Neil S. A chemically outlined floor for the co-culture of melanocytes and keratinocytes. Biomaterials. 2005;26(34):7068–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demidova-Rice TN, Hamblin MR, Herman IM. Acute and impaired wound therapeutic: pathophysiology and present strategies for drug supply, half 1: regular and continual wounds: biology, causes, and approaches to care. Adv Pores and skin Wound Care. 2012;25(7):304–14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vijayan AN, Solaimuthu A, Murali P, Gopi J, Korrapati YMTRAP. Decorin mediated biomimetic PCL-gelatin nanoframework to impede scarring. Int J Biol Macromol. 2022;219:907–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogawa R. Essentially the most present algorithms for the therapy and Prevention of Hypertrophic Scars and Keloids: a 2020 replace of the Algorithms printed 10 years in the past. Plast Reconstr Surg. 2022;149(1):79e–94e.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nunez JH, Robust AL, Comish P, Hespe GE, Harvey J, Sorkin M, Levi B. A evaluate of laser therapies for the therapy of scarring and vascular anomalies. Adv Wound Care (New Rochelle). 2023;12(2):68–84.

    Article 
    PubMed 

    Google Scholar
     

  • Li-Tsang CW, Feng B, Huang L, Liu X, Shu B, Chan YT, Cheung KK. A histological examine on the impact of strain remedy on the actions of myofibroblasts and keratinocytes in hypertrophic scar tissues after burn. Burns. 2015;41(5):1008–16.

    Article 
    PubMed 

    Google Scholar
     

  • Wei Z, Wang M, Hong M, Diao S, Liu A, Huang Y, Yu Q, Peng Z. Icariin exerts estrogen-like exercise in ameliorating EAE by way of mediating estrogen receptor β, modulating HPA operate and glucocorticoid receptor expression. Am J Transl Res. 2016;8(4):1910–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moore AL, Marshall CD, Barnes LA, Murphy MP, Ransom RC, Longaker MT. Scarless wound therapeutic: transitioning from fetal analysis to regenerative therapeutic. Wiley Interdiscip Rev Dev Biol. 2018;7(2). https://doi.org/10.1002/wdev.309.

  • Mackool RJ, Gittes GK, Longaker MT. Scarless therapeutic. The fetal wound. Clin Plast Surg. 1998;25(3):357–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samuels P, Tan AK. Fetal scarless wound therapeutic. J Otolaryngol. 1999;28(5):296–302.

    CAS 
    PubMed 

    Google Scholar
     

  • Leavitt T, Hu MS, Marshall CD, Barnes LA, Lorenz HP, Longaker MT. Scarless wound therapeutic: discovering the appropriate cells and alerts. Cell Tissue Res. 2016;365(3):483–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan BH, Zhang Q, Lam CH, Yuen HY, Kuang S, Zhao X. Petite miracles: perception into the nanomanagement of scarless wound therapeutic. Drug Discov At present. 2022;27(3):857–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selig HF, Lumenta DB, Giretzlehner M, Jeschke MG, Upton D, Kamolz LP. The properties of an “ideally suited” burn wound dressing–what do we’d like in every day scientific follow? Outcomes of a worldwide on-line survey amongst burn care specialists. Burns. 2012;38(7):960–6.

    Article 
    PubMed 

    Google Scholar
     

  • Li XT, Zhang Y, Chen GQ. Nanofibrous polyhydroxyalkanoate matrices as cell development supporting supplies. Biomaterials. 2008;29(27):3720–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levin A, Sharma V, Hook L, García-Gareta E. The significance of factorial design in tissue engineering and biomaterials science: optimisation of cell seeding effectivity on dermal scaffolds as a case examine. J Tissue Eng. 2018;9:2041731418781696.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weng W, He S, Music H, Li X, Cao L, Hu Y, Cui J, Zhou Q, Peng H, Su J. Aligned Carbon Nanotubes scale back hypertrophic scar by way of regulating cell habits. ACS Nano. 2018;12(8):7601–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo X, Liu Y, Bera H, Zhang H, Chen Y, Cun D, Foderà V, Yang M. α-Lactalbumin-based Nanofiber Dressings enhance burn Wound Therapeutic and scale back scarring. ACS Appl Mater Interfaces. 2020;12(41):45702–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Zhu Y, Lun X, Sheng H, Yan A. Results of wound dressing based mostly on the mix of silver@curcumin nanoparticles and electrospun chitosan nanofibers on wound therapeutic. Bioengineered. 2022;13(2):4328–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim HS, Chen J, Wu LP, Wu J, Xiang H, Leong KW, Han J. Prevention of extreme scar formation utilizing nanofibrous meshes made from biodegradable elastomer poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J Tissue Eng. 2020;11:2041731420949332.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn S, Chantre CO, Gannon AR, Lind JU, Campbell PH, Grevesse T, O’Connor BB, Parker KK. Soy Protein/Cellulose Nanofiber Scaffolds mimicking pores and skin extracellular matrix for enhanced Wound Therapeutic. Adv Healthc Mater. 2018;7(9):e1701175.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang Y, Han Y, Wang S, Chen J, Dai Ok, Xiong Y, Solar B. Three-dimensional printing bilayer membranous nanofiber scaffold for inhibiting scar hyperplasia of pores and skin. Biomater Adv. 2022;138:212951.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su C, Chen J, Xie X, Gao Z, Guan Z, Mo X, Wang C, Hou G. Functionalized Electrospun double-layer Nanofibrous Scaffold for Wound Therapeutic and Scar Inhibition. ACS Omega. 2022;7(34):30137–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang Z, Zhao L, He F, Tan H, Li Y, Tang Y, Duan X, Li Y. Palmatine-loaded electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds speed up wound therapeutic and inhibit hypertrophic scar formation in a rabbit ear mannequin. J Biomater Appl. 2021;35(7):869–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu F, Yuan Z, Shafiq M, Zhang L, Rafique M, Yu F, El-Newehy M, El-Hamshary H, Morsi Y, Xu Y, Mo X. Synergistic impact of glucagon-like peptide-1 analogue liraglutide and ZnO on the antibacterial, hemostatic, and wound therapeutic properties of nanofibrous dressings. J Biosci Bioeng. 2022;134(3):248–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang D, Li L, Shan Y, Xiong J, Hu Z, Zhang Y, Gao J. In vivo examine of silk fibroin/gelatin electrospun nanofiber dressing loaded with astragaloside IV on the impact of selling wound therapeutic and relieving scar. J DRUG DELIV SCI TEC. 2019;52:272–81.

    Article 
    CAS 

    Google Scholar
     

  • Kim TH, Jung Y, Kim SH. Nanofibrous Electrospun Coronary heart Decellularized Extracellular Matrix-Primarily based Hybrid Scaffold as Wound Dressing for decreasing scarring in Wound Therapeutic. Tissue Eng Half A. 2018;24(9–10):830–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng L, Solar X, Chen L, Zhang L, Wang F, Zhang Y, Pan G, Zhang Y, Zhang L, Cui W. Nano-in-micro electronspun membrane: merging nanocarriers and microfibrous scaffold for long-term scar inhibition. CHEM ENG J. 2020;397:125405.

    Article 
    CAS 

    Google Scholar
     

  • Guo S, Kang G, Phan DT, Hsu MN, Por YC, Chen CH. Polymerization-Induced section separation formation of structured hydrogel particles by way of Microfluidics for Scar therapeutics. Sci Rep. 2018;8(1):2245.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He J, Meng X, Meng C, Zhao J, Chen Y, Zhang Z, Zhang Y. Layer-by-layer Pirfenidone/Cerium oxide Nanocapsule Dressing promotes Wound Restore and prevents scar formation. Molecules. 2022;27(6):1830.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv Y, Xu Y, Sang X, Li C, Liu Y, Guo Q, Ramakrishna S, Wang C, Hu P, Nanda HS. PLLA-gelatin composite fiber membranes included with functionalized CeNPs as a sustainable wound dressing substitute selling pores and skin regeneration and scar transforming. J Mater Chem B. 2022;10(7):1116–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pandey VK, Ajmal G, Upadhyay SN, Mishra PK. Nanofibrous scaffold with curcumin for anti-scar wound therapeutic. Int J Pharm. 2020;589:119858.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh S, Gupta A, Sharma D, Gupta B. Dextran based mostly natural nanobiocomposite membranes for scar free wound therapeutic. Int J Biol Macromol. 2018;113:227–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ekambaram R, Dharmalingam S. Fabrication and analysis of electrospun biomimetic sulphonated PEEK nanofibrous scaffold for human pores and skin cell proliferation and wound regeneration potential. Mater Sci Eng C Mater Biol Appl. 2020;115:111150.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gholipourmalekabadi M, Seifalian AM, Urbanska AM, Omrani MD, Hardy JG, Madjd Z, Hashemi SM, Ghanbarian H, Brouki Milan P, Mozafari M, Reis RL, Kundu SC, Samadikuchaksaraei A. 3D protein-based Bilayer Synthetic pores and skin for the guided Scarless Therapeutic of Third-Diploma burn wounds in vivo. Biomacromolecules. 2018;19(7):2409–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharifi E, Sadati SA, Yousefiasl S, Sartorius R, Zafari M, Rezakhani L, Alizadeh M, Nazarzadeh Zare E, Omidghaemi S, Ghanavatinejad F, Jami MS, Salahinejad E, Samadian H, Paiva-Santos AC, De Berardinis P, Shafiee A, Tay FR, Pourmotabed S, Makvandi P. Cell loaded hydrogel containing Ag-doped bioactive glass-ceramic nanoparticles as pores and skin substitute: antibacterial properties, immune response, and scarless cutaneous wound regeneration. Bioeng Transl Med. 2022;7(3):e10386.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalirajan C, Palanisamy T. Bioengineered Hybrid Collagen Scaffold Tethered with Silver-Catechin Nanocomposite modulates angiogenesis and TGF-β towards Scarless Therapeutic in Power Deep Second Diploma Contaminated Burns. Adv Healthc Mater. 2020;9(12):e2000247.

    Article 
    PubMed 

    Google Scholar
     

  • Kalirajan C, Palanisamy T. A ZnO-curcumin nanocomposite embedded hybrid collagen scaffold for efficient scarless pores and skin regeneration in acute burn harm. J Mater Chem B. 2019;7(38):5873–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahman M, Dutta NK, Roy Choudhury N. Magnesium Alloys with Tunable Interfaces as Bone Implant supplies. Entrance Bioeng Biotechnol. 2020;8:564.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pilehvar-Soltanahmadi Y, Akbarzadeh A, Moazzez-Lalaklo N, Zarghami N. An replace on scientific purposes of electrospun nanofibers for pores and skin bioengineering. Artif Cells Nanomed Biotechnol. 2016;44(6):1350–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar PS, Sundaramurthy J, Sundarrajan S, et al. Hierarchical electrospun nanofibers for vitality harvest ing, manufacturing and environmental remediation. Power Environ Sci. 2014;7:3192–222.

    Article 
    CAS 

    Google Scholar
     

  • Wang X, Ding B, Li B. Biomimetic electrospun nanofibrous buildings for tissue engineering. Mater At present (Kidlington). 2013;16(6):229–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vijayavenkataraman S. Nerve information conduits for peripheral nerve harm restore: a evaluate on design, supplies and fabrication strategies. Acta Biomater. 2020;106:54–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barna M, Kucera A, Hladícova M, Kucera M. Der wundheilende Effekt einer Symphytum-Herba-Extrakt-Creme (Symphytum x uplandicum Nyman): Ergebnisse einer randomisierten, kontrollierten doppelblindstudie [Wound healing effects of a Symphytum herb extract cream (Symphytum x uplandicum NYMAN:): results of a randomized, controlled double-blind study]. Wien Med Wochenschr. 2007;157(21–22):569–74. German.

    Article 
    PubMed 

    Google Scholar
     

  • Chen H, Lui YS, Tan ZW, Lee JYH, Tan NS, Tan LP. Migration and phenotype management of human dermal fibroblasts by Electrospun Fibrous Substrates. Adv Healthc Mater. 2019;8(9):e1801378.

    Article 
    PubMed 

    Google Scholar
     

  • Norzain N, Lin W. Oriented and diameter-controlled fibrous scaffolds fabricated utilizing the centrifugal electrospinning approach for exciting the behaviors of fibroblast cells J IND TEXT. 2021; 152808372098812.

  • Chen Y, Shafiq M, Liu M, Morsi Y, Mo X. Superior fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds. Bioact Mater. 2020;5(4):963–79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Aquino AB, Clean AF, Santana LC. Influence of edible chitosan-cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf lifetime of guavas (Psidium guajava L.) throughout storage at room temperature. Meals Chem. 2015;171:108–16.

    Article 
    PubMed 

    Google Scholar
     

  • Kim HS, Solar X, Lee JH, Kim HW, Fu X, Leong KW. Superior drug supply programs and synthetic pores and skin grafts for pores and skin wound therapeutic. Adv Drug Deliv Rev. 2019;146:209–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wright JB, Lam Ok, Burrell RE. Wound administration in an period of accelerating bacterial antibiotic resistance: a task for topical silver therapy. Am J Infect Management. 1998;26(6):572–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gómez-Estaca J, López de Lacey A, López-Caballero ME, Gómez-Guillén MC, Montero P. Biodegradable gelatin-chitosan movies included with important oils as antimicrobial brokers for fish preservation. Meals Microbiol. 2010;27(7):889–96.

    Article 
    PubMed 

    Google Scholar
     

  • Kakar MU, Khan Ok, Akram M, Sami R, Khojah E, Iqbal I, Helal M, Hakeem A, Deng Y, Dai R. Synthesis of bimetallic nanoparticles loaded on to PNIPAM hybrid microgel and their catalytic exercise. Sci Rep. 2021;11(1):14759.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Wang H, Mei L, Wang B, Huang Y, Quan G, Lu C, Peng T, Pan X, Wu C. A pirfenidone loaded spray dressing based mostly on lyotropic liquid crystals for deep partial thickness burn therapy: therapeutic promotion and scar prophylaxis. J Mater Chem B. 2020;8(13):2573–88.

    Article 
    PubMed 

    Google Scholar
     

  • Huang W, Wang Y, Huang Z, Wang X, Chen L, Zhang Y, Zhang L. On-Demand Dissolvable Self-Therapeutic Hydrogel based mostly on Carboxymethyl Chitosan and Cellulose Nanocrystal for deep partial thickness burn Wound Therapeutic. ACS Appl Mater Interfaces. 2018;10(48):41076–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Liu Y, Chen Y, Li L, Lan P, He D, Music J, Zhang Y. Transdermal Supply of 5-Aminolevulinic acid by Nanoethosome gels for photodynamic remedy of hypertrophic scars. ACS Appl Mater Interfaces. 2019;11(4):3704–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng H, Shi Z, Yue Ok, Huang X, Xu Y, Gao C, Yao Z, Zhang YS, Wang J. Sprayable hydrogel dressing accelerates wound therapeutic with mixed reactive oxygen species-scavenging and antibacterial skills. Acta Biomater. 2021;124:219–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thammawithan S, Srichaiyapol O, Siritongsuk P, Daduang S, Klaynongsruang S, Prapasarakul N, Patramanon R. Anisotropic Silver Nanoparticles Gel Displays Antibacterial Motion and decreased scar formation on Wounds contaminated with Methicillin-Resistant Staphylococcus pseudintermedius (MRSP) in a mice Mannequin. Anim (Basel). 2021;11(12):3412.


    Google Scholar
     

  • Zhang Z, Zhang Y, Li W, Ma L, Wang E, Xing M, Zhou Y, Huan Z, Guo F, Chang J. Curcumin/Fe-SiO2 nano composites with multisynergistic results for scar inhibition and hair follicle regeneration throughout burn wound therapeutic. Appl Mater At present. 2021 June;1:23:101065.

  • Yu Z, Meng X, Zhang S, Wang X, Chen Y, Min P, Zhang Z, Zhang Y. IR-808 loaded nanoethosomes for aggregation-enhanced synergistic transdermal photodynamic/photothermal therapy of hypertrophic scars. Biomater Sci. 2021;10(1):158–66.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao CC, Zhu L, Wu Z, Yang R, Xu N, Liang L. Resveratrol-loaded peptide-hydrogels inhibit scar formation in wound therapeutic by way of suppressing irritation. REGEN BIOMATER. 2020;7(1):99–107.

    CAS 
    PubMed 

    Google Scholar
     

  • Yu F, Khan AUR, Zheng H, Li X, El-Newehy M, El-Hamshary H, Morsi Y, Li J, Wu J, Mo X. A photocrosslinking antibacterial decellularized matrix hydrogel with nanofiber for cutaneous wound therapeutic. Colloids Surf B Biointerfaces. 2022;217:112691.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manuja A, Raguvaran R, Kumar B, Kalia A, Tripathi BN. Accelerated therapeutic of full thickness excised pores and skin wound in rabbits utilizing single utility of alginate/acacia based mostly nanocomposites of ZnO nanoparticles. Int J Biol Macromol. 2020;155:823–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh A, Kochhar D, Jeevanandham S, Kar C, Bhattacharya R, Shakeel A, Mukherjee M. Emergence of Heptazine-Primarily based Graphitic Carbon Nitride inside Hydrogel Nanocomposites for Scarless Therapeutic of burn wounds. ACS Appl Polym Mater. 2020;2(12):5743–55.

    Article 
    CAS 

    Google Scholar
     

  • Bhattacharya D, Tiwari R, Bhatia T, Purohit MP, Pal A, Jagdale P, Mudiam MKR, Chaudhari BP, Shukla Y, Ansari KM, Kumar A, Kumar P, Srivastava V, Gupta KC. Accelerated and scarless wound restore by a multicomponent hydrogel by way of simultaneous activation of a number of pathways. Drug Deliv Transl Res. 2019;9(6):1143–58.

    Article 
    PubMed 

    Google Scholar
     

  • Jin L, Guo X, Gao D, Liu Y, Ni J, Zhang Z, Huang Y, Xu G, Yang Z, Zhang X, Jiang X. An NIR photothermal-responsive hybrid hydrogel for enhanced wound therapeutic. Bioact Mater. 2022;16:162–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao M, Zhou M, Gao P, Zheng X, Yu W, Wang Z, Li J, Zhang J. AgNPs/nGOx/Apra nanocomposites for synergistic antimicrobial remedy and scarless pores and skin restoration. J Mater Chem B. 2022;10(9):1393–402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng X, Ding Z, Cheng W, Lu Q, Kong X, Zhou X, Lu G, Kaplan DL. Microskin-inspired Injectable MSC-Laden Hydrogels for Scarless Wound Therapeutic with Hair follicles. Adv Healthc Mater. 2020;9(10):e2000041.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu L, Ding Z, Yang Y, Zhang Z, Lu Q, Kaplan DL. Asiaticoside-laden silk nanofiber hydrogels to manage irritation and angiogenesis for scarless pores and skin regeneration. Biomater Sci. 2021;9(15):5227–36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li M, Liang Y, He J, Therapeutic, et al. CHEM MATER. 2020;32(23):9937–53.

    Article 
    CAS 

    Google Scholar
     

  • Qasemi S, Ghaemy M. Novel superabsorbent biosensor nanohydrogel based mostly on gum tragacanth polysaccharide for optical detection of glucose. Int J Biol Macromol. 2020;151:901–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorati R, Medina JL, DeLuca PP, Leung KP. Growth of a topical 48-H launch Formulation as an anti-scarring therapy for deep partial-thickness Burns. AAPS PharmSciTech. 2018;19(5):2264–75.

    Article 
    PubMed 

    Google Scholar
     

  • Kunkemoeller B, Kyriakides TR. Redox Signaling in Diabetic Wound Therapeutic regulates Extracellular Matrix Deposition. Antioxid Redox Sign. 2017;27(12):823–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bryan N, Ahswin H, Sensible N, Bayon Y, Wohlert S, Hunt JA. Reactive oxygen species (ROS)–a household of destiny deciding molecules pivotal in constructive irritation and wound therapeutic. Eur Cell Mater. 2012;24:249–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie P, Dolivo DM, Jia S, Cheng X, Salcido J, Galiano RD, Hong SJ, Mustoe TA. Liposome-encapsulated statins scale back hypertrophic scarring by way of topical utility. Wound Restore Regen. 2020;28(4):460–9.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang Ok, Chen Y, Zhao D, Cheng J, Mo F, Ji B, Gao C, Zhang C, Music J. A facile and environment friendly strategy for hypertrophic scar remedy by way of DNA-based transdermal drug supply. Nanoscale. 2020;12(36):18682–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar J, Zheng Y, Tian D, Li D, Liu Z, Zhang X, Wu Z. A cell membrane restore protein-based nanoformulation with a number of actuators for scarless wound therapeutic. J Mater Chem B. 2022;10(30):5733–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen YY, Lu YH, Ma CH, Tao WW, Zhu JJ, Zhang X. A novel elastic liposome for pores and skin supply of papain and its utility on hypertrophic scar. Biomed Pharmacother. 2017;87:82–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang BY, Zhou ZY, Liu SY, Shi MJ, Liu XJ, Cheng TM, Deng GY, Tian Y, Music J, Li XH. Porous Se@SiO2 nanoparticles improve Wound Therapeutic by ROS-PI3K/Akt pathway in dermal fibroblasts and scale back scar formation. Entrance Bioeng Biotechnol. 2022;10:852482.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weisleder N, Takizawa N, Lin P, Wang X, Cao C, Zhang Y, Tan T, Ferrante C, Zhu H, Chen PJ, Yan R, Sterling M, Zhao X, Hwang M, Takeshima M, Cai C, Cheng H, Takeshima H, Xiao RP, Ma J. Recombinant MG53 protein modulates therapeutic cell membrane restore in therapy of muscular dystrophy. Sci Transl Med. 2012;4(139):139ra85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong Dw, Kim TS, Chung YW, Lee BJ, Kim IY. Selenoprotein W is a glutathione-dependent antioxidant in vivo. FEBS Lett. 2002;517(1–3):225–8.

    Article 
    PubMed 

    Google Scholar
     

  • Plotczyk M, Jiménez F, Limbu S, Boyle CJ, Ovia J, Almquist BD, Higgins CA. Anagen hair follicles transplanted into mature human scars rework fibrotic tissue. NPJ Regen Med. 2023;8(1):1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall CD, Hu MS, Leavitt T, Barnes LA, Lorenz HP, Longaker MT. Cutaneous scarring: Fundamental Science, present therapies, and future instructions. Adv Wound Care (New Rochelle). 2018;7(2):29–45.

    Article 
    PubMed 

    Google Scholar
     

  • Thomas S. Wound Administration and Dressings. London, UK: Pharmaceutical Press; 1990.


    Google Scholar
     

  • Baeck M, Marot L, Nicolas JF, Pilette C, Tennstedt D, Goossens A. Allergic hypersensitivity to topical and systemic corticosteroids: a evaluate. Allergy. 2009;64(7):978–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niessen FB, Spauwen PH, Schalkwijk J, Kon M. On the character of hypertrophic scars and keloids: a evaluate. Plast Reconstr Surg. 1999;104(5):1435–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singer AJ, Clark RAF. Mechanisms of illness—cutaneous wound therapeutic. N Engl J Med. 1999;341:738–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gan J, Liu C, Li H, Wang S, Wang Z, Kang Z, Huang Z, Zhang J, Wang C, Lv D, Dong L. Accelerated wound therapeutic in diabetes by reprogramming the macrophages with particle-induced clustering of the mannose receptors. Biomaterials. 2019;219:119340.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wo Y, Zhang Z, Zhang Y, Zhang Z, Wang Ok, Mao X, Su W, Li Ok, Cui D, Chen J. Enhanced in vivo supply of 5-fluorouracil by ethosomal gels in rabbit ear hypertrophic scar mannequin. Int J Mol Sci. 2014;15(12):22786–800.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, Xu Ok, Qin L, Zhao D, Yang N, Wang D, Yang Y. Hole nanomaterials in Superior Drug Supply Methods: from single- to a number of shells. Adv Mater. 2023;35(12):e2203890.

    Article 
    PubMed 

    Google Scholar
     

  • Tang H, Xue Y, Li B, Xu X, Zhang F, Guo J, Li Q, Yuan T, Chen Y, Pan Y, Ping Y, Li D. Membrane-camouflaged supramolecular nanoparticles for codelivery of chemotherapeutic and molecular-targeted medicine with siRNA towards patient-derived pancreatic carcinoma. Acta Pharm Sin B. 2022;12(8):3410–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishihara J, Ishihara A, Sasaki Ok, Lee SS, Williford JM, Yasui M, Abe H, Potin L, Hosseinchi P, Fukunaga Ok, Raczy MM, Grey LT, Mansurov A, Katsumata Ok, Fukayama M, Kron SJ, Swartz MA, Hubbell JA. Focused antibody and cytokine most cancers immunotherapies by way of collagen affinity. Sci Transl Med. 2019;11(487):eaau3259.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Huang Q, Zhao T, Sui L, Wang S, Xiao Z, Nan Y, Ai Ok. Nanotherapies for sepsis by regulating inflammatory alerts and reactive oxygen and nitrogen species: New perception for treating COVID-19. Redox Biol. 2021;45:102046.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoshyar N, Grey S, Han H, Bao G. The impact of nanoparticle dimension on in vivo pharmacokinetics and mobile interplay. Nanomed (Lond). 2016;11(6):673–92.

    Article 
    CAS 

    Google Scholar
     

  • Tan Y, Suarez A, Garza M, Khan AA, Elisseeff J, Coon D. Human fibroblast-macrophage tissue spheroids display ratio-dependent fibrotic exercise for in vitro fibrogenesis mannequin improvement. Biomater Sci. 2020;8(7):1951–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi WS, Kim JH, Ahn CB, Lee JH, Kim YJ, Son KH, Lee JW. Growth of a Multi-Layer pores and skin substitute utilizing human hair keratinic extract-based hybrid 3D Printing. Polym (Basel). 2021;13(16):2584.

    Article 
    CAS 

    Google Scholar
     

  • Wu Z, Hong Y. Mixture of the Silver-Ethylene Interplay and 3D Printing to develop Antibacterial Superporous Hydrogels for Wound Administration. ACS Appl Mater Interfaces. 2019;11(37):33734–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang J, Zeng H, Qiao L, Jiang H, Ye Q, Wang Z, Liu B, Fan Z. 3D printed Piezoelectric Wound dressing with twin Piezoelectric Response Fashions for Scar-Prevention Wound Therapeutic. ACS Appl Mater Interfaces. 2022;14(27):30507–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilgus TA, Wulff BC. The significance of mast cells in dermal scarring. Adv Wound Care (New Rochelle). 2014;3(4):356–65.

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles