Brown GL, Nanney LB, Griffen J, Cramer AB, Yancey JM, Curtsinger LJ, Holtzin L, Schultz GS, Jurkiewicz MJ, Lynch JB. Enhancement of wound therapeutic by topical remedy with epidermal development issue. N Engl J Med. 1989;3212:76–9.
Khan NH, Mir M, Qian L, Baloch M, Khan MFA, Rehman A-u, Ngowi EE, Wu D-D, Ji A-Y. Pores and skin most cancers biology and obstacles to remedy: current functions of polymeric micro/nanostructures. J Adv Res. 2022;36:223–47.
Sharma R, Kumar S, Bhawna, Hupta A, Dheer N, Pallavi J, Singh P, Kumar V. An perception of nanomaterials in tissue engineering from fabrication to functions. J Tissue Eng Regen Med. 2022;195:927–60.
Hunt TK, La Van FB. Enhancement of wound therapeutic by development elements. N Engl J Med. 1989;3212:111–2.
Edwards LC, Dunphy JE. Wound therapeutic: harm and irregular restore. N Engl J Med. 1958;2596:275–85.
Dorn GW. Periostin and myocardial restore, regeneration, and restoration. N Engl J Med. 2007;357:15:1552.
Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Pores and skin wound therapeutic course of and new rising applied sciences for pores and skin wound care and regeneration. Pharmaceutics. 2020;12(8):735.
Malta MD, Cerqueira MT, Marques AP. Extracellular matrix in pores and skin Ailments: the street to new therapies. J Adv Res 2022.
Singer AJ, Clark RAF. Cutaneous wound therapeutic. N Engl J Med. 1999;34110:738–46.
Holland EC, Varmus HE. Fundamental fibroblast development issue induces cell migration and proliferation after glia-specific gene switch in mice. Proc Natl Acad Sci. 1998;953:1218–23.
Foster DS, Januszyk M, Yost KE, Chinta MS, Gulati GS, Nguyen AT, Burcham AR, Salhotra A, Ransom RC, Henn D, Chen Ok, Mascharak S, Tolentino Ok, Titan AL, Jones RE, da Silva O, Leavitt WT, Marshall CD, des Jardins-Park HE, Hu MS, Wan DC, Wernig G, Wagh D, Coller J, Norton JA, Gurtner GC, Newman AM, Chang HY, Longaker MT. Built-in spatial multiomics reveals fibroblast destiny throughout tissue restore. Proc Natl Acad Sci. 2021;11841:e2110025118.
Jiang D, Rinkevich Y. Scars or regeneration?-Dermal fibroblasts as drivers of numerous pores and skin wound responses. Int J Mol Sci. 2020;21(2):617.
Xie Y, Zinkle A, Chen L, Mohammadi M. Fibroblast development issue signalling in osteoarthritis and cartilage restore. Nat Rev Rheumatol. 2020;1610:547–64.
Peng J, Zhao H, Tu C, Xu Z, Ye L, Zhao L, Gu Z, Zhao D, Zhang J, Feng Z. Situ hydrogel dressing loaded with heparin and fundamental fibroblast development issue for accelerating wound therapeutic in rat. Mater Sci Eng C. 2020;116:111169.
Robson MC, Phillips LG, Lawrence WT, Bishop J, Youngerman JS, Hayward PG, Broemeling LD, Heggers JP. The protection and impact of topically utilized recombinant fundamental fibroblast development issue on the therapeutic of continual strain sores. Ann Surg. 1992;216(4):401.
Matsuda Y, Nonaka Y, Futakawa S, Imai H, Akita Ok, Nishihata T, Fujiwara M, Ali Y, Bhisitkul RB, Nakamura Y. Anti-angiogenic and anti-scarring twin motion of an anti-fibroblast development issue 2 aptamer in animal fashions of retinal illness. Mol Ther Nucleic Acids. 2019;17:819–28.
Celli G, la Rochelle WJ, Mackem S, Sharp R, Merlino G. Soluble dominant-negative receptor uncovers important roles for fibroblast development elements in multi-organ induction and patterning. EMBO J. 1998;17(6):1642–55.
Squires CH, Childs J, Eisenberg SP, Polverini P, Sommer A. Manufacturing and characterization of human fundamental fibroblast development issue from Escherichia coli. J Biol Chem. 1988;263(31):16297–302.
Zhang Q, Lao X, Huang J, Zhu Z, Pang L, Tang Y, Track Q, Huang J, Deng J, Deng N. Soluble manufacturing and performance of vascular endothelial development issue/fundamental fibroblast development issue advanced peptide. Biotechnol Prog. 2015;31(1):194–203.
Ding I, Peterson AM. Half-life modeling of fundamental fibroblast development issue launched from development factor-eluting polyelectrolyte multilayers. Sci Rep. 2021;11(1):1–13.
Lazarous DF, Shou M, Stiber JA, Dadhania DM, Thirumurti V, Hodge E, Unger EF. Pharmacodynamics of fundamental fibroblast development issue: route of administration determines myocardial and systemic distribution. Cardiovasc Res. 1997;36(1):78–85.
Yamamoto M, Yoshito I, Yasuhiko T. Managed launch of development elements based mostly on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed. 2001;12(1):77–88.
Nii T. Methods utilizing gelatin microparticles for regenerative remedy and drug screening functions. Molecules. 2021;26(22):6795.
Aisenbrey EA, Murphy WL. Artificial options to Matrigel. Nat Rev Mater. 2020;5(7):539–51.
Li S-H, Cai S-X, Liu B, Ma Ok-W, Wang Z-P, Li X-Ok. In vitro traits of poly (lactic-co-glycolic acid) microspheres incorporating gelatin particles loading fundamental fibroblast development issue. Acta Pharmacol Sin. 2006;27(6):754–9.
Kim DH, Huegel J, Taylor BL, Nuss CA, Weiss SN, Soslowsky LJ, Mauck RL, Kuntz AF. Biocompatibility and bioactivity of an FGF-loaded microsphere-based bilayer supply system. Acta Biomater. 2020;111:341–8.
Andreopoulos FM. and Indushekhar Persaud. “Supply of fundamental fibroblast development issue (bFGF) from photoresponsive hydrogel scaffolds.“ Biomater 27.11 (2006): 2468–2476.
Vijayan A, Vinod Kumar GS. PEG grafted chitosan scaffold for twin development issue supply for enhanced wound therapeutic. Sci Rep. 2019;9(1):19165.
Wu F, et al. Barrier-penetrating liposome focused supply of fundamental fibroblast development issue for spinal twine harm restore. Mater Immediately Bio. 2023;18:100546.
Wang Z, et al. Novel biomaterial methods for managed development issue supply for biomedical functions. NPG Asia Mater. 2017;9:e435–5.
Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein-nanoparticle interactions: alternatives and challenges. Chem Rev. 2011;111(9):5610–37.
Yang ST, Liu Y, Wang YW, Cao A. Biosafety and bioapplication of nanomaterials by designing protein-nanoparticle interactions. Small. 2013;9(9–10):1635–53.
Yuan Q, Shah J, Hein S, Misra R. Managed and prolonged drug launch habits of chitosan-based nanoparticle service. Acta Biomater. 2010;6(3):1140–8.
Zhang J, Misra R. Magnetic drug-targeting service encapsulated with thermosensitive good polymer: core-shell nanoparticle service and drug launch response. Acta Biomater. 2007;3(6):838–50.
Appel EA, Tibbitt MW, Greer JM, Fenton OS, Kreuels Ok, Anderson DG, Langer R. Exploiting electrostatic interactions in polymer-nanoparticle hydrogels. ACS Macro Lett. 2015;4(8):848–52.
Li H, Rothberg L. Colorimetric detection of DNA sequences based mostly on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci. 2004;101(39):14036–9.
Jana NR. Form impact in nanoparticle self-assembly. Angew Chem. 2004;116(12):1562–6.
Zhang Z, Horsch MA, Lamm MH, Glotzer SC. Tethered nano constructing blocks: towards a conceptual framework for nanoparticle self-assembly. Nano Lett. 2003;3(10):1341–6.
Schiestel T, Brunner H, Tovar GE. Managed floor functionalization of silica nanospheres by covalent conjugation reactions and preparation of highdensity streptavidin nanoparticles. J Nanosci Nanotechnol. 2004;4(5):504–11.
Ulbrich Ok, Hola Ok, Subr V, Bakandritsos A, Tucek J, Zboril R. Focused drug supply with polymers and magnetic nanoparticles: covalent and noncovalent approaches, launch management, and medical research. Chem Rev. 2016;116(9):5338–431.
Zaragoza F. Non-covalent albumin ligands in FDA-approved therapeutic peptides and proteins: miniperspective. J Med Chem 2022.
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a evaluation of FDA-approved supplies and medical trials thus far. Pharm Res. 2016;33(10):2373–87.
Battogtokh G, Ko YT. Mitochondrial-targeted photosensitizer-loaded folate-albumin nanoparticle for photodynamic remedy of most cancers. Nanomed: Nanotechnol Biol Med. 2017;13(2):733–43.
Kratz F. A medical replace of utilizing albumin as a drug vehicle-A commentary. J Management Launch. 2014;190:331–6.
Liu L, Bi Y, Zhou M, Chen X, He X, Zhang Y, Solar T, Ruan C, Chen Q, Wang H. Biomimetic human serum albumin nanoparticle for effectively concentrating on remedy to metastatic breast cancers. ACS Appl Mater Interfaces. 2017;9(8):7424–35.
Wang H, Wu J, Xu L, Xie Ok, Chen C, Dong Y. Albumin nanoparticle encapsulation of potent cytotoxic therapeutics reveals sustained drug launch and alleviates most cancers drug toxicity. Chem Comm. 2017;53(17):2618–21.
Hornok V. Serum albumin nanoparticles: issues and prospects. Polymers. 2021;13(21):3759.
Sleep D. Albumin and its utility in drug supply. Skilled Opin Drug Deliv. 2015;12(5):793–812.
Kuo H-H, Gao X, DeKeyser J-M, Fetterman KA, Pinheiro EA, Weddle CJ, Fonoudi H, Orman MV, Romero-Tejeda M, Jouni M. Negligible-cost and weekend-free chemically outlined human iPSC tradition. Stem Cell Rep. 2020;14(2):256–70.
Li JK, Wang N, Wu XS. Poly (vinyl alcohol) nanoparticles ready by freezing–thawing course of for protein/peptide drug supply. J Management Launch. 1998;56(1–3):117–26.
Zhu Y, Marin LM, Xiao Y, Gillies ER, Siqueira WL. Ph-sensitive chitosan nanoparticles for salivary protein supply. Nanomater. 2021;11(4):1028.
Shi H-X, Lin C, Lin B-B, Wang Z-G, Zhang H-Y, Wu F-Z, Cheng Y, Xiang L-J, Guo D-J, Luo X, Zhang G-Y, Fu X-B, Bellusci S, Li X-Ok, Xiao J. The anti-scar results of fundamental fibroblast development issue on the wound restore in vitro and in vivo. PLoS ONE. 2013;8(4):e59966.
Li J, Wang J, Wang Z, Xia Y, Zhou M, Zhong A, Solar J. Experimental fashions for cutaneous hypertrophic scar analysis. Wound Restore Regen. 2020;28(1):126–44.
Limandjaja GC, van den Broek LJ, Waaijman T, van Veen HA, Everts V, Monstrey S, Scheper RJ, Niessen FB, Gibbs S. Elevated epidermal thickness and irregular epidermal differentiation in keloid scars. Br J Dermatol. 2017;176(1):116–26.
Limandjaja G, van den Broek L, Waaijman T, van Veen H, Everts V, Monstrey S, Scheper R, Niessen F, Gibbs S. Elevated epidermal thickness and irregular epidermal differentiation in keloid scars. Br J Dermatol. 2017;176(1):116–26.
Melder RJ, Koenig GC, Witwer BP, Safabakhsh N, Munn LL, Jain RK. Throughout angiogenesis, vascular endothelial development issue and fundamental fibroblast development issue regulate pure killer cell adhesion to tumor endothelium. Nat Med. 1996;29:992–7.
Li Z, Zhu D, Hui Q, Bi J, Yu B, Huang Z, Hu S, Wang Z, Caranasos T, Rossi J, Li X, Cheng Ok, Wang X. Injection of ROS-responsive hydrogel loaded with fundamental fibroblast development issue into the pericardial cavity for coronary heart restore. Adv Funct Mater. 2021;31:15:2004377.
Hakuba N, Hato N, Okada M. Preoperative elements affecting tympanic membrane regeneration remedy utilizing an atelocollagen and fundamental fibroblast development issue. JAMA Otolaryngol Head Neck Surg. 2015;141(1):60–6.
Montesano R, Vassalli J-D, Baird A, Guillemin R, Orci L. Fundamental fibroblast development issue induces angiogenesis in vitro. Proc Natl Acad Sci. 1986;83(19):7297–301.
Rifkin DB, Moscatelli D. Latest developments within the cell biology of fundamental fibroblast development issue. J Cell Biol. 1989;109(1):1–6.
Bailly Ok, Soulet F, Leroy D, Amalric F, Bouche G. Uncoupling of cell proliferation and differentiation actions of fundamental fibroblast development issue. FASEB J. 2000;14(2):333–44.
Gritti A, Parati E, Cova L, Frolichsthal P, Galli R, Wanke E, Faravelli L, Morassutti D, Roisen F, Nickel D. Multipotential stem cells from the grownup mouse mind proliferate and self-renew in response to fundamental fibroblast development issue. J Neurosci. 1996;16(3):1091–100.
Schmidt A, Ladage D, Schinköthe T, Klausmann U, Ulrichs C, Klinz FJ, Brixius Ok, Arnhold S, Desai B, Mehlhorn U. Fundamental fibroblast development issue controls migration in human mesenchymal stem cells. Stem Cells. 2006;24(7):1750–8.
Yoshida A, Anand-Apte B, Zetter BR. Differential endothelial migration and proliferation to fundamental fibroblast development issue and vascular endothelial development issue. Development Elements. 1996;13(1–2):57–64.
Lee HJ, Park HH, Kim JA, Park JH, Ryu J, Choi J, Lee J, Rhee WJ, Park TH. Enzyme supply utilizing the 30Kc19 protein and human serum albumin nanoparticles. Biomaterials. 2014;35(5):1696–704.
Lee HJ, Park HH, Sohn Y, Ryu J, Park JH, Rhee WJ, Park TH. α-Galactosidase supply utilizing 30Kc19-human serum albumin nanoparticles for efficient remedy of fabry illness. Appl Microbiol Biotechnol. 2016;100(24):10395–402.
Park HH, Kim H, Lee HS, Search engine optimisation EU, Kim J-E, Lee J-H, Mun YH, Yoo SY, An J, Yun M-Y. PEGylated nanoparticle albumin-bound steroidal ginsenoside derivatives ameliorate SARS-CoV-2-mediated hyper-inflammatory responses. Biomaterials. 2021;273:120827.
Park HH, Woo YH, Ryu J, Lee HJ, Park JH, Park TH. Enzyme supply utilizing protein-stabilizing and cell-penetrating 30Kc19α protein nanoparticles. Course of Biochem. 2017;63:76–83.
Hong S, Choi DW, Kim HN, Park CG, Lee W, Park HH. Protein-based nanoparticles as drug supply techniques. Pharmaceutics. 2020;12(7):604.
Magli A, Incitti T, Kiley J, Swanson SA, Darabi R, Rinaldi F, Selvaraj S, Yamamoto A, Tolar J, Yuan C, Stewart R, Thomson JA, Perlingeiro RCR. PAX7 targets, CD54, integrin α9β1, and SDC2, enable isolation of human ESC/iPSC-derived myogenic progenitors. Cell Rep. 2017;19(13):2867–77.
Nishizawa M, Chonabayashi Ok, Nomura M, Tanaka A, Nakamura M, Inagaki A, Nishikawa M, Takei I, Oishi A, Tanabe Ok, Ohnuki M, Yokota H, Koyanagi-Aoi M, Okita Ok, Watanabe A, Takaori-Kondo A, Yamanaka S, Yoshida Y. Epigenetic variation between human induced pluripotent stem cell strains is an indicator of differentiation capability. Cell Stem Cell. 2016;19(3):341–54.
Montero RB, Vial X, Nguyen DT, Farhand S, Reardon M, Pham SM, Tsechpenakis G, Andreopoulos FM. bFGF-containing electrospun gelatin scaffolds with managed nano-architectural options for directed angiogenesis. Acta Biomater. 2012;8(5):1778–91.
Guo X, Elliott CG, Li Z, Xu Y, Hamilton DW, Guan J. Creating 3D angiogenic development issue gradients in fibrous constructs to information quick angiogenesis. Biomacromolecules. 2012;13(10):3262–71.