Ando, F. et al. Remark of superconducting diode impact. Nature 584, 373–376 (2020).
Baumgartner, C. et al. Supercurrent rectification and magnetochiral results in symmetric Josephson junctions. Nat. Nanotechnol. 17, 39–44 (2022).
Baumgartner, C. et al. Impact of Rashba and Dresselhaus spin–orbit coupling on supercurrent rectification and magnetochiral anisotropy of ballistic Josephson junctions. J. Phys. Condens. Matter 34, 154005 (2022).
Wu, H. et al. The sector-free Josephson diode in a van der Waals heterostructure. Nature 604, 653–656 (2022).
Jeon, Ok.-R. et al. Zero-field polarity-reversible Josephson supercurrent diodes enabled by a proximity-magnetized Pt barrier. Nat. Mater. 21, 1008–1013 (2022).
Pal, B. et al. Josephson diode impact from Cooper pair momentum in a topological semimetal. Nat. Phys. https://doi.org/10.1038/s41567-022-01699-5 (2022).
Bauriedl, L. et al. Supercurrent diode impact and magnetochiral anisotropy in few-layer NbSe2. Nat. Commun. 13, 4266 (2022).
Turini, B. et al. Josephson diode impact in high-mobility InSb nanoflags. Nano Lett. 22, 8502–8508 (2022).
Gupta, M. et al. Gate-tunable superconducting diode impact in a three-terminal Josephson machine. Nat. Commun. 14, 3078 (2023).
Zhang, B. et al. Proof of φ0-Josephson junction from skewed diffraction patterns in Sn-InSb nanowires. Preprint at arXiv https://doi.org/10.48550/arXiv.2212.00199 (2022).
Mazur, G. P. et al. The gate-tunable Josephson diode. Preprint at arXiv https://doi.org/10.48550/arXiv.2211.14283 (2022).
Diez-Merida, J. et al. Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene. Nat. Commun. 14, 2396 (2023).
Lin, J.-X. et al. Zero-field superconducting diode impact in small-twist-angle trilayer graphene. Nat. Phys. 18, 1221–1227 (2022).
Scammell, H. D., Li, J. I. A. & Scheurer, M. S. Principle of zero-field superconducting diode impact in twisted trilayer graphene. 2D Mater. 9, 025027 (2022).
Lu, B., Ikegaya, S., Burset, P., Tanaka, Y. & Nagaosa, N. Josephson diode impact on the floor of topological insulators. Preprint at arXiv https://doi.org/10.48550/arXiv.2211.10572 (2022).
Fu, P.-H., Xu, Y., Lee, C. H., Ang, Y. S. & Liu, J.-F. Gate-tunable high-efficiency topological Josephson diode. Preprint at arXiv https://doi.org/10.48550/arXiv.2212.01980 (2022).
Daido, A., Ikeda, Y. & Yanase, Y. Intrinsic superconducting diode impact. Phys. Rev. Lett. 128, 037001 (2022).
Yuan, N. F. Q. & Fu, L. Supercurrent diode impact and finite-momentum superconductors. Proc. Natl Acad. Sci. USA 119, e2119548119 (2022).
He, J. J., Tanaka, Y. & Nagaosa, N. A phenomenological concept of superconductor diodes. New J. Phys. 24, 053014 (2022).
Ilić, S. & Bergeret, F. S. Principle of the supercurrent diode impact in Rashba superconductors with arbitrary dysfunction. Phys. Rev. Lett. 128, 177001 (2022).
Legg, H. F., Loss, D. & Klinovaja, J. Superconducting diode impact as a result of magnetochiral anisotropy in topological insulators and rashba nanowires. Phys. Rev. B 106, 104501 (2022).
Kochan, D., Costa, A., Zhumagulov, I. and Žutić, I. Phenomenological concept of the supercurrent diode impact: the Lifshitz invariant. Preprint at arXiv https://doi.org/10.48550/arXiv.2303.11975 (2023).
Andreev, A. F. Electron spectrum of the intermediate state of superconductors. Zh. Eksp. Teor. Fiz. 49, 655 (1966). J. Exp. Theor. Phys. 22, 455–458 (1966).
Davydova, M., Prembabu, S. & and Fu, L. Common Josephson diode impact. Sci. Adv. 8, eabo0309 (2022).
Grein, R., Eschrig, M., Metalidis, G. & Schön, G. Spin-dependent Cooper pair section and pure spin supercurrents in strongly polarized ferromagnets. Phys. Rev. Lett. 102, 227005 (2009).
Bezuglyi, E. V., Rozhavsky, A. S., Vagner, I. D. & Wyder, P. Mixed impact of Zeeman splitting and spin-orbit interplay on the Josephson present in a superconductor–two-dimensional electron gasoline–superconductor construction. Phys. Rev. B 66, 052508 (2002).
Krive, I. V., Gorelik, L. Y., Shekhter, R. I. & Jonson, M. Chiral symmetry breaking and the Josephson present in a ballistic superconductor–quantum wire–superconductor junction. Low. Temp. Phys. 30, 398–404 (2004).
Buzdin, A. Direct coupling between magnetism and superconducting present within the Josephson φ0 junction. Phys. Rev. Lett. 101, 107005 (2008).
Reynoso, A. A., Usaj, G., Balseiro, C. A., Feinberg, D. & Avignon, M. Anomalous Josephson present in junctions with spin polarizing quantum level contacts. Phys. Rev. Lett. 101, 107001 (2008).
Zazunov, A., Egger, R., Jonckheere, T. & Martin, T. Anomalous Josephson present by means of a spin-orbit coupled quantum dot. Phys. Rev. Lett. 103, 147004 (2009).
Liu, J.-F. & Chan, Ok. S. Relation between symmetry breaking and the anomalous Josephson impact. Phys. Rev. B 82, 125305 (2010).
Liu, J.-F. & Chan, Ok. S. Anomalous Josephson present by means of a ferromagnetic trilayer junction. Phys. Rev. B 82, 184533 (2010).
Liu, J.-F., Chan, Ok. S. & Wang, J. Anomalous Josephson present by means of a ferromagnet-semiconductor hybrid construction. J. Phys. Soc. Jpn 80, 124708 (2011).
Reynoso, A. A., Usaj, G., Balseiro, C. A., Feinberg, D. & Avignon, M. Spin-orbit-induced chirality of Andreev states in Josephson junctions. Phys. Rev. B 86, 214519 (2012).
Yokoyama, T., Eto, M. & Nazarov, Y. V. Josephson present by means of semiconductor nanowire with spin–orbit interplay in magnetic subject. J. Phys. Soc. Jpn 82, 054703 (2013).
Brunetti, A., Zazunov, A., Kundu, A. & Egger, R. Anomalous Josephson present, incipient time-reversal symmetry breaking, and Majorana certain states in interacting multilevel dots. Phys. Rev. B 88, 144515 (2013).
Yokoyama, T., Eto, M. & Nazarov, Y. V. Anomalous Josephson impact induced by spin-orbit interplay and Zeeman impact in semiconductor nanowires. Phys. Rev. B 89, 195407 (2014).
Shen, Ok., Vignale, G. & Raimondi, R. Microscopic concept of the inverse Edelstein impact. Phys. Rev. Lett. 112, 096601 (2014).
Konschelle, F., Tokatly, I. V. & Bergeret, F. S. Principle of the spin-galvanic impact and the anomalous section shift φ0 in superconductors and Josephson junctions with intrinsic spin-orbit coupling. Phys. Rev. B 92, 125443 (2015).
Szombati, D. B. et al. Josephson φ0-junction in nanowire quantum dots. Nat. Phys. 12, 568–572 (2016).
Assouline, A. et al. Spin-orbit induced phase-shift in Bi2Se3 Josephson junctions. Nat. Commun. 10, 126 (2019).
Mayer, W. et al. Gate managed anomalous section shift in Al/InAs Josephson junctions. Nat. Commun. 11, 212 (2020).
Strambini, E. et al. A Josephson section battery. Nat. Nanotechnol. 15, 656–660 (2020).
Baumgartner, C. et al. Josephson inductance as a probe for extremely ballistic semiconductor-superconductor weak hyperlinks. Phys. Rev. Lett. 126, 037001 (2021).
De Gennes, P. G. Superconductivity of Metals and Alloys (Addison Wesley, 1989).
Li, C. et al. Zeeman-effect-induced 0−π transitions in ballistic Dirac semimetal Josephson junctions. Phys. Rev. Lett. 123, 026802 (2019).
Hart, S. et al. Managed finite momentum pairing and spatially various order parameter in proximitized HgTe quantum wells. Nat. Phys. 13, 87–93 (2017).
Chen, A. Q. et al. Finite momentum Cooper pairing in three-dimensional topological insulator Josephson junctions. Nat. Commun. 9, 3478 (2018).
Ke, C. T. et al. Ballistic superconductivity and tunable π–junctions in InSb quantum wells. Nat. Commun. 10, 3764 (2019).
Whiticar, A. M. et al. Zeeman-driven parity transitions in an Andreev quantum dot. Phys. Rev. B 103, 245308 (2021).
Shin, J. et al. Magnetic proximity-induced superconducting diode impact and infinite magnetoresistance in a van der Waals heterostructure. Phys. Rev. Res. 5, L022064 (2023).
Hou, Y. et al. Ubiquitous superconducting diode impact in superconductor skinny movies. Preprint at arXiv https://doi.org/10.48550/arXiv.2205.09276 (2022).
Suri, D. et al. Non-reciprocity of vortex-limited essential present in typical superconducting micro-bridges. Appl. Phys. Lett. 121, 102601 (2022).
Sundaresh, A., Vayrynen, J. I., Lyanda-Geller, Y. & Rokhinson, L. P. Diamagnetic mechanism of essential present non-reciprocity in multilayered superconductors. Nat. Commun. 14, 1628 (2023).
Legg, H. F., Laubscher, Ok., Loss, D. & Klinovaja, J. Parity protected superconducting diode impact in topological Josephson junctions. Preprint at arXiv https://doi.org/10.48550/arXiv.2301.13740 (2023).
Frattini, N. E. et al. 3-wave mixing Josephson dipole ingredient. Appl. Phys. Lett. 110, 222603 (2017).
Leroux, C. et al. Nonreciprocal units based mostly on voltage-tunable junctions. Preprint at arXiv https://doi.org/10.48550/arXiv.2209.06194 (2022).
Roudsari, A. F. et al. Three-wave mixing traveling-wave parametric amplifier with periodic variation of the circuit parameters. Appl. Phys. Lett. 122, 052601 (2023).
Banerjee, A. et al. Part asymmetry of Andreev spectra from Cooper-pair momentum. Preprint at arXiv https://doi.org/10.48550/arXiv.2301.01881 (2023).
Lotfizadeh, N. et al. Superconducting diode impact signal change in epitaxial Al-InAs Josepshon junctions. Preprint at arXiv https://doi.org/10.48550/arXiv.2303.01902 (2023).
Žutić, I. & Valls, O. T. Tunneling spectroscopy for ferromagnet/superconductor junctions. Phys. Rev. B 61, 1555–1566 (2000).
Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting microconstrictions: extra present, cost imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982).
Dartiailh, M. C. et al. Part signature of topological transition in Josephson junctions. Phys. Rev. Lett. 126, 036802 (2021).