Signal reversal of the Josephson inductance magnetochiral anisotropy and 0–π-like transitions in supercurrent diodes


  • Ando, F. et al. Remark of superconducting diode impact. Nature 584, 373–376 (2020).

  • Baumgartner, C. et al. Supercurrent rectification and magnetochiral results in symmetric Josephson junctions. Nat. Nanotechnol. 17, 39–44 (2022).

  • Baumgartner, C. et al. Impact of Rashba and Dresselhaus spin–orbit coupling on supercurrent rectification and magnetochiral anisotropy of ballistic Josephson junctions. J. Phys. Condens. Matter 34, 154005 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, H. et al. The sector-free Josephson diode in a van der Waals heterostructure. Nature 604, 653–656 (2022).

  • Jeon, Ok.-R. et al. Zero-field polarity-reversible Josephson supercurrent diodes enabled by a proximity-magnetized Pt barrier. Nat. Mater. 21, 1008–1013 (2022).

  • Pal, B. et al. Josephson diode impact from Cooper pair momentum in a topological semimetal. Nat. Phys. https://doi.org/10.1038/s41567-022-01699-5 (2022).

  • Bauriedl, L. et al. Supercurrent diode impact and magnetochiral anisotropy in few-layer NbSe2. Nat. Commun. 13, 4266 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Turini, B. et al. Josephson diode impact in high-mobility InSb nanoflags. Nano Lett. 22, 8502–8508 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gupta, M. et al. Gate-tunable superconducting diode impact in a three-terminal Josephson machine. Nat. Commun. 14, 3078 (2023).

  • Zhang, B. et al. Proof of φ0-Josephson junction from skewed diffraction patterns in Sn-InSb nanowires. Preprint at arXiv https://doi.org/10.48550/arXiv.2212.00199 (2022).

  • Mazur, G. P. et al. The gate-tunable Josephson diode. Preprint at arXiv https://doi.org/10.48550/arXiv.2211.14283 (2022).

  • Diez-Merida, J. et al. Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene. Nat. Commun. 14, 2396 (2023).

  • Lin, J.-X. et al. Zero-field superconducting diode impact in small-twist-angle trilayer graphene. Nat. Phys. 18, 1221–1227 (2022).

  • Scammell, H. D., Li, J. I. A. & Scheurer, M. S. Principle of zero-field superconducting diode impact in twisted trilayer graphene. 2D Mater. 9, 025027 (2022).

    Article 

    Google Scholar
     

  • Lu, B., Ikegaya, S., Burset, P., Tanaka, Y. & Nagaosa, N. Josephson diode impact on the floor of topological insulators. Preprint at arXiv https://doi.org/10.48550/arXiv.2211.10572 (2022).

  • Fu, P.-H., Xu, Y., Lee, C. H., Ang, Y. S. & Liu, J.-F. Gate-tunable high-efficiency topological Josephson diode. Preprint at arXiv https://doi.org/10.48550/arXiv.2212.01980 (2022).

  • Daido, A., Ikeda, Y. & Yanase, Y. Intrinsic superconducting diode impact. Phys. Rev. Lett. 128, 037001 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, N. F. Q. & Fu, L. Supercurrent diode impact and finite-momentum superconductors. Proc. Natl Acad. Sci. USA 119, e2119548119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • He, J. J., Tanaka, Y. & Nagaosa, N. A phenomenological concept of superconductor diodes. New J. Phys. 24, 053014 (2022).

    Article 

    Google Scholar
     

  • Ilić, S. & Bergeret, F. S. Principle of the supercurrent diode impact in Rashba superconductors with arbitrary dysfunction. Phys. Rev. Lett. 128, 177001 (2022).

    Article 

    Google Scholar
     

  • Legg, H. F., Loss, D. & Klinovaja, J. Superconducting diode impact as a result of magnetochiral anisotropy in topological insulators and rashba nanowires. Phys. Rev. B 106, 104501 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kochan, D., Costa, A., Zhumagulov, I. and Žutić, I. Phenomenological concept of the supercurrent diode impact: the Lifshitz invariant. Preprint at arXiv https://doi.org/10.48550/arXiv.2303.11975 (2023).

  • Andreev, A. F. Electron spectrum of the intermediate state of superconductors. Zh. Eksp. Teor. Fiz. 49, 655 (1966). J. Exp. Theor. Phys. 22, 455–458 (1966).

  • Davydova, M., Prembabu, S. & and Fu, L. Common Josephson diode impact. Sci. Adv. 8, eabo0309 (2022).

  • Grein, R., Eschrig, M., Metalidis, G. & Schön, G. Spin-dependent Cooper pair section and pure spin supercurrents in strongly polarized ferromagnets. Phys. Rev. Lett. 102, 227005 (2009).

  • Bezuglyi, E. V., Rozhavsky, A. S., Vagner, I. D. & Wyder, P. Mixed impact of Zeeman splitting and spin-orbit interplay on the Josephson present in a superconductor–two-dimensional electron gasoline–superconductor construction. Phys. Rev. B 66, 052508 (2002).

    Article 

    Google Scholar
     

  • Krive, I. V., Gorelik, L. Y., Shekhter, R. I. & Jonson, M. Chiral symmetry breaking and the Josephson present in a ballistic superconductor–quantum wire–superconductor junction. Low. Temp. Phys. 30, 398–404 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Buzdin, A. Direct coupling between magnetism and superconducting present within the Josephson φ0 junction. Phys. Rev. Lett. 101, 107005 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Reynoso, A. A., Usaj, G., Balseiro, C. A., Feinberg, D. & Avignon, M. Anomalous Josephson present in junctions with spin polarizing quantum level contacts. Phys. Rev. Lett. 101, 107001 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Zazunov, A., Egger, R., Jonckheere, T. & Martin, T. Anomalous Josephson present by means of a spin-orbit coupled quantum dot. Phys. Rev. Lett. 103, 147004 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J.-F. & Chan, Ok. S. Relation between symmetry breaking and the anomalous Josephson impact. Phys. Rev. B 82, 125305 (2010).

    Article 

    Google Scholar
     

  • Liu, J.-F. & Chan, Ok. S. Anomalous Josephson present by means of a ferromagnetic trilayer junction. Phys. Rev. B 82, 184533 (2010).

    Article 

    Google Scholar
     

  • Liu, J.-F., Chan, Ok. S. & Wang, J. Anomalous Josephson present by means of a ferromagnet-semiconductor hybrid construction. J. Phys. Soc. Jpn 80, 124708 (2011).

    Article 

    Google Scholar
     

  • Reynoso, A. A., Usaj, G., Balseiro, C. A., Feinberg, D. & Avignon, M. Spin-orbit-induced chirality of Andreev states in Josephson junctions. Phys. Rev. B 86, 214519 (2012).

    Article 

    Google Scholar
     

  • Yokoyama, T., Eto, M. & Nazarov, Y. V. Josephson present by means of semiconductor nanowire with spin–orbit interplay in magnetic subject. J. Phys. Soc. Jpn 82, 054703 (2013).

    Article 

    Google Scholar
     

  • Brunetti, A., Zazunov, A., Kundu, A. & Egger, R. Anomalous Josephson present, incipient time-reversal symmetry breaking, and Majorana certain states in interacting multilevel dots. Phys. Rev. B 88, 144515 (2013).

    Article 

    Google Scholar
     

  • Yokoyama, T., Eto, M. & Nazarov, Y. V. Anomalous Josephson impact induced by spin-orbit interplay and Zeeman impact in semiconductor nanowires. Phys. Rev. B 89, 195407 (2014).

    Article 

    Google Scholar
     

  • Shen, Ok., Vignale, G. & Raimondi, R. Microscopic concept of the inverse Edelstein impact. Phys. Rev. Lett. 112, 096601 (2014).

    Article 

    Google Scholar
     

  • Konschelle, F., Tokatly, I. V. & Bergeret, F. S. Principle of the spin-galvanic impact and the anomalous section shift φ0 in superconductors and Josephson junctions with intrinsic spin-orbit coupling. Phys. Rev. B 92, 125443 (2015).

    Article 

    Google Scholar
     

  • Szombati, D. B. et al. Josephson φ0-junction in nanowire quantum dots. Nat. Phys. 12, 568–572 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Assouline, A. et al. Spin-orbit induced phase-shift in Bi2Se3 Josephson junctions. Nat. Commun. 10, 126 (2019).

    Article 

    Google Scholar
     

  • Mayer, W. et al. Gate managed anomalous section shift in Al/InAs Josephson junctions. Nat. Commun. 11, 212 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Strambini, E. et al. A Josephson section battery. Nat. Nanotechnol. 15, 656–660 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Baumgartner, C. et al. Josephson inductance as a probe for extremely ballistic semiconductor-superconductor weak hyperlinks. Phys. Rev. Lett. 126, 037001 (2021).

    Article 
    CAS 

    Google Scholar
     

  • De Gennes, P. G. Superconductivity of Metals and Alloys (Addison Wesley, 1989).

  • Li, C. et al. Zeeman-effect-induced 0−π transitions in ballistic Dirac semimetal Josephson junctions. Phys. Rev. Lett. 123, 026802 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hart, S. et al. Managed finite momentum pairing and spatially various order parameter in proximitized HgTe quantum wells. Nat. Phys. 13, 87–93 (2017).

  • Chen, A. Q. et al. Finite momentum Cooper pairing in three-dimensional topological insulator Josephson junctions. Nat. Commun. 9, 3478 (2018).

    Article 

    Google Scholar
     

  • Ke, C. T. et al. Ballistic superconductivity and tunable π–junctions in InSb quantum wells. Nat. Commun. 10, 3764 (2019).

    Article 

    Google Scholar
     

  • Whiticar, A. M. et al. Zeeman-driven parity transitions in an Andreev quantum dot. Phys. Rev. B 103, 245308 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shin, J. et al. Magnetic proximity-induced superconducting diode impact and infinite magnetoresistance in a van der Waals heterostructure. Phys. Rev. Res. 5, L022064 (2023).

  • Hou, Y. et al. Ubiquitous superconducting diode impact in superconductor skinny movies. Preprint at arXiv https://doi.org/10.48550/arXiv.2205.09276 (2022).

  • Suri, D. et al. Non-reciprocity of vortex-limited essential present in typical superconducting micro-bridges. Appl. Phys. Lett. 121, 102601 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sundaresh, A., Vayrynen, J. I., Lyanda-Geller, Y. & Rokhinson, L. P. Diamagnetic mechanism of essential present non-reciprocity in multilayered superconductors. Nat. Commun. 14, 1628 (2023).

  • Legg, H. F., Laubscher, Ok., Loss, D. & Klinovaja, J. Parity protected superconducting diode impact in topological Josephson junctions. Preprint at arXiv https://doi.org/10.48550/arXiv.2301.13740 (2023).

  • Frattini, N. E. et al. 3-wave mixing Josephson dipole ingredient. Appl. Phys. Lett. 110, 222603 (2017).

    Article 

    Google Scholar
     

  • Leroux, C. et al. Nonreciprocal units based mostly on voltage-tunable junctions. Preprint at arXiv https://doi.org/10.48550/arXiv.2209.06194 (2022).

  • Roudsari, A. F. et al. Three-wave mixing traveling-wave parametric amplifier with periodic variation of the circuit parameters. Appl. Phys. Lett. 122, 052601 (2023).

    Article 

    Google Scholar
     

  • Banerjee, A. et al. Part asymmetry of Andreev spectra from Cooper-pair momentum. Preprint at arXiv https://doi.org/10.48550/arXiv.2301.01881 (2023).

  • Lotfizadeh, N. et al. Superconducting diode impact signal change in epitaxial Al-InAs Josepshon junctions. Preprint at arXiv https://doi.org/10.48550/arXiv.2303.01902 (2023).

  • Žutić, I. & Valls, O. T. Tunneling spectroscopy for ferromagnet/superconductor junctions. Phys. Rev. B 61, 1555–1566 (2000).

    Article 

    Google Scholar
     

  • Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting microconstrictions: extra present, cost imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Dartiailh, M. C. et al. Part signature of topological transition in Josephson junctions. Phys. Rev. Lett. 126, 036802 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles