Zhu, T. et al. Compromise and synergy in high-efficiency thermoelectric supplies. Adv. Mater. 29, 1605884 (2017).
Zhao, W. et al. Magnetoelectric interplay and transport behaviours in magnetic nanocomposite thermoelectric supplies. Nat. Nanotechnol. 12, 55–60 (2017).
He, J. & Tritt, T. M. Advances in thermoelectric supplies analysis: wanting again and transferring ahead. Science 357, eaak9997 (2017).
Jiang, B. et al. Excessive-entropy-stabilized chalcogenides with excessive thermoelectric efficiency. Science 371, 830–834 (2021).
Poudel, B. et al. Excessive-thermoelectric efficiency of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).
Hu, L. P., Zhu, T. J., Liu, X. H. & Zhao, X. B. Level defect engineering of high-performance bismuth-telluride-based thermoelectric supplies. Adv. Funct. Mater. 24, 5211–5218 (2014).
Lu, Y. et al. Ultrahigh efficiency PEDOT/Ag2Se/CuAgSe composite movie for wearable thermoelectric energy mills. Mater. In the present day Phys. 14, 100223 (2020).
Yoo, B. et al. Electrodeposition of thermoelectric superlattice nanowires. Adv. Mater. 19, 296–299 (2007).
Bae, E. J., Kang, Y. H., Jang, Okay. S., Lee, C. & Cho, S. Y. Answer synthesis of telluride-based nano-barbell buildings coated with PEDOT:PSS for spray-printed thermoelectric mills. Nanoscale 8, 10885–10890 (2016).
An, H., Pusko, M., Chun, D., Park, S. & Moon, J. In situ synthesis of versatile hybrid composite movies for improved thermoelectric efficiency. Chem. Eng. J. 357, 547–558 (2019).
Wang, L. et al. Distinctive thermoelectric properties of versatile natural–inorganic hybrids with monodispersed and periodic nanophase. Nat. Commun. 9, 3817 (2018).
Jin, Q. et al. Versatile layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat. Mater. 18, 62–68 (2018).
Fu, L. et al. Excessive-performance bismuth antimony telluride thermoelectric membrane on curved and versatile helps. ACS Vitality Lett. 6, 2378–2385 (2021).
Mu, X. et al. Enhanced electrical properties of stoichiometric Bi0.5Sb1.5Te3 movie with high-crystallinity by way of layer-by-layer in-situ development. Nano Vitality 33, 55–64 (2017).
Lima, M. S. L. et al. Excessive energy think about epitaxial Mg2Sn skinny movies by way of Ga doping. Appl. Phys. Lett. 119, 254101 (2021).
Kong, D., Zhu, W., Guo, Z. P. & Deng, Y. Excessive-performance versatile Bi2Te3 movies primarily based wearable thermoelectric generator for power harvesting. Vitality 175, 292–299 (2019).
Shang, H. et al. Excessive-performance Ag-modified Bi0.5Sb1.5Te3 movies for the versatile thermoelectric generator. ACS Appl. Mater. Interfaces 12, 7358–7365 (2020).
Zheng, Z. H. et al. Harvesting waste warmth with versatile Bi2Te3 thermoelectric skinny movie. Nat. Maintain. 6, 180–191 (2023).
Liu, W. S., Jie, Q., Kim, H. S. & Ren, Z. F. Present progress and future challenges in thermoelectric energy era: from supplies to gadgets. Acta Mater. 87, 357–376 (2015).
Hendricks, T., Caillat, T. & Mori, T. Keynote overview of newest advances in thermoelectric era supplies, gadgets, and applied sciences 2022. Energies 15, 7307 (2022).
Wang, Y. et al. Versatile thermoelectric supplies and mills: challenges and improvements. Adv. Mater. 31, 1807916 (2019).
Tan, M., Liu, W. D., Shi, X. L., Solar, Q., & Chen, Z. G. Minimization of {the electrical} contact resistance in thin-film thermoelectric system. Appl. Phys. Rev. 10, 021404 (2023).
Li, X., Cai, Okay. F., Gao, M. Y., Du, Y. & Shen, S. Current advances in versatile thermoelectric movies and gadgets. Nano Vitality 89, 106309 (2021).
Zhang, Z. et al. Conjugated polymers for versatile power harvesting and storage. Adv. Mater. 30, e1704261 (2018).
Wan, C. et al. Ultrahigh thermoelectric energy think about versatile hybrid inorganic–natural superlattice. Nat. Commun. 8, 1024 (2017).
Lu, Y. et al. Ultrahigh energy issue and versatile silver selenide-based composite movie for thermoelectric gadgets. Vitality Environ. Sci. 13, 1240–1249 (2020).
Jiang, C. et al. Ultrahigh efficiency polyvinylpyrrolidone/Ag2Se composite thermoelectric movie for versatile power harvesting. Nano Vitality 80, 105488 (2021).
Ding, Y. et al. Excessive efficiency n-type Ag2Se movie on nylon membrane for versatile thermoelectric energy generator. Nat. Commun. 10, 841 (2019).
An, C. J., Kang, Y. H., Track, H., Jeong, Y. & Cho, S. Y. Excessive-performance versatile thermoelectric generator by management of digital construction of immediately spun carbon nanotube webs with numerous molecular dopants. J. Mater. Chem. A 5, 15631–15639 (2017).
Lu, Y. et al. Enhanced-performance PEDOT:PSS/Cu2Se-based composite movies for wearable thermoelectric energy mills. ACS Appl. Mater. Interfaces 13, 631–638 (2021).
Tian, R. et al. An answer-processed TiS2/natural hybrid superlattice movie in the direction of versatile thermoelectric gadgets. J. Mater. Chem. A 5, 564–570 (2017).
Xu, Q. et al. Conformal natural–inorganic semiconductor composites for versatile thermoelectrics. Vitality Environ. Sci. 13, 511–518 (2020).
Liang, J. et al. Versatile thermoelectrics: from silver chalcogenides to full-inorganic gadgets. Vitality Environ. Sci. 12, 2983–2990 (2019).
Xu, S. et al. Computation-guided design of high-performance versatile thermoelectric modules for sunlight-to-electricity conversion. Vitality Environ. Sci. 13, 3480–3488 (2020).
Jurado, J. P. et al. Photo voltaic harvesting: a singular alternative for natural thermoelectrics? Adv. Vitality Mater. 9, 1902385 (2019).
Solar, T. et al. Stretchable material generates electrical energy from woven thermoelectric fibers. Nat. Commun. 11, 572 (2020).
Peng, J. & Snyder, G. J. A determine of advantage for flexibility. Science 366, 690–691 (2019).
Ni, D. et al. Free-standing extremely conducting PEDOT movies for versatile thermoelectric generator. Vitality 170, 53–61 (2019).
Saeidi-Javash, M., Kuang, W. Z., Dun, C. C. & Zhang, Y. L. 3D conformal printing and photonic sintering of high-performance versatile thermoelectric movies utilizing 2D nanoplates. Adv. Funct. Mater. 29, 1901930 (2019).
Solar, S. et al. Direct atomic-scale remark of ultrasmall Ag nanowires that exhibit fcc, bcc, and hcp buildings below bending. Phys. Rev. Lett. 128, 015701 (2022).
Thonhauser, T., Jeon, G. S., Mahan, G. D. & Sofo, J. O. Stress-induced defects in Sb2Te3. Phys. Rev. B 68, 205207 (2003).
Fu, X. et al. Enhancing deformability of Sb2Te3 layered materials by dislocation climb at anti-phase boundary. Scr. Mater. 135, 10–14 (2017).
Zhu, B. et al. Realizing report excessive efficiency in n-type Bi2Te3-based thermoelectric supplies. Vitality Environ. Sci. 13, 2106–2114 (2020).
Carle, M., Pierrat, P., Lahalle-Gravier, C., Scherrer, S. & Scherrer, H. Transport properties of n-type Bi2(Te1-xSex)3 single crystal stable options (x ≤ 0.05). J. Phys. Chem. Solids 56, 201–209 (1994).
Shin, S. et al. Excessive-performance screen-printed thermoelectric movies on materials. Sci. Rep. 7, 7317 (2017).
Zou, H., Rowe, D. M. & Williams, S. G. Okay. Peltier impact in a co-evaporated Sb2Te3(P)–Bi2Te3(N) skinny movie thermocouple. Skinny Strong Movies 408, 270–274 (2002).
Zhang, Z. W., Wang, Y., Deng, Y. & Xu, Y. B. The impact of (00l) crystal airplane orientation on the thermoelectric properties of Bi2Te3 skinny movie. Strong State Commun. 151, 1520–1523 (2011).
Fan, P. et al. Excessive thermoelectric efficiency achieved in Bi0.4Sb1.6Te3 movies with excessive (00l) orientation by way of magnetron sputtering. J. Eur. Ceram. Soc. 40, 4016–4021 (2020).
Hou, W. et al. Fabrication and wonderful performances of Bi0.5Sb1.5Te3/epoxy versatile thermoelectric cooling gadgets. Nano Vitality 50, 766–776 (2018).
Jiang, Y. et al. Direct atom-by-atom chemical identification of nanostructures and defects of topological insulators. Nano Lett. 13, 2851–2856 (2013).
Navrátil, J., Starý, Z. & Plechác̆ek, T. Thermoelectric properties of p-type antimony bismuth telluride alloys ready by chilly urgent. Mater. Res. Bull. 31, 1559–1566 (1996).
Takashiri, M., Takiishi, M., Tanaka, S., Miyazaki, Okay. & Tsukamoto, H. Thermoelectric properties of n-type nanocrystalline bismuth-telluride-based skinny movies deposited by flash evaporation. J. Appl. Phys. 101, 074301 (2007).
Xing, Y. et al. A tool-to-material technique guiding the ‘double-high’ thermoelectric module. Joule 4, 2475–2483 (2020).
Miquelot, A. et al. In- and out-plane transport properties of chemical vapor deposited TiO2 anatase movies. J. Mater. Sci. 56, 10458–10476 (2021).
Bahrami, A., Schierning, G. & Nielsch, Okay. Waste recycling in thermoelectric supplies. Adv. Vitality Mater 10, 1904159 (2020).
Shafique, Okay., Khawaja, B., Sabir, F., Qazi, S. & Mustaqim, M. Web of issues (IoT) for next-generation good techniques: a overview of present challenges, future developments and prospects for rising 5G-IoT situations. IEEE Entry 8, 23022–23040 (2020).
Varghese, T. et al. Versatile thermoelectric gadgets of ultrahigh energy issue by scalable printing and interface engineering. Adv. Funct. Mater. 30, 1905796 (2020).
Lu, Z. et al. Shear induced deformation twinning evolution in thermoelectric InSb. npj Comput. Mater. 7, 111 (2021).
Lee, H. Thermoelectrics: Design and Supplies (John Wiley & Sons, 2016).
Hu, S. et al. Band diagrams and efficiency of CdTe photo voltaic cells with a Sb2Te3 again contact buffer layer. AIP Adv. 1, 042152 (2011).
Salmon, J., Harmany, Z., Deledalle, C. A. & Willett, R. Poisson noise discount with non-local PCA. J. Math. Imaging Vis. 48, 279–294 (2014).
Barthel, J. Dr. Probe: a software program for high-resolution STEM picture simulation. Ultramicroscopy 193, 1–11 (2018).
Zhang, Q., Zhang, L. Y., Jin, C. H., Wang, Y. M. & Lin, F. CalAtom: a software program for quantitatively analysing atomic columns in a transmission electron microscope picture. Ultramicroscopy 202, 114–120 (2019).
Shamay, Y. et al. Quantitative self-assembly prediction yields focused nanomedicines. Nat. Mater. 17, 361–368 (2018).
Hohenberg, P. & Kohn, W. Inhomogeneous electron gasoline. Phys. Rev. 136, B864–B871 (1964).
Kohn, W. & Sham, L. J. Self-consistent equations together with trade and correlation results. Phys. Rev. 140, A1133–A1138 (1965).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Zhou, Y. et al. Physics-guided co-designing versatile thermoelectrics with techno-economic sustainability for low-grade warmth harvesting. Sci. Adv. 9, eadf5701 (2023).