Staggered-layer-boosted versatile Bi2Te3 movies with excessive thermoelectric efficiency


  • Zhu, T. et al. Compromise and synergy in high-efficiency thermoelectric supplies. Adv. Mater. 29, 1605884 (2017).

    Article 

    Google Scholar
     

  • Zhao, W. et al. Magnetoelectric interplay and transport behaviours in magnetic nanocomposite thermoelectric supplies. Nat. Nanotechnol. 12, 55–60 (2017).

    Article 
    CAS 

    Google Scholar
     

  • He, J. & Tritt, T. M. Advances in thermoelectric supplies analysis: wanting again and transferring ahead. Science 357, eaak9997 (2017).

    Article 

    Google Scholar
     

  • Jiang, B. et al. Excessive-entropy-stabilized chalcogenides with excessive thermoelectric efficiency. Science 371, 830–834 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Poudel, B. et al. Excessive-thermoelectric efficiency of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Hu, L. P., Zhu, T. J., Liu, X. H. & Zhao, X. B. Level defect engineering of high-performance bismuth-telluride-based thermoelectric supplies. Adv. Funct. Mater. 24, 5211–5218 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Y. et al. Ultrahigh efficiency PEDOT/Ag2Se/CuAgSe composite movie for wearable thermoelectric energy mills. Mater. In the present day Phys. 14, 100223 (2020).

    Article 

    Google Scholar
     

  • Yoo, B. et al. Electrodeposition of thermoelectric superlattice nanowires. Adv. Mater. 19, 296–299 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Bae, E. J., Kang, Y. H., Jang, Okay. S., Lee, C. & Cho, S. Y. Answer synthesis of telluride-based nano-barbell buildings coated with PEDOT:PSS for spray-printed thermoelectric mills. Nanoscale 8, 10885–10890 (2016).

    Article 
    CAS 

    Google Scholar
     

  • An, H., Pusko, M., Chun, D., Park, S. & Moon, J. In situ synthesis of versatile hybrid composite movies for improved thermoelectric efficiency. Chem. Eng. J. 357, 547–558 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Distinctive thermoelectric properties of versatile natural–inorganic hybrids with monodispersed and periodic nanophase. Nat. Commun. 9, 3817 (2018).

    Article 

    Google Scholar
     

  • Jin, Q. et al. Versatile layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat. Mater. 18, 62–68 (2018).

    Article 

    Google Scholar
     

  • Fu, L. et al. Excessive-performance bismuth antimony telluride thermoelectric membrane on curved and versatile helps. ACS Vitality Lett. 6, 2378–2385 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mu, X. et al. Enhanced electrical properties of stoichiometric Bi0.5Sb1.5Te3 movie with high-crystallinity by way of layer-by-layer in-situ development. Nano Vitality 33, 55–64 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lima, M. S. L. et al. Excessive energy think about epitaxial Mg2Sn skinny movies by way of Ga doping. Appl. Phys. Lett. 119, 254101 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kong, D., Zhu, W., Guo, Z. P. & Deng, Y. Excessive-performance versatile Bi2Te3 movies primarily based wearable thermoelectric generator for power harvesting. Vitality 175, 292–299 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shang, H. et al. Excessive-performance Ag-modified Bi0.5Sb1.5Te3 movies for the versatile thermoelectric generator. ACS Appl. Mater. Interfaces 12, 7358–7365 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Z. H. et al. Harvesting waste warmth with versatile Bi2Te3 thermoelectric skinny movie. Nat. Maintain. 6, 180–191 (2023).

    Article 

    Google Scholar
     

  • Liu, W. S., Jie, Q., Kim, H. S. & Ren, Z. F. Present progress and future challenges in thermoelectric energy era: from supplies to gadgets. Acta Mater. 87, 357–376 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hendricks, T., Caillat, T. & Mori, T. Keynote overview of newest advances in thermoelectric era supplies, gadgets, and applied sciences 2022. Energies 15, 7307 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Versatile thermoelectric supplies and mills: challenges and improvements. Adv. Mater. 31, 1807916 (2019).

    Article 

    Google Scholar
     

  • Tan, M., Liu, W. D., Shi, X. L., Solar, Q., & Chen, Z. G. Minimization of {the electrical} contact resistance in thin-film thermoelectric system. Appl. Phys. Rev. 10, 021404 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, X., Cai, Okay. F., Gao, M. Y., Du, Y. & Shen, S. Current advances in versatile thermoelectric movies and gadgets. Nano Vitality 89, 106309 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Conjugated polymers for versatile power harvesting and storage. Adv. Mater. 30, e1704261 (2018).

    Article 

    Google Scholar
     

  • Wan, C. et al. Ultrahigh thermoelectric energy think about versatile hybrid inorganic–natural superlattice. Nat. Commun. 8, 1024 (2017).

    Article 

    Google Scholar
     

  • Lu, Y. et al. Ultrahigh energy issue and versatile silver selenide-based composite movie for thermoelectric gadgets. Vitality Environ. Sci. 13, 1240–1249 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, C. et al. Ultrahigh efficiency polyvinylpyrrolidone/Ag2Se composite thermoelectric movie for versatile power harvesting. Nano Vitality 80, 105488 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ding, Y. et al. Excessive efficiency n-type Ag2Se movie on nylon membrane for versatile thermoelectric energy generator. Nat. Commun. 10, 841 (2019).

    Article 

    Google Scholar
     

  • An, C. J., Kang, Y. H., Track, H., Jeong, Y. & Cho, S. Y. Excessive-performance versatile thermoelectric generator by management of digital construction of immediately spun carbon nanotube webs with numerous molecular dopants. J. Mater. Chem. A 5, 15631–15639 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Y. et al. Enhanced-performance PEDOT:PSS/Cu2Se-based composite movies for wearable thermoelectric energy mills. ACS Appl. Mater. Interfaces 13, 631–638 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tian, R. et al. An answer-processed TiS2/natural hybrid superlattice movie in the direction of versatile thermoelectric gadgets. J. Mater. Chem. A 5, 564–570 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Q. et al. Conformal natural–inorganic semiconductor composites for versatile thermoelectrics. Vitality Environ. Sci. 13, 511–518 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liang, J. et al. Versatile thermoelectrics: from silver chalcogenides to full-inorganic gadgets. Vitality Environ. Sci. 12, 2983–2990 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xu, S. et al. Computation-guided design of high-performance versatile thermoelectric modules for sunlight-to-electricity conversion. Vitality Environ. Sci. 13, 3480–3488 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jurado, J. P. et al. Photo voltaic harvesting: a singular alternative for natural thermoelectrics? Adv. Vitality Mater. 9, 1902385 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Solar, T. et al. Stretchable material generates electrical energy from woven thermoelectric fibers. Nat. Commun. 11, 572 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Peng, J. & Snyder, G. J. A determine of advantage for flexibility. Science 366, 690–691 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ni, D. et al. Free-standing extremely conducting PEDOT movies for versatile thermoelectric generator. Vitality 170, 53–61 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Saeidi-Javash, M., Kuang, W. Z., Dun, C. C. & Zhang, Y. L. 3D conformal printing and photonic sintering of high-performance versatile thermoelectric movies utilizing 2D nanoplates. Adv. Funct. Mater. 29, 1901930 (2019).

    Article 

    Google Scholar
     

  • Solar, S. et al. Direct atomic-scale remark of ultrasmall Ag nanowires that exhibit fcc, bcc, and hcp buildings below bending. Phys. Rev. Lett. 128, 015701 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Thonhauser, T., Jeon, G. S., Mahan, G. D. & Sofo, J. O. Stress-induced defects in Sb2Te3. Phys. Rev. B 68, 205207 (2003).

  • Fu, X. et al. Enhancing deformability of Sb2Te3 layered materials by dislocation climb at anti-phase boundary. Scr. Mater. 135, 10–14 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, B. et al. Realizing report excessive efficiency in n-type Bi2Te3-based thermoelectric supplies. Vitality Environ. Sci. 13, 2106–2114 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Carle, M., Pierrat, P., Lahalle-Gravier, C., Scherrer, S. & Scherrer, H. Transport properties of n-type Bi2(Te1-xSex)3 single crystal stable options (x ≤ 0.05). J. Phys. Chem. Solids 56, 201–209 (1994).

    Article 

    Google Scholar
     

  • Shin, S. et al. Excessive-performance screen-printed thermoelectric movies on materials. Sci. Rep. 7, 7317 (2017).

    Article 

    Google Scholar
     

  • Zou, H., Rowe, D. M. & Williams, S. G. Okay. Peltier impact in a co-evaporated Sb2Te3(P)–Bi2Te3(N) skinny movie thermocouple. Skinny Strong Movies 408, 270–274 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. W., Wang, Y., Deng, Y. & Xu, Y. B. The impact of (00l) crystal airplane orientation on the thermoelectric properties of Bi2Te3 skinny movie. Strong State Commun. 151, 1520–1523 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Fan, P. et al. Excessive thermoelectric efficiency achieved in Bi0.4Sb1.6Te3 movies with excessive (00l) orientation by way of magnetron sputtering. J. Eur. Ceram. Soc. 40, 4016–4021 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hou, W. et al. Fabrication and wonderful performances of Bi0.5Sb1.5Te3/epoxy versatile thermoelectric cooling gadgets. Nano Vitality 50, 766–776 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Y. et al. Direct atom-by-atom chemical identification of nanostructures and defects of topological insulators. Nano Lett. 13, 2851–2856 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Navrátil, J., Starý, Z. & Plechác̆ek, T. Thermoelectric properties of p-type antimony bismuth telluride alloys ready by chilly urgent. Mater. Res. Bull. 31, 1559–1566 (1996).

    Article 

    Google Scholar
     

  • Takashiri, M., Takiishi, M., Tanaka, S., Miyazaki, Okay. & Tsukamoto, H. Thermoelectric properties of n-type nanocrystalline bismuth-telluride-based skinny movies deposited by flash evaporation. J. Appl. Phys. 101, 074301 (2007).

    Article 

    Google Scholar
     

  • Xing, Y. et al. A tool-to-material technique guiding the ‘double-high’ thermoelectric module. Joule 4, 2475–2483 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Miquelot, A. et al. In- and out-plane transport properties of chemical vapor deposited TiO2 anatase movies. J. Mater. Sci. 56, 10458–10476 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bahrami, A., Schierning, G. & Nielsch, Okay. Waste recycling in thermoelectric supplies. Adv. Vitality Mater 10, 1904159 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shafique, Okay., Khawaja, B., Sabir, F., Qazi, S. & Mustaqim, M. Web of issues (IoT) for next-generation good techniques: a overview of present challenges, future developments and prospects for rising 5G-IoT situations. IEEE Entry 8, 23022–23040 (2020).

    Article 

    Google Scholar
     

  • Varghese, T. et al. Versatile thermoelectric gadgets of ultrahigh energy issue by scalable printing and interface engineering. Adv. Funct. Mater. 30, 1905796 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Z. et al. Shear induced deformation twinning evolution in thermoelectric InSb. npj Comput. Mater. 7, 111 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lee, H. Thermoelectrics: Design and Supplies (John Wiley & Sons, 2016).

  • Hu, S. et al. Band diagrams and efficiency of CdTe photo voltaic cells with a Sb2Te3 again contact buffer layer. AIP Adv. 1, 042152 (2011).

    Article 

    Google Scholar
     

  • Salmon, J., Harmany, Z., Deledalle, C. A. & Willett, R. Poisson noise discount with non-local PCA. J. Math. Imaging Vis. 48, 279–294 (2014).

    Article 

    Google Scholar
     

  • Barthel, J. Dr. Probe: a software program for high-resolution STEM picture simulation. Ultramicroscopy 193, 1–11 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q., Zhang, L. Y., Jin, C. H., Wang, Y. M. & Lin, F. CalAtom: a software program for quantitatively analysing atomic columns in a transmission electron microscope picture. Ultramicroscopy 202, 114–120 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shamay, Y. et al. Quantitative self-assembly prediction yields focused nanomedicines. Nat. Mater. 17, 361–368 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hohenberg, P. & Kohn, W. Inhomogeneous electron gasoline. Phys. Rev. 136, B864–B871 (1964).

    Article 

    Google Scholar
     

  • Kohn, W. & Sham, L. J. Self-consistent equations together with trade and correlation results. Phys. Rev. 140, A1133–A1138 (1965).

    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Physics-guided co-designing versatile thermoelectrics with techno-economic sustainability for low-grade warmth harvesting. Sci. Adv. 9, eadf5701 (2023).

    Article 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles