Hou C, An J, Zhao D, Ma X, Zhang W, Zhao W, Wu M, Zhang Z, Yuan F. Floor modification strategies to provide micro/nano-scale topographies on Ti-based implant surfaces for improved osseointegration. Entrance Bioeng Biotechnol. 2022;10: 835008. https://doi.org/10.3389/fbioe.2022.835008.
Xu N, Fu J, Zhao L, Chu PK, Huo Ok. Biofunctional parts included nano/microstructured coatings on titanium implants with enhanced osteogenic and antibacterial efficiency. Adv Healthc Mater. 2020;9: e2000681. https://doi.org/10.1002/adhm.202000681.
Qian S, Qiao Y, Liu X. Selective biofunctional modification of titanium implants for osteogenic and antibacterial purposes. J Mater Chem B. 2014;2(43):7475–87. https://doi.org/10.1039/c4tb00973h.
Sarraf M, RezvaniGhomi E, Alipour S, Ramakrishna S, Liana Sukiman N. A state-of-the-art assessment of the fabrication and traits of titanium and its alloys for biomedical purposes. Biodes Manuf. 2022;5(2):371–95. https://doi.org/10.1007/s42242-021-00170-3.
Hao J, Li Y, Li B, Wang X, Li H, Liu S, Liang C, Wang H. Organic and mechanical results of micro-nanostructured titanium floor on an osteoblastic cell line in vitro and osteointegration in vivo. Appl Biochem Biotechnol. 2017;183(1):280–92. https://doi.org/10.1007/s12010-017-2444-1.
Li G, Chang B, He Y, Li Y, Liu J, Zhang Y, Hou Y, Xu B, Li X, Xu M, et al. Orai1 mediated store-operated calcium entry contributing to MC3T3-E1 differentiation on titanium implant with micro/nano-textured topography. Mater Sci Eng C. 2022;133: 112644. https://doi.org/10.1016/j.msec.2022.112644.
Wang D, He G, Tian Y, Ren N, Liu W, Zhang X. Twin results of acid etching on cell responses and mechanical properties of porous titanium with controllable open-porous construction. J Biomed Mater Res B Appl Biomater. 2020;108(6):2386–95. https://doi.org/10.1002/jbm.b.34571.
Iwata N, Nozaki Ok, Horiuchi N, Yamashita Ok, Tsutsumi Y, Miura H, Nagai A. Results of managed micro-/nanosurfaces on osteoblast proliferation. J Biomed Mater Res A. 2017;105(9):2589–96. https://doi.org/10.1002/jbm.a.36118.
Schliephake H, Scharnweber D. Chemical and organic functionalization of titanium for dental implants. J Mater Chem. 2008;18(21):2404–14. https://doi.org/10.1039/b715355b.
Hong Q, Huo S, Tang H, Qu X, Yue B. Good nanomaterials for remedy of biofilm in orthopedic implants. Entrance Bioeng Biotechnol. 2021;9: 694635. https://doi.org/10.3389/fbioe.2021.694635.
Losic D. Advancing of titanium medical implants by floor engineering: current progress and challenges. Knowledgeable Opin Drug Deliv. 2021;18(10):1355–78. https://doi.org/10.1080/17425247.2021.1928071.
Gittens RA, Olivares-Navarrete R, Schwartz Z, Boyan BD. Implant osseointegration and the position of microroughness and nanostructures: classes for backbone implants. Acta Biomater. 2014;10(8):3363–71. https://doi.org/10.1016/j.actbio.2014.03.037.
Aw MS, Addai-Mensah J, Losic D. Magnetic-responsive supply of drug-carriers utilizing titania nanotube arrays. J Mater Chem. 2012;22(14):6561–3. https://doi.org/10.1039/c2jm16819g.
Janßen HC, Angrisani N, Kalies S, Hansmann F, Kietzmann M, Warwas DP, Behrens P, Reifenrath J. Biodistribution, biocompatibility and focused accumulation of magnetic nanoporous silica nanoparticles as drug service in orthopedics. J Nanobiotechnol. 2020;18(1):14. https://doi.org/10.1186/s12951-020-0578-8.
Janßen HC, Warwas DP, Dahlhaus D, Meißner J, Taptimthong P, Kietzmann M, Behrens P, Reifenrath J, Angrisani N. In vitro and in vivo accumulation of magnetic nanoporous silica nanoparticles on implant supplies with totally different magnetic properties. J Nanobiotechnol. 2018;16(1):96. https://doi.org/10.1186/s12951-018-0422-6.
Shrestha NK, Macak JM, Schmidt-Stein F, Hahn R, Mierke CT, Fabry B, Schmuki P. Magnetically guided titania nanotubes for site-selective photocatalysis and drug launch. Angew Chem Int Ed. 2009;48(5):969–72. https://doi.org/10.1002/anie.200804429.
Yang Y, Ren S, Zhang X, Yu Y, Liu C, Yang J, Miao L. Security and efficacy of PLGA (Ag–FeO)-coated dental implants in inhibiting micro organism adherence and osteogenic inducement underneath a magnetic area. Int J Nanomed. 2018;13:3751–62. https://doi.org/10.2147/IJN.S159860.
Shubayev VI, Pisanic TR, Jin SH. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009;61(6):467–77. https://doi.org/10.1016/j.addr.2009.03.007.
Aw MS, Losic D. Ultrasound enhanced launch of therapeutics from drug-releasing implants primarily based on titania nanotube arrays. Int J Pharm. 2013;443(1–2):154–62. https://doi.org/10.1016/j.ijpharm.2013.01.004.
Zhou J, Frank MA, Yang Y, Boccaccini AR, Virtanen S. A novel native drug supply system: superhydrophobic titanium oxide nanotube arrays function the drug reservoir and ultrasonication features because the drug launch set off. Mater Sci Eng C. 2018;82:277–83. https://doi.org/10.1016/j.msec.2017.08.066.
Chai MZ, An MW, Zhang XY. Development of a TiO2/MoSe2/CHI coating on dental implants for combating Streptococcus mutans an infection. Mater Sci Eng C. 2021;129:9. https://doi.org/10.1016/j.msec.2021.112416.
Faria PEP, Felipucci DNB, Simioni AR, Primo FL, Tedesco AC, Salata LA. Results of photodynamic course of (PDP) in implant osseointegration: a histologic and histometric research in canines. Clin Implant Dent Relat Res. 2015;17(5):879–90. https://doi.org/10.1111/cid.12204.
Giannelli M, Landini G, Materassi F, Chellini F, Antonelli A, Tani A, Zecchi-Orlandini S, Rossolini GM, Bani D. The consequences of diode laser on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide adherent to titanium oxide floor of dental implants. An in vitro research. Lasers Med Sci. 2016;31(8):1613–9. https://doi.org/10.1007/s10103-016-2025-5.
Hong L, Liu XM, Tan L, Cui ZD, Yang XJ, Liang YQ, Li ZY, Zhu SL, Zheng YF, Yeung KWK, et al. Speedy biofilm elimination on bone implants utilizing near-infrared-activated inorganic semiconductor heterostructures. Adv Healthc Mater. 2019;8(19):11. https://doi.org/10.1002/adhm.201900835.
Moon KS, Park YB, Bae JM, Choi EJ, Oh SH. Seen light-mediated sustainable antibacterial exercise and osteogenic performance of Au and Pt multi-coated TiO2 nanotubes. Supplies. 2021;14(20):12. https://doi.org/10.3390/ma14205976.
Oh S, Moon Ok-S, Moon J-H, Bae J-M, Jin S. Seen gentle irradiation-mediated drug elution exercise of nitrogen-doped TiO2 nanotubes. J Nanomater. 2013;2013:1–7. https://doi.org/10.1155/2013/802318.
Pourhajibagher M, Rokn AR, Barikani HR, Bahador A. Photograph-sonodynamic antimicrobial chemotherapy by way of chitosan nanoparticles-indocyanine inexperienced in opposition to polymicrobial periopathogenic biofilms: ex vivo research on dental implants. Photodiagn Photodyn Ther. 2020;31:7. https://doi.org/10.1016/j.pdpdt.2020.101834.
Ren XX, Gao RF, van der Mei HC, Ren YJ, Peterson BW, Busscher HJ. Eradicating infecting micro organism whereas sustaining tissue integration on photothermal nanoparticle-coated titanium surfaces. ACS Appl Mater Interfaces. 2020;12(31):34610–9. https://doi.org/10.1021/acsami.0c08592.
Tan L, Li J, Liu XM, Cui ZD, Yang XJ, Zhu SL, Li ZY, Yuan XB, Zheng YF, Yeung KWK, et al. Speedy biofilm eradication on bone implants utilizing purple phosphorus and near-infrared gentle. Adv Mater. 2018;30(31):10. https://doi.org/10.1002/adma.201801808.
Wang X, Su Ok, Tan L, Liu X, Cui Z, Jing D, Yang X, Liang Y, Li Z, Zhu S, et al. Speedy and extremely efficient noninvasive disinfection by hybrid Ag/CS@MnO nanosheets utilizing near-infrared gentle. ACS Appl Mater Interfaces. 2019;11(16):15014–27. https://doi.org/10.1021/acsami.8b22136.
Xie XZ, Mao CY, Liu XM, Zhang YZ, Cui ZD, Yang XJ, Yeung KWK, Pan HB, Chu PK, Wu SL. Synergistic micro organism killing by way of photodynamic and bodily actions of graphene oxide/Ag/collagen coating. ACS Appl Mater Interfaces. 2017;9(31):26417–28. https://doi.org/10.1021/acsami.7b06702.
Xu JW, Zhou XM, Gao ZD, Tune YY, Schmuki P. Seen-light-triggered drug launch from TiO2 nanotube arrays: a controllable antibacterial platform. Angew Chem Int Ed. 2016;55(2):593–7. https://doi.org/10.1002/anie.201508710.
Sirivisoot S, Pareta R, Webster TJ. Electrically managed drug launch from nanostructured polypyrrole coated on titanium. Nanotechnology. 2011;22(8):15. https://doi.org/10.1088/0957-4484/22/8/085101.
Shi XW, Wu HP, Li YY, Wei XQ, Du YM. Electrical alerts guided entrapment and managed launch of antibiotics on titanium floor. J Biomed Mater Res Half A. 2013;101(5):1373–8. https://doi.org/10.1002/jbm.a.34432.
Gulati Ok, Maher S, Chandrasekaran S, Findlay DM, Losic D. Conversion of titania (TiO) into conductive titanium (Ti) nanotube arrays for mixed drug-delivery and electrical stimulation remedy. J Mater Chem B. 2016;4(3):371–5. https://doi.org/10.1039/c5tb02108a.
Zhang T, Xie C, Liu Y, Zhang F, Xiao X. pH-responsive drug launch system of Cu2+-modified ammoniated TiO2 nanotube arrays. Mater Lett. 2018;215:95–8. https://doi.org/10.1016/j.matlet.2017.12.080.
Zhou WH, Jia ZJ, Xiong P, Yan JL, Li M, Cheng Y, Zheng YF. Novel pH-responsive tobramycin-embedded micelles in nanostructured multilayer-coatings of chitosan/heparin with environment friendly and sustained antibacterial properties. Mater Sci Eng C. 2018;90:693–705. https://doi.org/10.1016/j.msec.2018.04.069.
Yan JL, Xia DD, Zhou WH, Li YY, Xiong P, Li QY, Wang P, Li M, Zheng YF, Cheng Y. pH-responsive silk fibroin-based CuO/Ag micro/nano coating endows polyetheretherketone with synergistic antibacterial skill, osteogenesis, and angiogenesis. Acta Biomater. 2020;115:220–34. https://doi.org/10.1016/j.actbio.2020.07.062.
Xiang YM, Liu XM, Mao CY, Liu XM, Cui ZD, Yang XJ, Yeung KWK, Zheng YF, Wu SL. An infection-prevention on Ti implants by managed drug launch from folic acid/ZnO quantum dots sealed titania nanotubes. Mater Sci Eng C. 2018;85:214–24. https://doi.org/10.1016/j.msec.2017.12.034.
Wang TT, Liu XM, Zhu YZ, Cui ZD, Yang XJ, Pan HB, Yeung KWK, Wu SL. Metallic ion coordination polymer-capped pH-triggered drug launch system on titania nanotubes for enhancing self-antibacterial functionality of Ti implants. ACS Biomater Sci Eng. 2017;3(5):816–25. https://doi.org/10.1021/acsbiomaterials.7b00103.
Dong YW, Ye H, Liu Y, Xu LH, Wu ZS, Hu XH, Ma JF, Pathak JL, Liu JS, Wu G. pH dependent silver nanoparticles releasing titanium implant: a novel therapeutic strategy to regulate peri-implant an infection. Colloid Surf B Biointerfaces. 2017;158:127–36. https://doi.org/10.1016/j.colsurfb.2017.06.034.
Cheng YH, Qiao YB, Shen P, Gao B, Liu XH, Kong XW, Zhang SF, Wu J. Fabrication and in vitro organic exercise of practical pH-sensitive double-layered nanoparticles for dental implant utility. J Biomater Appl. 2020;34(10):1409–21. https://doi.org/10.1177/0885328220903615.
Yuan Z, Huang SZ, Lan SX, Xiong HZ, Tao BL, Ding Y, Liu YS, Liu P, Cai KY. Floor engineering of titanium implants with enzyme-triggered antibacterial properties and enhanced osseointegration in vivo. J Mat Chem B. 2018;6(48):8090–104. https://doi.org/10.1039/c8tb01918e.
Yu YL, Ran QC, Shen XK, Zheng H, Cai KY. Enzyme responsive titanium substrates with antibacterial property and osteo/angio-genic differentiation potentials. Colloid Surf B Biointerfaces. 2020;185:10. https://doi.org/10.1016/j.colsurfb.2019.110592.
Fischer NG, Chen X, Astleford-Hopper Ok, He JH, Mullikin AF, Mansky KC, Aparicio C. Antimicrobial and enzyme-responsive multi-peptide surfaces for bone-anchored units. Mater Sci Eng C. 2021;125:11. https://doi.org/10.1016/j.msec.2021.112108.
Ding Y, Hao YS, Yuan Z, Tao BL, Chen MW, Lin CC, Liu P, Cai KY. A dual-functional implant with an enzyme-responsive impact for bacterial an infection remedy and tissue regeneration. Biomater Sci. 2020;8(7):1840–54. https://doi.org/10.1039/c9bm01924c.
Bourgat Y, Mikolai C, Stiesch M, Klahn P, Menzel H. Enzyme-responsive nanoparticles and coatings made out of alginate/peptide ciprofloxacin conjugates as drug launch system. Antibiotics. 2021;10(6):16. https://doi.org/10.3390/antibiotics10060653.
Su Ok, Tan L, Liu XM, Cui ZD, Zheng YF, Li B, Han Y, Li ZY, Zhu SL, Liang YQ, et al. Speedy photo-sonotherapy for medical remedy of bacterial contaminated bone implants by creating oxygen deficiency utilizing sulfur doping. ACS Nano. 2020;14(2):2077–89. https://doi.org/10.1021/acsnano.9b08686.
Ahmed W, Zhai Z, Gao C. Adaptive antibacterial biomaterial surfaces and their purposes. Mater Immediately Bio. 2019;2: 100017. https://doi.org/10.1016/j.mtbio.2019.100017.
Montoya C, Roldan L, Yu M, Valliani S, Ta C, Yang M, Orrego S. Good dental supplies for antimicrobial purposes. Bioact Mater. 2023;24:1–19. https://doi.org/10.1016/j.bioactmat.2022.12.002.
Jayasree A, Ivanovski S, Gulati Ok. ON or OFF: triggered therapies from anodized nano-engineered titanium implants. J Management Launch. 2021;333:521–35. https://doi.org/10.1016/j.jconrel.2021.03.020.
Wang Q, Huang J-Y, Li H-Q, Chen Z, Zhao AZ-J, Wang Y, Zhang Ok-Q, Solar H-T, Al-Deyab SS, Lai Y-Ok. TiO2 nanotube platforms for good drug supply: a assessment. Int J Nanomed. 2016;11:4819–34.
Li S, Wei C, Lv Y. Preparation and utility of magnetic responsive supplies in bone tissue engineering. Curr Stem Cell Res Ther. 2020;15(5):428–40. https://doi.org/10.2174/1574888X15666200101122505.
Khursheed R, Dua Ok, Vishwas S, Gulati M, Jha NK, Aldhafeeri GM, Alanazi FG, Goh BH, Gupta G, Paudel KR, et al. Biomedical purposes of metallic nanoparticles in most cancers: present standing and future views. Biomed Pharmacother. 2022;150: 112951. https://doi.org/10.1016/j.biopha.2022.112951.
Agnihotri R, Gaur S, Albin S. Nanometals in dentistry: purposes and toxicological implications—a scientific assessment. Biol Hint Elem Res. 2020;197(1):70–88. https://doi.org/10.1007/s12011-019-01986-y.
Su EP, Justin DF, Pratt CR, Sarin VK, Nguyen VS, Oh S, Jin S. Results of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces. Bone Joint J. 2018;100-B(1 Suppl A):9–16. https://doi.org/10.1302/0301-620X.100B1.BJJ-2017-0551.R1.
Gulati Ok, Maher S, Findlay DM, Losic D. Titania nanotubes for orchestrating osteogenesis on the bone-implant interface. Nanomedicine. 2016;11(14):1847–64. https://doi.org/10.2217/nnm-2016-0169.
Linsebigler AL, Lu GQ, Yates JT. Photocatalysis on TiO2 surfaces—ideas, mechanisms, and chosen outcomes. Chem Rev. 1995;95(3):735–58. https://doi.org/10.1021/cr00035a013.
Kunrath MF, Hubler R, Shinkai RSA, Teixeira ER. Utility of TiO2 nanotubes as a drug supply system for biomedical implants: a vital overview. ChemistrySelect. 2018;3(40):11180–9. https://doi.org/10.1002/slct.201801459.
Bariana M, Aw MS, Moore E, Voelcker NH, Losic D. Radiofrequency-triggered launch for on-demand supply of therapeutics from titania nanotube drug-eluting implants. Nanomedicine. 2014;9(8):1263–75. https://doi.org/10.2217/nnm.13.93.
Lorenzetti M, Biglino D, Novak S, Kobe S. Photoinduced properties of nanocrystalline TiO2-anatase coating on Ti-based bone implants. Mater Sci Eng C. 2014;37:390–8. https://doi.org/10.1016/j.msec.2014.01.029.
Zhang GN, Yang YQ, Shi J, Yao XH, Chen WY, Wei XC, Zhang XY, Chu PK. Close to-infrared gentle II-assisted fast biofilm elimination platform for bone implants at delicate temperature. Biomaterials. 2021;269:14. https://doi.org/10.1016/j.biomaterials.2020.120634.
Filippi M, Dasen B, Guerrero J, Garello F, Isu G, Born G, Ehrbar M, Martin I, Scherberich A. Magnetic nanocomposite hydrogels and static magnetic area stimulate the osteoblastic and vasculogenic profile of adipose-derived cells. Biomaterials. 2019;223: 119468. https://doi.org/10.1016/j.biomaterials.2019.119468.
Dong Q, Jia X, Wang Y, Wang H, Liu Q, Li D, Wang J, Wang E. Delicate and selective detection of Mucin1 in pancreatic most cancers utilizing hybridization chain response with the help of FeO@polydopamine nanocomposites. J Nanobiotechnol. 2022;20(1):94. https://doi.org/10.1186/s12951-022-01289-w.
Guo Y-P, Lengthy T, Tang S, Guo Y-J, Zhu Z-A. Hydrothermal fabrication of magnetic mesoporous carbonated hydroxyapatite microspheres: biocompatibility, osteoinductivity, drug supply property and bactericidal property. J Mater Chem B. 2014;2(19):2899–909. https://doi.org/10.1039/c3tb21829e.
Xue Y, Chen J, Ding TX, Mao MT, Zhu SB, Zhou JH, Zhang L, Han Y. Constructing biointegration of Fe2O3–FeOOH coated titanium implant by regulating NIR irradiation in an contaminated mannequin. Bioact Mater. 2022;8:1–11. https://doi.org/10.1016/j.bioactmat.2021.06.029.
Kim M-H, Yamayoshi I, Mathew S, Lin H, Nayfach J, Simon SI. Magnetic nanoparticle focused hyperthermia of cutaneous Staphylococcus aureus an infection. Ann Biomed Eng. 2013;41(3):598–609. https://doi.org/10.1007/s10439-012-0698-x.
Brennan SA, NíFhoghlú C, Devitt BM, O’Mahony FJ, Brabazon D, Walsh A. Silver nanoparticles and their orthopaedic purposes. Bone Joint J. 2015;97-B(5):582–9. https://doi.org/10.1302/0301-620X.97B5.33336.
AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279–90. https://doi.org/10.1021/nn800596w.
Chrastina A, Schnitzer JE. Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging. Int J Nanomed. 2010;5:653–9. https://doi.org/10.2147/IJN.S11677.
Martínez-Gutierrez F, Thi EP, Silverman JM, de Oliveira CC, Svensson SL, Vanden Hoek A, Sánchez EM, Reiner NE, Gaynor EC, Pryzdial ELG, et al. Antibacterial exercise, inflammatory response, coagulation and cytotoxicity results of silver nanoparticles. Nanomed Nanotechnol Biol Med. 2012;8(3):328–36. https://doi.org/10.1016/j.nano.2011.06.014.
Yamaguchi M. Function of dietary zinc within the prevention of osteoporosis. Mol Cell Biochem. 2010;338(1–2):241–54. https://doi.org/10.1007/s11010-009-0358-0.
Teow S-Y, Wong MM-T, Yap H-Y, Peh S-C, Shameli Ok. Bactericidal properties of plants-derived steel and steel oxide nanoparticles (NPs). Molecules. 2018;23(6):1366. https://doi.org/10.3390/molecules23061366.
Kambe T, Tsuji T, Hashimoto A, Itsumura N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev. 2015;95(3):749–84. https://doi.org/10.1152/physrev.00035.2014.
Li Y, Yang Y, Qing YA, Li R, Tang X, Guo D, Qin Y. Enhancing ZnO-NP antibacterial and osteogenesis properties in orthopedic purposes: a assessment. Int J Nanomed. 2020;15:6247–62. https://doi.org/10.2147/IJN.S262876.
Wang Z, Wang X, Wang Y, Zhu Y, Liu X, Zhou Q. NanoZnO-modified titanium implants for enhanced anti-bacterial exercise, osteogenesis and corrosion resistance. J Nanobiotechnol. 2021;19(1):353. https://doi.org/10.1186/s12951-021-01099-6.
Chen X, Ku S, Weibel JA, Ximenes E, Liu X, Ladisch M, Garimella SV. Enhanced antimicrobial efficacy of bimetallic porous CuO microspheres embellished with Ag nanoparticles. ACS Appl Mater Interfaces. 2017;9(45):39165–73. https://doi.org/10.1021/acsami.7b11364.
Ryan EJ, Ryan AJ, González-Vázquez A, Philippart A, Ciraldo FE, Hobbs C, Nicolosi V, Boccaccini AR, Kearney CJ, O’Brien FJ. Collagen scaffolds functionalised with copper-eluting bioactive glass scale back an infection and improve osteogenesis and angiogenesis each in vitro and in vivo. Biomaterials. 2019;197:405–16. https://doi.org/10.1016/j.biomaterials.2019.01.031.
Liu C, Kong D, Hsu P-C, Yuan H, Lee H-W, Liu Y, Wang H, Wang S, Yan Ok, Lin D, et al. Speedy water disinfection utilizing vertically aligned MoS nanofilms and visual gentle. Nat Nanotechnol. 2016;11(12):1098–104. https://doi.org/10.1038/nnano.2016.138.
Yuan Z, Tao BL, He Y, Liu J, Lin CC, Shen XK, Yu YL, Mu CY, Liu P, Cai KY. Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property by way of intrinsic ROS-independent oxidative stress and NIR irradiation. Biomaterials. 2019;217:17. https://doi.org/10.1016/j.biomaterials.2019.119290.
Zhu M, Liu XM, Tan L, Cui ZD, Liang YQ, Li ZY, Yeung KWK, Wu SL. Photograph-responsive chitosan/Ag/MoS2 for fast bacteria-killing. J Hazard Mater. 2020;383:10. https://doi.org/10.1016/j.jhazmat.2019.121122.
Farghali RA, Fekry AM, Ahmed RA, Elhakim HKA. Corrosion resistance of Ti modified by chitosan-gold nanoparticles for orthopedic implantation. Int J Biol Macromol. 2015;79:787–99. https://doi.org/10.1016/j.ijbiomac.2015.04.078.
Bapat RA, Chaubal TV, Dharmadhikari S, Abdulla AM, Bapat P, Alexander A, Dubey SK, Kesharwani P. Latest advances of gold nanoparticles as biomaterial in dentistry. Int J Pharm. 2020;586: 119596. https://doi.org/10.1016/j.ijpharm.2020.119596.
Kim T, Zhang Q, Li J, Zhang L, Jokerst JV. A gold/silver hybrid nanoparticle for remedy and photoacoustic imaging of bacterial an infection. ACS Nano. 2018;12(6):5615–25. https://doi.org/10.1021/acsnano.8b01362.
Zheng X, Solar J, Li W, Dong B, Tune Y, Xu W, Zhou Y, Wang L. Engineering nanotubular titania with gold nanoparticles for antibiofilm enhancement and gentle tissue therapeutic promotion. J Electroanal Chem. 2020;871: 114362. https://doi.org/10.1016/j.jelechem.2020.114362.
Ko W-Ok, Heo DN, Moon H-J, Lee SJ, Bae MS, Lee JB, Solar I-C, Jeon HB, Park HK, Kwon IK. The impact of gold nanoparticle dimension on osteogenic differentiation of adipose-derived stem cells. J Colloid Interface Sci. 2015;438:68–76. https://doi.org/10.1016/j.jcis.2014.08.058.
Qoreishi M, Panahi M, Dorodi O, Ghanbari N, Jousheghan SS. Involvement of NF-κB/NLRP3 axis within the development of aseptic loosening of complete joint arthroplasties: a assessment of molecular mechanisms. Naunyn Schmiedebergs Arch Pharmacol. 2022;395(7):757–67. https://doi.org/10.1007/s00210-022-02232-4.
Gulati Ok, Scimeca J-C, Ivanovski S, Verron E. Double-edged sword: therapeutic efficacy versus toxicity evaluations of doped titanium implants. Drug Discov Immediately. 2021;26(11):2734–42. https://doi.org/10.1016/j.drudis.2021.07.004.
Kunrath MF, Campos MM. Metallic-nanoparticle launch techniques for biomedical implant surfaces: effectiveness and security. Nanotoxicology. 2021;15(6):721–39. https://doi.org/10.1080/17435390.2021.1915401.
Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE. Comparability of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles primarily based on dissolution and oxidative stress properties. ACS Nano. 2008;2(10):2121–34. https://doi.org/10.1021/nn800511k.
Leroux MM, Doumandji Z, Chézeau L, Gaté L, Nahle S, Hocquel R, Zhernovkov V, Migot S, Ghanbaja J, Bonnet C, et al. Toxicity of TiO2 nanoparticles: validation of different fashions. Int J Mol Sci. 2020;21(14):4855. https://doi.org/10.3390/ijms21144855.
Li Q, Feng Y, Wang R, Liu R, Ba Y, Huang H. Latest insights into autophagy and metals/nanoparticles publicity. Toxicol Res. 2023;39(3):355–72. https://doi.org/10.1007/s43188-023-00184-2.
Sharma N, Jha S. Amorphous nanosilica induced toxicity, irritation and innate immune responses: a vital assessment. Toxicology. 2020;441: 152519. https://doi.org/10.1016/j.tox.2020.152519.
Kim T-H, Kim M, Park H-S, Shin US, Gong M-S, Kim H-W. Measurement-dependent mobile toxicity of silver nanoparticles. J Biomed Mater Res A. 2012;100(4):1033–43. https://doi.org/10.1002/jbm.a.34053.
Niikura Ok, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, Kawaguchi A, Hasegawa H, Kajino Ok, Ninomiya T, et al. Gold nanoparticles as a vaccine platform: affect of dimension and form on immunological responses in vitro and in vivo. ACS Nano. 2013;7(5):3926–38. https://doi.org/10.1021/nn3057005.
Cao H, Liu X, Meng F, Chu PK. Organic actions of silver nanoparticles embedded in titanium managed by micro-galvanic results. Biomaterials. 2011;32(3):693–705. https://doi.org/10.1016/j.biomaterials.2010.09.066.
Jin G, Qin H, Cao H, Qian S, Zhao Y, Peng X, Zhang X, Liu X, Chu PK. Synergistic results of twin Zn/Ag ion implantation in osteogenic exercise and antibacterial skill of titanium. Biomaterials. 2014;35(27):7699–713. https://doi.org/10.1016/j.biomaterials.2014.05.074.
Crasto GJ, Kartner N, Reznik N, Spatafora MV, Chen H, Williams R, Burns PN, Clokie C, Manolson MF, Peel SAF. Managed bone formation utilizing ultrasound-triggered launch of BMP-2 from liposomes. J Management Launch. 2016;243:99–108. https://doi.org/10.1016/j.jconrel.2016.09.032.
Salari N, Rasoulpoor S, Valipour E, Mansouri Ok, Bartina Y, Dokaneheifard S, Mohammadi M, Abam F. Liposomes, new carriers for supply of genes and anticancer medication: a scientific assessment. Anticancer Medicine. 2022;33(1):e9–20. https://doi.org/10.1097/CAD.0000000000001144.
Raghav A, Jeong G-B. A scientific assessment on the modifications of extracellular vesicles: a revolutionized instrument of nano-biotechnology. J Nanobiotechnol. 2021;19(1):459. https://doi.org/10.1186/s12951-021-01219-2.
Kumari Ok, Sharma PK, Malviya R. Formulation-development and analysis of polysorbate-phospholipid blended micelles of piperine loaded with azithromycin. Biointerface Res Appl Chem. 2020;10(5):6128–38. https://doi.org/10.33263/briac105.61286138.
Albayaty YN, Thomas N, Jambhrunkar M, Al-Hawwas M, Kral A, Thorn CR, Prestidge CA. Enzyme responsive copolymer micelles improve the anti-biofilm efficacy of the antiseptic chlorhexidine. Int J Pharm. 2019;566:329–41. https://doi.org/10.1016/j.ijpharm.2019.05.069.
Deng Y, Wang X, Liu Y, Xu Y, Zhang J, Huang F, Li B, Miao Y, Solar Y, Li Y. Twin-light triggered metabolizable nano-micelles for selective tumor-targeted photodynamic/hyperthermia remedy. Acta Biomater. 2021;119:323–36. https://doi.org/10.1016/j.actbio.2020.10.036.
Search engine optimization S-J, Lee S-Y, Choi S-J, Kim H-W. Tumor-targeting co-delivery of drug and gene from temperature-triggered micelles. Macromol Biosci. 2015;15(9):1198–204. https://doi.org/10.1002/mabi.201500137.
Alven S, Aderibigbe BA. The therapeutic efficacy of dendrimer and micelle formulations for breast most cancers remedy. Pharmaceutics. 2020;12(12):1212. https://doi.org/10.3390/pharmaceutics12121212.
Teixeira-Santos R, Lima M, Gomes LC, Mergulhão FJ. Antimicrobial coatings primarily based on chitosan to stop implant-associated infections: a scientific assessment. iScience. 2021;24(12): 103480. https://doi.org/10.1016/j.isci.2021.103480.
Ayyanaar S, Balachandran C, Bhaskar RC, Kesavan MP, Aoki S, Raja RP, Rajesh J, Webster TJ, Rajagopal G. ROS-responsive chitosan coated magnetic iron oxide nanoparticles as potential automobiles for focused drug supply in most cancers remedy. Int J Nanomed. 2020;15:3333–46. https://doi.org/10.2147/IJN.S249240.
Nunes D, Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Polymeric nanoparticles-loaded hydrogels for biomedical purposes: a scientific assessment on in vivo findings. Polymers. 2022;14(5):1010. https://doi.org/10.3390/polym14051010.
Wang G, Zhang X, Bu X, An Y, Bi H, Zhao Z. The appliance of cartilage tissue engineering with cell-laden hydrogel in cosmetic surgery: a scientific assessment. Tissue Eng Regen Med. 2022;19(1):1–9. https://doi.org/10.1007/s13770-021-00394-5.
Chen W, Zhi M, Feng Z, Gao P, Yuan Y, Zhang C, Wang Y, Dong A. Sustained co-delivery of ibuprofen and primary fibroblast development issue by thermosensitive nanoparticle hydrogel as early native remedy of peri-implantitis. Int J Nanomed. 2019;14:1347–58. https://doi.org/10.2147/IJN.S190781.
Zhang Y, Dong L, Liu L, Wu Z, Pan D, Liu L. Latest advances of stimuli-responsive polysaccharide hydrogels in supply techniques: a assessment. J Agric Meals Chem. 2022. https://doi.org/10.1021/acs.jafc.2c01080.
Liu B, Su Y, Wu S, Shen J. Native photothermal/photodynamic synergistic antibacterial remedy primarily based on two-dimensional BP@CQDs triggered by single NIR gentle supply. Photodiagn Photodyn Ther. 2022;39: 102905. https://doi.org/10.1016/j.pdpdt.2022.102905.
Zheng H, Li H, Deng H, Fang W, Huang X, Qiao J, Tong Y. Close to infrared light-responsive and drug-loaded black phosphorus nanosheets for antibacterial purposes. Colloids Surf B Biointerfaces. 2022;214: 112433. https://doi.org/10.1016/j.colsurfb.2022.112433.
Mangadlao JD, Santos CM, Felipe MJL, de Leon ACC, Rodrigues DF, Advincula RC. On the antibacterial mechanism of graphene oxide (GO) Langmuir-Blodgett movies. Chem Commun. 2015;51(14):2886–9. https://doi.org/10.1039/c4cc07836e.
Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls in opposition to micro organism. ACS Nano. 2010;4(10):5731–6. https://doi.org/10.1021/nn101390x.
Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W. Nanotechnology in plant illness administration: DNA-directed silver nanoparticles on graphene oxide as an antibacterial in opposition to Xanthomonas perforans. ACS Nano. 2013;7(10):8972–80. https://doi.org/10.1021/nn4034794.
Mohammadrezaei D, Golzar H, Rezai Rad M, Omidi M, Rashedi H, Yazdian F, Khojasteh A, Tayebi L. In vitro impact of graphene buildings as an osteoinductive think about bone tissue engineering: a scientific assessment. J Biomed Mater Res A. 2018;106(8):2284–343. https://doi.org/10.1002/jbm.a.36422.
Park H, Park H-J, Kim JA, Lee SH, Kim JH, Yoon J, Park TH. Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia utilizing superparamagnetic nanoparticles. J Microbiol Strategies. 2011;84(1):41–5. https://doi.org/10.1016/j.mimet.2010.10.010.
Liu S, Chen X, Bao L, Liu T, Yuan P, Yang X, Qiu X, Gooding JJ, Bai Y, Xiao J, et al. Remedy of infarcted coronary heart tissue by way of the seize and native supply of circulating exosomes by way of antibody-conjugated magnetic nanoparticles. Nat Biomed Eng. 2020;4(11):1063–75. https://doi.org/10.1038/s41551-020-00637-1.
Shuang S, Zhang Z. The impact of annealing remedy and atom layer deposition to Au/Pt nanoparticles-decorated TiO2 nanorods as photocatalysts. Molecules. 2018;23(3):525. https://doi.org/10.3390/molecules23030525.
Fu Y, Mo A. A assessment on the electrochemically self-organized titania nanotube arrays: synthesis, modifications, and biomedical purposes. Nanoscale Res Lett. 2018;13(1):187. https://doi.org/10.1186/s11671-018-2597-z.
Yun H-M, Ahn S-J, Park Ok-R, Kim M-J, Kim J-J, Jin G-Z, Kim H-W, Kim E-C. Magnetic nanocomposite scaffolds mixed with static magnetic area within the stimulation of osteoblastic differentiation and bone formation. Biomaterials. 2016;85:88–98. https://doi.org/10.1016/j.biomaterials.2016.01.035.
Guilluy C, Osborne LD, Van Landeghem L, Sharek L, Superfine R, Garcia-Mata R, Burridge Ok. Remoted nuclei adapt to drive and reveal a mechanotransduction pathway within the nucleus. Nat Cell Biol. 2014;16(4):376–81. https://doi.org/10.1038/ncb2927.
Yamamoto Y, Ohsaki Y, Goto T, Nakasima A, Iijima T. Results of static magnetic fields on bone formation in rat osteoblast cultures. J Dent Res. 2003;82(12):962–6.
Chiu Ok-H, Ou Ok-L, Lee S-Y, Lin C-T, Chang W-J, Chen C-C, Huang H-M. Static magnetic fields promote osteoblast-like cells differentiation by way of growing the membrane rigidity. Ann Biomed Eng. 2007;35(11):1932–9.
Marędziak M, Marycz Ok, Smieszek A, Lewandowski D, Toker NY. The affect of static magnetic fields on canine and equine mesenchymal stem cells derived from adipose tissue. In Vitro Cell Dev Biol Anim. 2014;50(6):562–71. https://doi.org/10.1007/s11626-013-9730-1.
Kim E-C, Leesungbok R, Lee S-W, Lee H-W, Park SH, Mah S-J, Ahn S-J. Results of average depth static magnetic fields on human bone marrow-derived mesenchymal stem cells. Bioelectromagnetics. 2015;36(4):267–76. https://doi.org/10.1002/bem.21903.
Zhuang J, Lin S, Dong L, Cheng Ok, Weng W. Magnetically actuated mechanical stimuli on FeO/mineralized collagen coatings to boost osteogenic differentiation of the MC3T3-E1 cells. Acta Biomater. 2018;71:49–60. https://doi.org/10.1016/j.actbio.2018.03.009.
Meng J, Zhang Y, Qi X, Kong H, Wang C, Xu Z, Xie S, Gu N, Xu H. Paramagnetic nanofibrous composite movies improve the osteogenic responses of pre-osteoblast cells. Nanoscale. 2010;2(12):2565–9. https://doi.org/10.1039/c0nr00178c.
De Santis R, Russo A, Gloria A, D’Amora U, Russo T, Panseri S, Sandri M, Tampieri A, Marcacci M, Dediu VA, et al. In direction of the design of 3D fiber-deposited poly(ε-caprolactone)/lron-doped hydroxyapatite nanocomposite magnetic scaffolds for bone regeneration. J Biomed Nanotechnol. 2015;11(7):1236–46.
Fini M, Giavaresi G, Carpi A, Nicolini A, Setti S, Giardino R. Results of pulsed electromagnetic fields on articular hyaline cartilage: assessment of experimental and medical research. Biomed Pharmacother. 2005;59(7):388–94.
Vincenzi F, Targa M, Corciulo C, Gessi S, Merighi S, Setti S, Cadossi R, Goldring MB, Borea PA, Varani Ok. Pulsed electromagnetic fields elevated the anti-inflammatory impact of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS ONE. 2013;8(5): e65561. https://doi.org/10.1371/journal.pone.0065561.
Wang J, An Y, Li F, Li D, Jing D, Guo T, Luo E, Ma C. The consequences of pulsed electromagnetic area on the features of osteoblasts on implant surfaces with totally different topographies. Acta Biomater. 2014;10(2):975–85. https://doi.org/10.1016/j.actbio.2013.10.008.
Sekeroğlu V, Akar A, Sekeroğlu ZA. Cytotoxic and genotoxic results of high-frequency electromagnetic fields (GSM 1800 MHz) on immature and mature rats. Ecotoxicol Environ Saf. 2012;80:140–4. https://doi.org/10.1016/j.ecoenv.2012.02.028.
Petecchia L, Sbrana F, Utzeri R, Vercellino M, Usai C, Visai L, Vassalli M, Gavazzo P. Electro-magnetic area promotes osteogenic differentiation of BM-hMSCs by way of a selective motion on Ca(2+)-related mechanisms. Sci Rep. 2015;5:13856. https://doi.org/10.1038/srep13856.
Zhou P, Wu J, Xia Y, Yuan Y, Zhang H, Xu S, Lin Ok. Loading BMP-2 on nanostructured hydroxyapatite microspheres for fast bone regeneration. Int J Nanomed. 2018;13:4083–92. https://doi.org/10.2147/IJN.S158280.
Singh RK, Patel KD, Lee JH, Lee E-J, Kim J-H, Kim T-H, Kim H-W. Potential of magnetic nanofiber scaffolds with mechanical and organic properties relevant for bone regeneration. PLoS ONE. 2014;9(4): e91584. https://doi.org/10.1371/journal.pone.0091584.
Petretta M, Gambardella A, Desando G, Cavallo C, Bartolotti I, Shelyakova T, Goranov V, Brucale M, Dediu VA, Fini M, et al. Multifunctional 3D-printed magnetic polycaprolactone/hydroxyapatite scaffolds for bone tissue engineering. Polymers. 2021;13(21):3825. https://doi.org/10.3390/polym13213825.
Li Ok, Liu S, Xue Y, Zhang L, Han Y. A superparamagnetic FeO–TiO composite coating on titanium by micro-arc oxidation for percutaneous implants. J Mater Chem B. 2019;7(34):5265–76. https://doi.org/10.1039/c9tb01096c.
Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in magnetic nanoparticles for biomedical purposes. Adv Healthc Mater. 2018;7(5):1700845. https://doi.org/10.1002/adhm.201700845.
Fasciani C, Silvero MJ, Anghel MA, Argüello GA, Becerra MC, Scaiano JC. Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial exercise, and long-term stability. J Am Chem Soc. 2014;136(50):17394–7. https://doi.org/10.1021/ja510435u.
Cabiscol E, Tamarit J, Ros J. Oxidative stress in micro organism and protein harm by reactive oxygen species. Int Microbiol. 2000;3(1):3–8.
Mao C, Zhu W, Xiang Y, Zhu Y, Shen J, Liu X, Wu S, Cheung KMC, Yeung KWK. Enhanced near-infrared photocatalytic eradication of MRSA biofilms and osseointegration utilizing oxide perovskite-based P–N heterojunction. Adv Sci. 2021;8(15): e2002211. https://doi.org/10.1002/advs.202002211.
Yang TT, Wang DH, Liu XY. Assembled gold nanorods for the photothermal killing of micro organism. Colloid Surf B-Biointerfaces. 2019;173:833–41. https://doi.org/10.1016/j.colsurfb.2018.10.060.
Sang S, Guo G, Yu J, Zhang X. Antibacterial utility of gentamicin-silk protein coating with good launch operate on titanium, polyethylene, and AlO supplies. Mater Sci Eng C. 2021;124: 112069. https://doi.org/10.1016/j.msec.2021.112069.
Liu Y, Busscher HJ, Zhao B, Li Y, Zhang Z, van der Mei HC, Ren Y, Shi L. Floor-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing effectivity in staphylococcal biofilms. ACS Nano. 2016;10(4):4779–89. https://doi.org/10.1021/acsnano.6b01370.
Wadhwa R, Lagenaur CF, Cui XT. Electrochemically managed launch of dexamethasone from conducting polymer polypyrrole coated electrode. J Management Launch. 2006;110(3):531–41.
Wu Q, Qu M, Zhong P, Zeng Y, Wang J, Zhang Q, Wang T, Liu D, Yang L, Zhou J, et al. Anti-inflammatory and anti-oxidant exercise of ultra-short wave diathermy on LPS-induced rat lung harm. Bull Exp Biol Med. 2022;172(4):423–9. https://doi.org/10.1007/s10517-022-05407-4.
Guo Z, Wang X, Zhou Y, Xu Q. Impact of Shujin Xiaotong capsules mixed with ultrashort wave remedy on ache and inflammatory cytokines in sufferers with power knee osteoarthritis. Am J Transl Res. 2021;13(7):8085–93.
Röschmann P. Radiofrequency penetration and absorption within the human physique: limitations to high-field whole-body nuclear magnetic resonance imaging. Med Phys. 1987;14(6):922–31.
Sagoo NS, Haider AS, Chen AL, Vannabouathong C, Larsen Ok, Sharma R, Palmisciano P, Alamer OB, Igbinigie M, Wells DB, et al. Radiofrequency ablation for spinal osteoid osteoma: a scientific assessment of security and remedy outcomes. Surg Oncol. 2022;41: 101747. https://doi.org/10.1016/j.suronc.2022.101747.
Pastrak M, Visnjevac O, Visnjevac T, Ma F, Abd-Elsayed A. Security of standard and pulsed radiofrequency lesions of the dorsal root entry zone complicated (DREZC) for interventional ache administration: a scientific assessment. Ache Ther. 2022;11(2):411–45. https://doi.org/10.1007/s40122-022-00378-w.
Wu L, Li Y, Si H, Zeng Y, Li M, Liu Y, Shen B. Radiofrequency ablation in cooled monopolar or standard bipolar modality yields extra useful short-term medical outcomes versus different remedies for knee osteoarthritis: a scientific assessment and community meta-analysis of randomized managed trials. Arthroscopy. 2022. https://doi.org/10.1016/j.arthro.2022.01.048.
Hu D, Li H, Wang B, Ye Z, Lei W, Jia F, Jin Q, Ren Ok-F, Ji J. Floor-adaptive gold nanoparticles with efficient adherence and enhanced photothermal ablation of methicillin-resistant staphylococcus aureus biofilm. ACS Nano. 2017;11(9):9330–9. https://doi.org/10.1021/acsnano.7b04731.
Gbejuade HO, Lovering AM, Webb JC. The position of microbial biofilms in prosthetic joint infections. Acta Orthop. 2015;86(2):147–58. https://doi.org/10.3109/17453674.2014.966290.
Maki DG, Tambyah PA. Engineering out the chance for an infection with urinary catheters. Emerg Infect Dis. 2001;7(2):342–7.
Krishnasami Z, Carlton D, Bimbo L, Taylor ME, Balkovetz DF, Barker J, Allon M. Administration of hemodialysis catheter-related bacteremia with an adjunctive antibiotic lock resolution. Kidney Int. 2002;61(3):1136–42.
Chodak GW, Plaut ME. Use of systemic antibiotics for prophylaxis in surgical procedure: a vital assessment. Arch Surg. 1977;112(3):326–34.
Rehman IU, Asad MM, Bukhsh A, Ali Z, Ata H, Dujaili JA, Blebil AQ, Khan TM. Information and apply of pharmacists towards antimicrobial stewardship in Pakistan. Pharmacy. 2018;6(4):116. https://doi.org/10.3390/pharmacy6040116.
Ciofu O, Rojo-Molinero E, Macià MD, Oliver A. Antibiotic remedy of biofilm infections. APMIS. 2017;125(4):304–19. https://doi.org/10.1111/apm.12673.
Marcuzzo AV, Tofanelli M, Boscolo Nata F, Gatto A, Tirelli G. Hyaluronate impact on bacterial biofilm in ENT district infections: a assessment. APMIS. 2017;125(9):763–72. https://doi.org/10.1111/apm.12728.
Cheeseman S, Elbourne A, Kariuki R, Ramarao AV, Zavabeti A, Syed N, Christofferson AJ, Kwon KY, Jung W, Dickey MD, et al. Broad-spectrum remedy of bacterial biofilms utilizing magneto-responsive liquid steel particles. J Mater Chem B. 2020;8(47):10776–87. https://doi.org/10.1039/d0tb01655a.
Elbourne A, Cheeseman S, Atkin P, Truong NP, Syed N, Zavabeti A, Mohiuddin M, Esrafilzadeh D, Cozzolino D, McConville CF, et al. Antibacterial liquid metals: biofilm remedy magnetic activation. ACS Nano. 2020;14(1):802–17. https://doi.org/10.1021/acsnano.9b07861.
Aukarasereenont P, Goff A, Nguyen CK, McConville CF, Elbourne A, Zavabeti A, Daeneke T. Liquid metals: a super platform for the synthesis of two-dimensional supplies. Chem Soc Rev. 2022;51(4):1253–76. https://doi.org/10.1039/d1cs01166a.
Shahin M, Munir Ok, Wen C, Li Y. Magnesium matrix nanocomposites for orthopedic purposes: a assessment from mechanical, corrosion, and organic views. Acta Biomater. 2019;96:1–19. https://doi.org/10.1016/j.actbio.2019.06.007.
Liu C, Geng L, Yu Y, Zhang Y, Zhao B, Zhao Q. Mechanisms of the improved antibacterial impact of Ag–TiO coatings. Biofouling. 2018;34(2):190–9. https://doi.org/10.1080/08927014.2017.1423287.
Joshi AS, Singh P, Mijakovic I. Interactions of gold and silver nanoparticles with bacterial biofilms: molecular interactions behind inhibition and resistance. Int J Mol Sci. 2020;21(20):7658. https://doi.org/10.3390/ijms21207658.
Kunrath MF, Shah FA, Dahlin C. Bench-to-bedside: feasibility of nano-engineered and drug-delivery biomaterials for bone-anchored implants and periodontal purposes. Mater Immediately Bio. 2023;18: 100540. https://doi.org/10.1016/j.mtbio.2022.100540.
Fisher MC, Alastruey-Izquierdo A, Berman J, Bicanic T, Bignell EM, Bowyer P, Bromley M, Brüggemann R, Garber G, Cornely OA, et al. Tackling the rising menace of antifungal resistance to human well being. Nat Rev Microbiol. 2022;20(9):557–71. https://doi.org/10.1038/s41579-022-00720-1.
Chen L, Bai M, Du R, Wang H, Deng Y, Xiao A, Gan X. The non-viral vectors and predominant strategies of loading siRNA onto the titanium implants and their utility. J Biomater Sci Polym Ed. 2020;31(16):2152–68. https://doi.org/10.1080/09205063.2020.1793706.
Marco F, Milena F, Gianluca G, Vittoria O. Peri-implant osteogenesis in well being and osteoporosis. Micron. 2005;36(7–8):630–44.
Jäger M, Jennissen HP, Dittrich F, Fischer A, Köhling HL. Antimicrobial and osseointegration properties of nanostructured titanium orthopaedic implants. Supplies. 2017;10(11):1302. https://doi.org/10.3390/ma10111302.
Pandey C, Rokaya D, Bhattarai BP. Modern ideas in osseointegration of dental implants: a assessment. Biomed Res Int. 2022;2022:6170452. https://doi.org/10.1155/2022/6170452.
Li X, Zou Q, Man Y, Li W. Synergistic results of novel superparamagnetic/upconversion HA materials and Ti/magnet implant on organic efficiency and long-term in vivo monitoring. Small. 2019;15(31): e1901617. https://doi.org/10.1002/smll.201901617.
Bhattarai G, Lee Y-H, Lee N-H, Park I-S, Lee M-H, Yi H-Ok. PPARγ delivered by Ch-GNPs onto titanium surfaces inhibits implant-induced irritation and induces bone mineralization of MC-3T3E1 osteoblast-like cells. Clin Oral Implants Res. 2013;24(10):1101–9. https://doi.org/10.1111/j.1600-0501.2012.02517.x.
Zhang ZJ, Wang YK, Teng WSY, Zhou XZ, Ye YX, Zhou H, Solar HX, Wang FQ, Liu A, Lin P, et al. An orthobiologics-free technique for synergistic photocatalytic antibacterial and osseointegration. Biomaterials. 2021;274:17. https://doi.org/10.1016/j.biomaterials.2021.120853.
Massari L, Benazzo F, Falez F, Perugia D, Pietrogrande L, Setti S, Osti R, Vaienti E, Ruosi C, Cadossi R. Biophysical stimulation of bone and cartilage: state-of-the-art and future views. Int Orthop. 2019;43(3):539–51. https://doi.org/10.1007/s00264-018-4274-3.
Salamanna F, Gambardella A, Contartese D, Visani A, Fini M. Nano-based biomaterials as drug supply techniques in opposition to osteoporosis: a scientific assessment of preclinical and medical proof. Nanomaterials. 2021;11(2):530. https://doi.org/10.3390/nano11020530.
Kuzyk PR, Schemitsch EH. The science {of electrical} stimulation remedy for fracture therapeutic. Indian J Orthop. 2009;43(2):127–31. https://doi.org/10.4103/0019-5413.50846.
Caliogna L, Medetti M, Bina V, Brancato AM, Castelli A, Jannelli E, Ivone A, Gastaldi G, Annunziata S, Mosconi M, et al. Pulsed electromagnetic fields in bone therapeutic: molecular pathways and medical purposes. Int J Mol Sci. 2021;22(14):7403. https://doi.org/10.3390/ijms22147403.
Di Bartolomeo M, Cavani F, Pellacani A, Grande A, Salvatori R, Chiarini L, Nocini R, Anesi A. Pulsed electro-magnetic area (PEMF) impact on bone therapeutic in animal fashions: a assessment of its efficacy associated to totally different sort of harm. Biology. 2022;11(3):402. https://doi.org/10.3390/biology11030402.
Lobato RPB, Kinalski MDA, Martins TM, Agostini BA, Bergoli CD, Dos Santos MBF. Affect of low-level laser remedy on implant stability in implants positioned in recent extraction sockets: a randomized medical trial. Clin Implant Dent Relat Res. 2020;22(3):261–9. https://doi.org/10.1111/cid.12904.
Guzzardella GA, Torricelli P, Nicoli-Aldini N, Giardino R. Osseointegration of endosseous ceramic implants after postoperative low-power laser stimulation: an in vivo comparative research. Clin Oral Implants Res. 2003;14(2):226–32.
Sirivisoot S, Webster TJ. Multiwalled carbon nanotubes improve electrochemical properties of titanium to find out in situ bone formation. Nanotechnology. 2008;19(29): 295101. https://doi.org/10.1088/0957-4484/19/29/295101.
Yu Y, Jin G, Xue Y, Wang D, Liu X, Solar J. Multifunctions of twin Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and micro organism inhibition for dental implants. Acta Biomater. 2017;49:590–603. https://doi.org/10.1016/j.actbio.2016.11.067.
Hu H, Zhang W, Qiao Y, Jiang X, Liu X, Ding C. Antibacterial exercise and elevated bone marrow stem cell features of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012;8(2):904–15. https://doi.org/10.1016/j.actbio.2011.09.031.
Impolite RK, Gruber HE, Norton HJ, Wei LY, Frausto A, Kilburn J. Dietary magnesium discount to 25% of nutrient requirement disrupts bone and mineral metabolism within the rat. Bone. 2005;37(2):211–9.
Rapuano BE, Hackshaw KM, Schniepp HC, MacDonald DE. Results of coating a titanium alloy with fibronectin on the expression of osteoblast gene markers within the MC3T3 osteoprogenitor cell line. Int J Oral Maxillofac Implants. 2012;27(5):1081–90.
Lai M, Jin Z, Su Z. Floor modification of TiO nanotubes with osteogenic development peptide to boost osteoblast differentiation. Mater Sci Eng C. 2017;73:490–7. https://doi.org/10.1016/j.msec.2016.12.083.
Xu T, Luo Y, Wang J, Zhang N, Gu C, Li L, Qian D, Cai W, Fan J, Yin G. Exosomal miRNA-128-3p from mesenchymal stem cells of aged rats regulates osteogenesis and bone fracture therapeutic by focusing on Smad5. J Nanobiotechnol. 2020;18(1):47. https://doi.org/10.1186/s12951-020-00601-w.
Huang Y, Zheng Y, Xu Y, Li X, Zheng Y, Jia L, Li W. Titanium surfaces functionalized with siMIR31HG promote osteogenic differentiation of bone marrow mesenchymal stem cells. ACS Biomater Sci Eng. 2018;4(8):2986–93. https://doi.org/10.1021/acsbiomaterials.8b00432.
Yu Ok, Jiang Z, Miao X, Yu Z, Du X, Lai Ok, Wang Y, Yang G. circRNA422 enhanced osteogenic differentiation of bone marrow mesenchymal stem cells throughout early osseointegration by way of the SP7/LRP5 axis. Mol Ther. 2022. https://doi.org/10.1016/j.ymthe.2022.05.020.
Yuan Z, Tao BL, He Y, Mu CY, Liu GH, Zhang JX, Liao Q, Liu P, Cai KY. Distant eradication of biofilm on titanium implant by way of near-infrared gentle triggered photothermal/photodynamic remedy technique. Biomaterials. 2019;223:15. https://doi.org/10.1016/j.biomaterials.2019.119479.