Sercombe, L. et al. Advances and challenges of liposome assisted drug supply. Entrance. Pharmacol. 6, 286 (2015).
Giulimondi, F. et al. Interaction of protein corona and immune cells controls blood residency of liposomes. Nat. Commun. 10, 3686 (2019).
Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a method for enhancing nanoparticle-based drug and gene supply. Adv. Drug Deliv. Rev. 99, 28–51 (2016).
Lundqvist, M. et al. Nanoparticle measurement and floor properties decide the protein corona with attainable implications for organic impacts. Proc. Natl Acad. Sci. USA 105, 14265–14270 (2008).
Ren, H. et al. Position of liposome measurement, floor cost, and PEGylation on rheumatoid arthritis focusing on remedy. ACS Appl. Mater. Interfaces 11, 20304–20315 (2019).
Yang, M., Feng, X., Ding, J., Chang, F. & Chen, X. Nanotherapeutics relieve rheumatoid arthritis. J. Management. Launch 252, 108–124 (2017).
Gawne, P. J. et al. PET imaging of liposomal glucocorticoids utilizing 89 Zr-oxine: theranostic purposes in inflammatory arthritis. Theranostics 10, 3867–3879 (2020).
Metselaar, J. M. et al. Liposomal focusing on of glucocorticoids to synovial lining cells strongly will increase therapeutic profit in collagen sort II arthritis. Ann. Rheum. Dis. 63, 348–353 (2004).
Matsumura, Y. & Maeda, H. A brand new idea for macromolecular therapeutics in most cancers chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Most cancers Res. 46, 6387–6392 (1986).
Danhier, F. To use the tumor microenvironment: because the EPR impact fails within the clinic, what’s the way forward for nanomedicine? J. Management. Launch 244, 108–121 (2016).
Davignon, J. L. et al. Concentrating on monocytes/macrophages within the therapy of rheumatoid arthritis. Rheumatology 52, 590–598 (2013).
Kaplan, M. J. Position of neutrophils in systemic autoimmune illnesses. Arthritis Res. Ther. 15, 219 (2013).
Izar, M. C. O. et al. Monocyte subtypes and the CCR2 chemokine. Clin. Sci. (Lond.) 131, 1215–1224 (2017).
McInnes, I. B. & Schett, G. Pathogenetic insights from the therapy of rheumatoid arthritis. Lancet 389, 2328–2337 (2017).
Dammes, N. et al. Conformation-sensitive focusing on of lipid nanoparticles for RNA therapeutics. Nat. Nanotechnol. 16, 1030–1038 (2021).
Sofias, A. M., Andreassen, T. & Hak, S. Nanoparticle ligand-decoration procedures have an effect on in vivo interactions with immune cells. Mol. Pharm. 15, 5754–5761 (2018).
Chu, D., Gao, J. & Wang, Z. Neutrophil-mediated supply of therapeutic nanoparticles throughout blood vessel barrier for therapy of irritation and an infection. ACS Nano 9, 11800–11811 (2015).
Karathanasis, E. et al. Selective focusing on of nanocarriers to neutrophils and monocytes. Ann. Biomed. Eng. 37, 1984–1992 (2009).
Veiga, N. et al. Leukocyte-specific siRNA supply revealing IRF8 as a possible anti-inflammatory goal. J. Management. Launch 313, 33–41 (2019).
Vargason, A. M., Anselmo, A. C. & Mitragotri, S. The evolution of economic drug supply applied sciences. Nat. Biomed. Eng. 5, 951–967 (2021).
El Kebir, D. E. & Filep, J. G. Modulation of neutrophil apoptosis and the decision of irritation by means of β2 integrins. Entrance. Immunol. 4, 60 (2013).
Braeckmans, Ok. et al. Sizing nanomatter in organic fluids by fluorescence single particle monitoring. Nano Lett. 10, 4435–4442 (2010).
Chen, D., Ganesh, S., Wang, W. & Amiji, M. Plasma protein adsorption and organic id of systemically administered nanoparticles. Nanomedicine 12, 2113–2135 (2017).
De Chermont, Q. L. M. et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl Acad. Sci. USA 104, 9266–9271 (2007).
Smith, W. J. et al. Lipophilic indocarbocyanine conjugates for environment friendly incorporation of enzymes, antibodies and small molecules into organic membranes. Biomaterials 161, 57 (2018).
Hofkens, W., Storm, G., Van Den Berg, W. B. & Van Lent, P. L. Liposomal focusing on of glucocorticoids to the infected synovium inhibits cartilage matrix destruction throughout murine antigen-induced arthritis. Int. J. Pharm. 416, 486–492 (2011).
Kratofil, R. M., Kubes, P. & Deniset, J. F. Monocyte conversion throughout irritation and harm. Arterioscler. Thromb. Vasc. Biol. 37, 35–42 (2017).
Gschwandtner, M., Derler, R. & Midwood, Ok. S. Extra than simply enticing: how CCL2 influences myeloid cell conduct past chemotaxis. Entrance. Immunol. 10, 2759 (2019).
Seeuws, S. et al. A multiparameter method to observe illness exercise in collagen-induced arthritis. Arthritis Res. Ther. 12, R160 (2010).
Tu, J. et al. Ontogeny of synovial macrophages and the roles of synovial macrophages from totally different origins in arthritis. Entrance. Immunol. 10, 1146 (2019).
Hoeffel, G. et al. Grownup Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages. J. Exp. Med. 209, 1167–1181 (2012).
Inglis, J. J. et al. Collagen-induced arthritis in C57BL/6 mice is related to a strong and sustained T-cell response to sort II collagen. Arthritis Res. Ther. 9, R113 (2007).
Asquith, D. L., Miller, A. M., McInnes, I. B. & Liew, F. Y. Animal fashions of rheumatoid arthritis. Eur. J. Immunol. 39, 2040–2044 (2009).
Wipke, B. T. & Allen, P. M. Important position of neutrophils within the initiation and development of a murine mannequin of rheumatoid arthritis. J. Immunol. 167, 1601–1608 (2001).
Akinc, A. et al. The Onpattro story and the scientific translation of nanomedicines containing nucleic acid-based medication. Nat. Nanotechnol. 14, 1084–1087 (2019).
Kulkarni, J. A., Witzigmann, D., Chen, S., Cullis, P. R. & Van Der Meel, R. Lipid nanoparticle know-how for scientific translation of siRNA therapeutics. Acc. Chem. Res. 52, 2435–2444 (2019).
Zhu, X. et al. Floor de-PEGylation controls nanoparticle-mediated siRNA supply in vitro and in vivo. Theranostics 7, 1990–2002 (2017).
Cambré, I. et al. Mechanical pressure determines the site-specific localization of irritation and tissue injury in arthritis. Nat. Commun. 9, 4613 (2018).
Meghraoui-Kheddar, A., Barthelemy, S., Boissonnas, A. & Combadière, C. Revising CX3CR1 expression on murine classical and non-classical monocytes. Entrance. Immunol. 11, 1117 (2020).
Kinne, R. W. Macrophages in rheumatoid arthritis. Arthritis Res. Ther. 2, 189 (2000).
Veiga, N. et al. Cell particular supply of modified mRNA expressing therapeutic proteins to leukocytes. Nat. Commun. 9, 4493 (2018).
Wyatt Shields, C. et al. Mobile backpacks for macrophage immunotherapy. Sci. Adv. 6, eaaz6579 (2020).
Kumar, R. A., Li, Y., Dang, Q. & Yang, F. Monocytes in rheumatoid arthritis: circulating precursors of macrophages and osteoclasts and, their heterogeneity and plasticity position in RA pathogenesis. Int. Immunopharmacol. 65, 348–359 (2018).
Kim, J. & Sahay, G. Nanomedicine hitchhikes on neutrophils to the infected lung. Nat. Nanotechnol. 17, 1–2 (2021).
Palchetti, S. et al. The protein corona of circulating PEGylated liposomes. Biochim. Biophys. Acta Biomembr. 1858, 189–196 (2016).
Schöttler, S. et al. Protein adsorption is required for stealth impact of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11, 372–377 (2016).
Francia, V., Schiffelers, R. M., Cullis, P. R. & Witzigmann, D. The biomolecular corona of lipid nanoparticles for gene remedy. Bioconjugate Chem. 31, 2046–2059 (2020).
Dale, D. C., Boxer, L., & Liles, W. C. The phagocytes: neutrophils and monocytes. Blood 112, 935–945 (2008).
Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29, 1005–1010 (2011).
Novobrantseva, T. I. et al. Systemic RNAi-mediated gene silencing in nonhuman primate and rodent myeloid cells. Mol. Ther. Nucleic Acids 1, e4 (2012).
Li, C. et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 23, 543–555 (2022).
Lenart, Ok. et al. A 3rd dose of the unmodified COVID-19 mRNA vaccine CVnCoV enhances high quality and amount of immune responses. Mol. Ther. Strategies Clin. Dev. 27, 309–323 (2022).
Jafarzadeh, A., Chauhan, P., Saha, B., Jafarzadeh, S. & Nemati, M. Contribution of monocytes and macrophages to the native tissue irritation and cytokine storm in COVID-19: classes from SARS and MERS, and potential therapeutic interventions. Life Sci. 257, 118102 (2020).
Martinez, F. O., Combes, T. W., Orsenigo, F. & Gordon, S. Monocyte activation in systemic Covid-19 an infection: assay and rationale. eBioMedicine 59, 102964 (2020).
Zhang, D. et al. COVID‐19 an infection induces readily detectable morphologic and irritation‐associated phenotypic adjustments in peripheral blood monocytes. J. Leukoc. Biol. 109, 13–22 (2020).
Pence, B. D. Extreme COVID-19 and ageing: are monocytes the important thing? GeroScience 42, 1051–1061 (2020).
Ragab, D., Salah Eldin, H., Taeimah, M., Khattab, R. & Salem, R. The COVID-19 cytokine storm; what we all know to this point. Entrance. Immunol. 11, 1446 (2020).
Yoshimura, T. The manufacturing of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments. Cytokine 98, 71–78 (2017).
Parihar, A., Eubank, T. D. & Doseff, A. I. Monocytes and macrophages regulate immunity by means of dynamic networks of survival and cell dying. J. Innate Immun. 2, 204–215 (2010).
Yang, J., Zhang, L., Yu, C., Yang, X. F. & Wang, H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory illnesses. Biomark. Res. 2, 1 (2014).
Lammers, T. et al. Dexamethasone nanomedicines for COVID-19. Nat. Nanotechnol. 15, 622–624 (2020).
Benchimol, M. J., Bourne, D., Moghimi, S. M. & Simberg, D. Pharmacokinetic evaluation reveals limitations and alternatives for nanomedicine focusing on of endothelial and extravascular compartments of tumors. J. Drug Goal. 27, 690–698 (2019).
Fang, J., Nakamura, H. & Maeda, H. The EPR impact: distinctive options of tumor blood vessels for drug supply, elements concerned, and limitations and augmentation of the impact. Adv. Drug Deliv. Rev. 63, 136–151 (2011).
Brocato, T. A. et al. Understanding the connection between nanoparticle uptake and most cancers therapy efficacy utilizing mathematical modeling. Sci. Rep. 8, 7538 (2018).
Avnir, Y. et al. Amphipathic weak acid glucocorticoid prodrugs remote-loaded into sterically stabilized nanoliposomes evaluated in arthritic rats and in a Beagle canine: a novel method to treating autoimmune arthritis. Arthritis Rheum. 58, 119–129 (2008).
Avnir, Y. et al. Fabrication rules and their contribution to the superior in vivo therapeutic efficacy of nano-liposomes distant loaded with glucocorticoids. PLoS ONE 6, e25721 (2011).
Verbeke, R. et al. Broadening the message: a nanovaccine co-loaded with messenger RNA and α-GalCer induces antitumor immunity by means of standard and pure killer T cells. ACS Nano 13, 1655–1669 (2019).
Kulkarni, J. A. et al. Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads. Nanoscale 11, 9023–9031 (2019).
Kulkarni, J. A. et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 12, 4787–4795 (2018).
Hirota, S., De Ilarduya, C. T., Barron, L. G. & Szoka, F. C. Easy mixing system to reproducibly put together cationic lipid-DNA complexes (lipoplexes). Biotechniques 27, 286–290 (1999).
Kulkarni, J. A. et al. Speedy synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles. Nanoscale 9, 13600–13609 (2017).
Kannan, Ok., Ortmann, R. A. & Kimpel, D. Animal fashions of rheumatoid arthritis and their relevance to human illness. Pathophysiology 12, 167–181 (2005).
Seemann, S., Zohles, F. & Lupp, A. Complete comparability of three totally different animal fashions for systemic irritation. J. Biomed. Sci. 24, 60 (2017).