Müller, M., Schmalian, J. & Fritz, L. Graphene: an almost excellent fluid. Phys. Rev. Lett. 103, 025301 (2009).
Bandurin, D. A. et al. Destructive native resistance attributable to viscous electron backflow in graphene. Science 351, 1055–1058 (2016).
Crossno, J. et al. Commentary of the Dirac fluid and the breakdown of the Wiedemann–Franz legislation in graphene. Science 351, 1058–1061 (2016).
Moll, P. J. W., Kushwaha, P., Nandi, N., Schmidt, B. & Mackenzie, A. P. Proof for hydrodynamic electron circulate in PdCuO2. Science 351, 1061–1064 (2016).
Huang, Okay. Equation of state of a Bose–Einstein system of particles with engaging interactions. Phys. Rev. 119, 1129–1142 (1960).
Fleming, P. D. Hydrodynamic habits of triplet excitons. J. Chem. Phys. 59, 3199–3206 (1973).
Hyperlink, B. & Baym, G. Hydrodynamic transport of excitons in semiconductors and Bose–Einstein condensation. Phys. Rev. Lett. 69, 2959–2962 (1992).
Laikhtman, B. & Rapaport, R. Exciton correlations in coupled quantum wells and their luminescence blue shift. Phys. Rev. B 80, 195313 (2009).
Versteegh, M. A. M., van Lange, A. J., Stoof, H. T. C. & Dijkhuis, J. I. Commentary of preformed electron–gap Cooper pairs in extremely excited ZnO. Phys. Rev. B 85, 195206 (2012).
Stern, M., Umansky, V. & Bar-Joseph, I. Exciton liquid in coupled quantum wells. Science 343, 55–57 (2014).
Glazov, M. M. & Suris, R. A. Collective states of excitons in semiconductors. Phys.-Uspekhi 63, 1051–1071 (2020).
Honold, A., Schultheis, L., Kuhl, J. & Tu, C. W. Collision broadening of two-dimensional excitons in a gaas single quantum effectively. Phys. Rev. B 40, 6442–6445 (1989).
Ramon, G., Mann, A. & Cohen, E. Idea of impartial and charged exciton scattering with electrons in semiconductor quantum wells. Phys. Rev. B 67, 045323 (2003).
Anankine, R. et al. Temporal coherence of spatially oblique excitons throughout Bose–Einstein condensation: the function of free carriers. N. J. Phys. 20, 073049 (2018).
Keldysh, L. V. The electron–gap liquid in semiconductors. Contemp. Phys. 27, 395–428 (1986).
Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 99, 102109 (2011).
Robert, C. et al. Exciton radiative lifetime in transition metallic dichalcogenide monolayers. Phys. Rev. B 93, 205423 (2016).
Liu, S. et al. Room-temperature valley polarization in atomically skinny semiconductors by way of chalcogenide alloying. ACS Nano 14, 9873–9883 (2020).
Steinhoff, A. et al. Exciton fission in monolayer transition metallic dichalcogenide semiconductors. Nat. Commun. 8, 1166 (2017).
Selig, M. et al. Darkish and vivid exciton formation, thermalization, and photoluminescence in monolayer transition metallic dichalcogenides. 2D Mater. 5, 035017 (2018).
Efimkin, D. Okay., Laird, E. Okay., Levinsen, J., Parish, M. M. & MacDonald, A. H. Electron–exciton interactions within the exciton–polaron downside. Phys. Rev. B 103, 075417 (2021).
Kumar, N. et al. Exciton diffusion in monolayer and bulk MoSe2. Nanoscale 6, 4915–4919 (2014).
Kato, T. & Kaneko, T. Transport dynamics of impartial excitons and trions in monolayer WS2. ACS Nano 10, 9687–9694 (2016).
Onga, M., Zhang, Y., Ideue, T. & Iwasa, Y. Exciton Corridor impact in monolayer MoSs2. Nat. Mat. 16, 1193–1197 (2017).
Zipfel, J. et al. Exciton diffusion in monolayer semiconductors with suppressed dysfunction. Phys. Rev. B 101, 115430 (2020).
Glazov, M. M. Quantum interference impact on exciton transport in monolayer semiconductors. Phys. Rev. Lett. 124, 166802 (2020).
Hotta, T. et al. Exciton diffusion in hBN-encapsulated monolayer MoSe2. Phys. Rev. B 102, 115424 (2020).
Uddin, S. Z. et al. Impartial exciton diffusion in monolayer MoS2. ACS Nano 14, 13433–13440 (2020).
Excessive, A. A. et al. Spontaneous coherence in a chilly exciton gasoline. Nature 483, 584–588 (2012).
Anankine, R. et al. Quantized vortices and four-component superfluidity of semiconductor excitons. Phys. Rev. Lett. 118, 127402 (2017).
Shahnazaryan, V., Iorsh, I., Shelykh, I. A. & Kyriienko, O. Exciton–exciton interplay in transition-metal dichalcogenide monolayers. Phys. Rev. B 96, 115409 (2017).
Amani, M. et al. Close to-unity photoluminescence quantum yield in MoSs2. Science 350, 1065–1068 (2015).
Lien, D.-H. et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 364, 468–471 (2019).
Ballarini, D. et al. Macroscopic two-dimensional polariton condensates. Phys. Rev. Lett. 118, 215301 (2017).
Deng, H., Haug, H. & Yamamoto, Y. Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).
Michalsky, T., Wille, M., Grundmann, M. & Schmidt-Grund, R. Spatio-temporal evolution of coherent polariton modes in ZnO microwire cavities at room temperature. Nano Lett. 18, 6820–6825 (2018).
Elias, D. C. et al. Dirac cones reshaped by interplay results in suspended graphene. Nat. Phys. 7, 701–704 (2011).
Sung, J. et al. Lengthy-range ballistic propagation of carriers in methylammonium lead iodide perovskite skinny movies. Nat. Phys. 16, 171–176 (2020).
Kalt, H. et al. Quasi-ballistic transport of excitons in quantum wells. J. Lumin. 112, 136–141 (2005).
Butov, L. V., Gossard, A. C. & Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 751–754 (2002).
Snoke, D., Denev, S., Liu, Y., Pfeiffer, L. & West, Okay. Lengthy-range transport in excitonic darkish states in coupled quantum wells. Nature 418, 754 (2002).
Dang, S. et al. Commentary of algebraic time order for two-dimensional dipolar excitons. Phys. Rev. Res. 2, 032013 (2020).
Trauernicht, D. P., Wolfe, J. P. & Mysyrowicz, A. Extremely cellular paraexcitons in cuprous oxide. Phys. Rev. Lett. 52, 855–858 (1984).
Haas, F. & Mahmood, S. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy. Phys. Rev. E 92, 053112 (2015).
Svintsov, D., Vyurkov, V., Yurchenko, S., Otsuji, T. & Ryzhii, V. Hydrodynamic mannequin for electron–gap plasma in graphene. J. Appl. Phys. 111, 083715 (2012).
Erkensten, D., Brem, S. & Malic, E. Exciton-exciton interplay in transition metallic dichalcogenide monolayers and van der Waals heterostructures. Phys. Rev. B 103, 045426 (2021).
Dery, H. & Music, Y. Polarization evaluation of excitons in monolayer and bilayer transition-metal dichalcogenides. Phys. Rev. B 92, 125431 (2015).
Do, T. T. H. et al. Vivid exciton fine-structure in two-dimensional lead halide perovskites. Nano Lett. 20, 5141–5148 (2020).
Qiu, D. Y., Cao, T. & Louie, S. G. Nonanalyticity, valley quantum phases, and lightlike exciton dispersion in monolayer transition metallic dichalcogenides: principle and first-principles calculations. Phys. Rev. Lett. 115, 176801 (2015).
Kadantsev, E. S. & Hawrylak, P. Digital construction of a single MoS2 monolayer. Stable State Commun. 152, 909–913 (2012).
Chen, W., Huang, C.-J. & Zhu, Q. Trying to find unconventional superfluid in exciton condensate of monolayer semiconductors. Preprint at https://doi.org/10.48550/arXiv.2302.05585
Guo, H., Zhang, X. & Lu, G. Tuning moiré; excitons in Janus heterobilayers for high-temperature Bose–Einstein condensation. Sci. Adv. 8, eabp9757 (2022).