Freeman CM, Rank MA, Bolster LaSalle CM, Grys TE, Lewis JC. Effectiveness of Bodily Distancing: Staying 6 Ft Over to Put Respiratory Viruses 6 Ft Underneath. Mayo Clin Proc. 2021;96:148–151.
Peeling RW, Heymann DL, Teo YY, Garcia PJ. Diagnostics for COVID-19: transferring from pandemic response to manage. Lancet. 2022;399:757–68.
Li D, Liao X, Liu Z, Ma Z, Dong J, Zheng G, Zi M, Wang F, He Q, Li G, et al. Wholesome outcomes of sufferers with COVID-19 two years after the an infection: a potential cohort examine. Emerg Microbes Infect. 2022;11:2680–8.
Ye Q, Wang B, Mao J. The pathogenesis and remedy of the ‘Cytokine Storm’ in COVID-19. J Infect. 2020;80:607–13.
Safiabadi Tali SH, LeBlanc JJ, Sadiq Z, Oyewunmi OD, Camargo C, Nikpour B, Armanfard N, Sagan SM, Jahanshahi-Anbuhi S. Instruments and strategies for extreme acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/COVID-19 detection. Clin Microbiol Rev. 2021; 34.
Perivolaropoulos C, Vlacha V. A discount of the variety of assays and turnaround time by optimizing polymerase chain response (PCR) pooled testing for SARS-CoV-2. J Med Virol. 2021;93:4508–15.
Drożdżal S, Rosik J, Lechowicz Ok, Machaj F, Szostak B, Przybyciński J, Lorzadeh S, Kotfis Ok, Ghavami S, Łos MJ. An replace on medication with therapeutic potential for SARS-CoV-2 (COVID-19) remedy. Drug Resist Updat. 2021;59:100794.
Chung JY, Thone MN, Kwon YJ. COVID-19 vaccines: the standing and views in supply factors of view. Adv Drug Deliv Rev. 2021;170:1–25.
Konishi T. Mutations in SARS-CoV-2 are on the rise in opposition to the acquired immunity. PLoS ONE. 2022;17: e0271305.
Meng Z, Guo S, Zhou Y, Li M, Wang M, Ying B. Functions of laboratory findings within the prevention, prognosis, remedy, and monitoring of COVID-19. Sign Transduct Goal Ther. 2021;6:316.
Ashrafi AM, Bytesnikova Z, Barek J, Richtera L, Adam V. A crucial comparability of pure enzymes and nanozymes in biosensing and bioassays. Biosens Bioelectron. 2021;192:113494.
Alizadeh N, Salimi A. Multienzymes exercise of metals and steel oxide nanomaterials: purposes from biotechnology to drugs and environmental engineering. J Nanobiotechnol. 2021;19:26.
Liang M, Yan X. Nanozymes: From New Ideas, Mechanisms, and Requirements to Functions. Acc Chem Res. 2019;52(8):2190–2200.
Ren XY, Chen DX, Wang Y, Li HF, Zhang YB, Chen HY, Li X, Huo MF. Nanozymes-recent improvement and biomedical purposes. J Nanobiotechnol. 2022; 20.
Wang D, Jana D, Zhao Y. Steel-organic framework derived nanozymes in biomedicine. Acc Chem Res. 2020;53:1389–400.
Duan D, Fan Ok, Zhang D, Tan S, Liang M, Liu Y, Zhang J, Zhang P, Liu W, Qiu X, et al. Nanozyme-strip for fast native prognosis of Ebola. Biosens Bioelectron. 2015;74:134–41.
Qin T, Ma R, Yin Y, Miao X, Chen S, Fan Ok, Xi J, Liu Q, Gu Y, Yin Y, et al. Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics. 2019;9:6920–35.
Kumawat M, Umapathi A, Lichtfouse E, Daima HK. Nanozymes to battle the COVID-19 and future pandemics. Environ Chem Lett. 2021;19:3951–7.
Oeschger TM, McCloskey DS, Buchmann RM, Choubal AM, Boza JM, Mehta S, Erickson D. Early warning diagnostics for rising infectious ailments in creating into late-stage pandemics. Acc Chem Res. 2021;54:3656–66.
Yuce M, Filiztekin E, Ozkaya KG. COVID-19 prognosis—a overview of present strategies. Biosens Bioelectron. 2021;172: 112752.
Derakhshan MA, Amani A, Faridi-Majidi R. State-of-the-art of nanodiagnostics and nanotherapeutics in opposition to SARS-CoV-2. ACS Appl Mater Interfaces. 2021;13:14816–43.
Vandenberg O, Martiny D, Rochas O, van Belkum A, Kozlakidis Z. Issues for diagnostic COVID-19 checks. Nat Rev Microbiol. 2021;19:171–83.
Kabir MS, Clements MO, Kimmitt PT. RT-Bst: an built-in strategy for reverse transcription and enrichment of cDNA from viral RNA. Br J Biomed Sci. 2015;72:1–6.
Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Bleicker T, Brunink S, Schneider J, Schmidt ML, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020; 25.
Liu G, Rusling JF. COVID-19 antibody checks and their limitations. ACS Sensors. 2021;6:593–612.
Tong P-B-V, Lin L-Y, Tran TH. Coronaviruses pandemics: can neutralizing antibodies assist? Life Sci. 2020;255:117836.
Jacofsky D, Jacofsky EM, Jacofsky M. Understanding antibody testing for COVID-19. J Arthroplasty. 2020;35:S74-s81.
Yong G, Yi Y, Tuantuan L, Xiaowu W, Xiuyong L, Ang L, Mingfeng H. Analysis of the auxiliary diagnostic worth of antibody assays for the detection of novel coronavirus (SARS-CoV-2). J Med Virol. 2020;92:1975–9.
Liu D, Ju C, Han C, Shi R, Chen X, Duan D, Yan J, Yan X. Nanozyme chemiluminescence paper take a look at for fast and delicate detection of SARS-CoV-2 antigen. Biosens Bioelectron. 2020;173: 112817.
Zhang S, Xue M, Zhang J, Chen Q, Chen J, Wang Z, Zhou W, Chen P, Xia N, Ge S. A one-step dipstick assay for the on-site detection of nucleic acid. Clin Biochem. 2013;46:1852–6.
Okba NMA, Müller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, Lamers MM, Sikkema RS, de Bruin E, Chandler FD, et al. Extreme acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus illness sufferers. Emerg Infect Dis. 2020;26:1478–88.
Mertens P, De Vos N, Martiny D, Jassoy C, Mirazimi A, Cuypers L, Van den Wijngaert S, Monteil V, Melin P, Stoffels Ok, et al. Growth and potential usefulness of the COVID-19 Ag respi-strip diagnostic assay in a pandemic context. Entrance Med. 2020;7:225.
Cevik M, Bamford CGG, Ho A. COVID-19 pandemic-a targeted overview for clinicians. Clin Microbiol Infect. 2020;26:842–7.
Strand R, Thelaus L, Fernström N, Sunnerhagen T, Lindroth Y, Linder A, Rasmussen M. Fast diagnostic testing for SARS-CoV-2: validation and comparability of three point-of-care antibody checks. J Med Virol. 2021;93:4592–6.
Kent CJVmd. Totally different paths to the identical vacation spot: screening for Covid-19. 2020.
Liu B, Wu Z, Liang C, Lu J, Li J, Zhang L, Li T, Zhao W, Fu Y, Hou S, et al. Growth of a smartphone-based nanozyme-linked immunosorbent assay for quantitative detection of SARS-CoV-2 nucleocapsid phosphoprotein in blood. Entrance Microbiol. 2021;12: 692831.
Web optimization G, Lee G, Kim MJ, Baek S-H, Choi M, Ku KB, Lee C-S, Jun S, Park D, Kim HG, et al. Fast detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens utilizing field-effect transistor-based biosensor. ACS Nano. 2020;14:5135–42.
Oishee MJ, Ali T, Jahan N, Khandker SS, Haq MA, Khondoker MU, Sil BK, Lugova H, Krishnapillai A, Abubakar AR, et al. COVID-19 pandemic: overview of latest and forthcoming detection instruments. Infect Drug Resist. 2021;14:1049–82.
Lukas H, Xu C, Yu Y, Gao W. Rising telemedicine instruments for distant COVID-19 prognosis, monitoring, and administration. ACS Nano. 2020;14:16180–93.
Agarwal DK, Nandwana V, Henrich SE, Josyula V, Thaxton CS, Qi C, Simons LM, Hultquist JF, Ozer EA, Shekhawat GS, Dravid VP. Extremely delicate and ultra-rapid antigen-based detection of SARS-CoV-2 utilizing nanomechanical sensor platform. Biosens Bioelectron. 2022;195: 113647.
Ali J, Elahi SN, Ali A, Waseem H, Abid R, Mohamed MM. Unveiling the potential function of nanozymes in combating the COVID-19 outbreak. Nanomaterials (Basel). 2021;11:1328.
Amanat F, Stadlbauer D, Strohmeier S, Nguyen THO, Chromikova V, McMahon M, Jiang Ok, Arunkumar GA, Jurczyszak D, Polanco J, et al. A serological assay to detect SARS-CoV-2 seroconversion in people. Nat Med. 2020;26:1033–6.
Zhang Z, Lai J, Wu Ok, Huang X, Guo S, Zhang L, Liu J. Peroxidase-catalyzed chemiluminescence system and its software in immunoassay. Talanta. 2018;180:260–70.
Deng J, Yang M, Wu J, Zhang W, Jiang X. A self-contained chemiluminescent lateral circulate assay for point-of-care testing. Anal Chem. 2018;90:9132–7.
Della Ventura B, Cennamo M, Minopoli A, Campanile R, Censi SB, Terracciano D, Portella G, Velotta R. Colorimetric take a look at for quick detection of SARS-CoV-2 in nasal and throat swabs. Acs Sensors. 2020;5:3043–8.
Gao Z, Xu M, Lu M, Chen G, Tang D. Urchin-like (gold core)@(platinum shell) nanohybrids: a extremely environment friendly peroxidase-mimetic system for in situ amplified colorimetric immunoassay. Biosens Bioelectron. 2015;70:194–201.
Fu Z, Zeng WL, Cai SF, Li HL, Ding JW, Wang C, Chen YF, Han N, Yang R. Porous Au@Pt nanoparticles with superior peroxidase-like exercise for colorimetric detection of spike protein of SARS-CoV-2. J Colloid Interface Sci. 2021;604:113–21.
Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, Miao X, Streithorst JA, Granados A, Sotomayor-Gonzalez A, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38:870–4.
Ding X, Yin Ok, Li Z, Lalla RV, Ballesteros E, Sfeir MM, Liu C. Ultrasensitive and visible detection of SARS-CoV-2 utilizing all-in-one twin CRISPR-Cas12a assay. Nat Commun. 2020;11:4711.
Sridhara S, Goswami HN, Whyms C, Dennis JH, Li H. Virus detection by way of programmable Kind III-A CRISPR-Cas programs. Nat Commun. 2021;12:5653.
Steens JA, Zhu Y, Taylor DW, Bravo JPK, Prinsen SHP, Schoen CD, Keijser BJF, Ossendrijver M, Hofstra LM, Brouns SJJ, et al. SCOPE permits sort III CRISPR-Cas diagnostics utilizing versatile concentrating on and stringent CARF ribonuclease activation. Nat Commun. 2021;12:5033.
Wang X, Shang X, Huang X. Subsequent-generation pathogen prognosis with CRISPR/Cas-based detection strategies. Emerg Microb Infect. 2020;9:1682–91.
Mimitou EP, Cheng A, Montalbano A, Hao S, Stoeckius M, Legut M, Roush T, Herrera A, Papalexi E, Ouyang Z, et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat Strategies. 2019;16:409–12.
Schwinn MK, Machleidt T, Zimmerman Ok, Eggers CT, Dixon AS, Hurst R, Corridor MP, Encell LP, Binkowski BF, Wooden KV. CRISPR-mediated tagging of endogenous proteins with a luminescent peptide. ACS Chem Biol. 2018;13:467–74.
Chen Q, Tian T, Xiong E, Wang P, Zhou X. CRISPR/Cas13a sign amplification linked immunosorbent assay for femtomolar protein detection. Anal Chem. 2020;92:573–7.
Liang M, Li Z, Wang W, Liu J, Liu L, Zhu G, Karthik L, Wang M, Wang Ok-F, Wang Z, et al. A CRISPR-Cas12a-derived biosensing platform for the extremely delicate detection of various small molecules. Nat Commun. 2019;10:3672.
Niu C, Wang C, Li F, Zheng X, Xing X, Zhang C. Aptamer assisted CRISPR-Cas12a technique for small molecule diagnostics. Biosens Bioelectron. 2021;183: 113196.
Xiong Y, Zhang J, Yang Z, Mou Q, Ma Y, Xiong Y, Lu Y. Useful DNA regulated CRISPR-Cas12a sensors for point-of-care diagnostics of non-nucleic-acid targets. J Am Chem Soc. 2020;142:207–13.
Wu LN, Wang XJ, Wu XC, Xu SQ, Liu M, Cao XZ, Tang TS, Huang XX, Huang H. MnO2 nanozyme-mediated CRISPR-Cas12a system for the detection of SARS-CoV-2. Acs Appl Mater Interfaces. 9.
Liang CL, Liu BC, Li JF, Lu JH, Zhang EH, Deng QT, Zhang L, Chen R, Fu YS, Li CY, Li TT. A nanoenzyme linked immunochromatographic sensor for fast and quantitative detection of SARS-CoV-2 nucleocapsid protein in human blood. Sens Actuators B-Chem. 2021;349:9.
Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, prognosis, and remedy of coronavirus illness 2019 (COVID-19): a overview. JAMA. 2020;324:782–93.
Usher AD. The worldwide COVID-19 remedy divide. Lancet. 2022;399:779–82.
Colson P, Rolain J-M, Raoult D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int J Antimicrob Brokers. 2020;55: 105923.
Vastag B. Previous medication for a brand new bug: influenza, HIV medication enlisted to battle SARS. JAMA. 2003;290:1695–6.
Asselah T, Durantel D, Pasmant E, Lau G, Schinazi RF. COVID-19: discovery, diagnostics and drug improvement. J Hepatol. 2021;74:168–84.
Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Brightling C, Ustianowski A, Elmahi E, et al. Dexamethasone in hospitalized sufferers with COVID-19. N Engl J Med. 2021;384:693–704.
Hung IF-N, Lung Ok-C, Tso EY-Ok, Liu R, Chung TW-H, Chu M-Y, Ng Y-Y, Lo J, Chan J, Tam AR, et al. Triple mixture of interferon beta-1b, lopinavir-ritonavir, and ribavirin within the remedy of sufferers admitted to hospital with COVID-19: an open-label, randomised, section 2 trial. Lancet (London, England). 2020;395:1695–704.
Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Wang F, Li D, Yang M, Xing L, et al. Therapy of 5 critically ailing sufferers with COVID-19 with convalescent plasma. JAMA. 2020;323:1582–9.
Wang C, Li W, Drabek D, Okba NMA, van Haperen R, Osterhaus ADME, van Kuppeveld FJM, Haagmans BL, Grosveld F, Bosch B-J. A human monoclonal antibody blocking SARS-CoV-2 an infection. Nat Commun. 2020;11:2251.
Tammam SN, El Safy S, Ramadan S, Arjune S, Krakor E, Mathur S. Repurpose but in addition (nano)-reformulate! The potential function of nanomedicine within the battle in opposition to SARS-CoV2. J Management Launch. 2021;337:258–84.
Zekarias A, Watson S, Vidlin SH, Grundmark B. Intercourse variations in reported antagonistic drug reactions to COVID-19 medication in a worldwide database of particular person case security experiences. Drug Saf. 2020;43:1309–14.
Boulware DR, Pullen MF, Bangdiwala AS, Pastick KA, Lofgren SM, Okafor EC, Skipper CP, Nascene AA, Nicol MR, Abassi M, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N Engl J Med. 2020;383:517–25.
Legislation MF, Ho R, Legislation KWT, Cheung CKM. Gastrointestinal and hepatic uncomfortable side effects of potential remedy for COVID-19 and vaccination in sufferers with continual liver ailments. World J Hepatol. 2021;13:1850–74.
Burki T. The way forward for paxlovid for COVID-19. Lancet Respir Med. 2022;10: e68.
Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W. Nanozyme: new horizons for responsive biomedical purposes. Chem Soc Rev. 2019;48:3683–704.
Iyer S, Doktycz MJ. Nanozymes for antiviral remedy. Nanomedicine (Lond). 2012;7:1654–5.
Kamat S, Kumari M, Jayabaskaran C. Nano-engineered instruments within the prognosis, therapeutics, prevention, and mitigation of SARS-CoV-2. J Management Launch. 2021;338:813–36.
Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23:3–20.
Wang Q, Zhang Y, Wu L, Niu S, Track C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen Ok-Y, et al. Structural and useful foundation of SARS-CoV-2 entry through the use of human ACE2. Cell. 2020;181:894.
Hoffmann M, Kleine-Weber H, Pöhlmann S. A multibasic cleavage website within the spike protein of SARS-CoV-2 is important for an infection of human lung cells. Mol Cell. 2020;78:779.
Medhi R, Srinoi P, Ngo N, Tran HV, Lee TR. Nanoparticle-based methods to fight COVID-19. Acs Utilized Nano Supplies. 2020;3:8557–80.
Cagno V, Andreozzi P, D’Alicarnasso M, Jacob Silva P, Mueller M, Galloux M, Le Goffic R, Jones ST, Vallino M, Hodek J, et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat Mater. 2018;17:195–203.
Zhang XD, Chen XK, Zhao YL. Nanozymes: versatile platforms for most cancers prognosis and remedy. Nano-Micro Letters. 2022;14:27.
Wang DJ, Zhang B, Ding H, Liu D, Xiang JQ, Gao XJJ, Chen XH, Li ZJ, Yang L, Duan HX, et al. TiO2 supported single Ag atoms nanozyme for elimination of SARS-CoV2. Nano At this time. 2021;40:11.
Singh S, Ghosh S, Pal VK, Munshi M, Shekar P, Murthy DTN, Mugesh G, Singh A. Antioxidant nanozyme counteracts HIV-1 by modulating intracellular redox potential. EMBO Mol Med. 2021;13:19.
Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, Perlman S. Dysregulated Kind I interferon and inflammatory monocyte-macrophage responses trigger deadly pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016;19:181–93.
Davidson S, Maini MK, Wack A. Illness-promoting results of sort I interferons in viral, bacterial, and coinfections. J Interferon Cytokine Res. 2015;35:252–64.
Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol. 2013;13:875–87.
Legislation HK, Cheung CY, Ng HY, Sia SF, Chan YO, Luk W, Nicholls JM, Peiris JS, Lau YL. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood. 2005;106:2366–74.
Cheung CY, Poon LL, Ng IH, Luk W, Sia SF, Wu MH, Chan KH, Yuen KY, Gordon S, Guan Y, Peiris JS. Cytokine responses in extreme acute respiratory syndrome coronavirus-infected macrophages in vitro: potential relevance to pathogenesis. J Virol. 2005;79:7819–26.
Lau SKP, Lau CCY, Chan KH, Li CPY, Chen H, Jin DY, Chan JFW, Woo PCY, Yuen KY. Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Center East respiratory syndrome coronavirus: implications for pathogenesis and remedy. J Gen Virol. 2013;94:2679–90.
Du XC, Zhang MZ, Zhou HT, Wang WJ, Zhang CM, Zhang L, Qu YY, Li WF, Liu XD, Zhao MW, et al. Decoy nanozymes allow multitarget blockade of proinflammatory cascades for the remedy of multi-drug-resistant bacterial sepsis. Analysis. 2022;2022:15.
Zhen Q, Zhang A, Huang Q, Li J, Du Y, Zhang Q. Overview of the function of spatial components in indoor SARS-CoV-2 transmission: a space-based framework for assessing the multi-route an infection threat. Int J Environ Res Public Well being. 2022;19:11007.
Portarapillo M, Di Benedetto A. Methodology for threat evaluation of COVID-19 pandemic propagation. J Loss Prev Course of Ind. 2021;72: 104584.
Valenzuela-Fernandez A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, Gonzalez-Montelongo R, Alcoba-Florez J, Trujillo-Gonzalez R, de Artola DGM, Gil-Campesino H, et al. Nanomaterials to fight SARS-CoV-2: methods to forestall, diagnose and deal with COVID-19. Entrance Bioeng Biotechnol. 2022;10:42.
Jüni P, Rothenbühler M, Bobos P, Thorpe KE, da Costa BR, Fisman DN, Slutsky AS, Gesink D. Affect of local weather and public well being interventions on the COVID-19 pandemic: a potential cohort examine. CMAJ. 2020;192:E566-e573.
Pan A, Liu L, Wang C, Guo H, Hao X, Wang Q, Huang J, He N, Yu H, Lin X, et al. Affiliation of public well being interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China. JAMA. 2020;323:1915–23.
Xiao Y, Tang B, Wu J, Cheke RA, Tang S. Linking key intervention timing to fast decline of the COVID-19 efficient reproductive quantity to quantify classes from mainland China. Int J Infect Dis. 2020;97:296–8.
Wang X, Ren R, Kattan MW, Jehi L, Cheng Z, Fang Ok. Public well being interventions’ impact on hospital use in sufferers with COVID-19: comparative examine. JMIR Public Well being Surveill. 2020;6: e25174.
Sacco PL, De Domenico M. Public well being challenges and alternatives after COVID-19. Bull World Well being Organ. 2021;99:529–35.
Kwon S, Joshi AD, Lo CH, Drew DA, Nguyen LH, Guo CG, Ma W, Mehta RS, Shebl FM, Warner ET, et al. Affiliation of social distancing and face masks use with threat of COVID-19. Nat Commun. 2021;12:3737.
Tuñón-Molina A, Takayama Ok, Redwan EM, Uversky VN, Andrés J, Serrano-Aroca Á. Protecting face masks: present standing and future tendencies. ACS Appl Mater Interfaces. 2021;13:56725–51.
Kwok KO, McNeil EB, Tsoi MTF, Wei VWI, Wong SYS, Tang JWT. Will reaching herd immunity be a highway to success to finish the COVID-19 pandemic? J Infect. 2021;83:381–412.
Randolph HE, Barreiro LB. Herd immunity: understanding COVID-19. Immunity. 2020;52:737–41.
Kadkhoda Ok. Herd immunity to COVID-19 alluring and elusive. Am J Clin Pathol. 2021;155:471–2.
Fontanet A, Cauchemez S. COVID-19 herd immunity: the place are we? Nat Rev Immunol. 2020;20:583–4.
Shao Y, Wu Y, Feng Y, Xu W, Xiong F, Zhang X. SARS-CoV-2 vaccine analysis and immunization methods for improved management of the COVID-19 pandemic. Entrance Med. 2022;16:185–95.
Laine C, Cotton D, Moyer DV. COVID-19 vaccine: selling vaccine acceptance. Ann Intern Med. 2021;174:252–3.
Cho CS, Hwang SK, Gu MJ, Kim CG, Kim SK, Ju DB, Yun CH, Kim HJ. Mucosal vaccine supply utilizing mucoadhesive polymer particulate programs. Tissue Eng Regen Med. 2021;18:693–712.
Lavelle EC, Ward RW. Mucosal vaccines—fortifying the frontiers. Nat Rev Immunol. 2022;22:236–50.
Illum L. Nasal drug supply—potentialities, issues and options. J Management Launch. 2003;87:187–98.
Qin T, Yin Y, Yu Q, Huang L, Wang X, Lin J, Yang Q. CpG oligodeoxynucleotides facilitate supply of complete inactivated H9N2 influenza virus by way of transepithelial dendrites of dendritic cells in nasal mucosa. J Virol. 2015;89:5904–18.
Jindal A, Sarkar S, Alam A. Nanomaterials-mediated immunomodulation for most cancers therapeutics. Entrance Chem. 2021;9:17.
Bonam SR, Kotla NG, Bohara RA, Rochev Y, Webster TJ, Bayry J. Potential immuno-nanomedicine methods to battle COVID-19 like pulmonary infections. Nano At this time. 2021;36:19.
Qin T, Ma S, Miao XY, Tang Y, Huangfu DD, Wang JY, Jiang J, Xu N, Yin YC, Chen SJ, et al. Mucosal vaccination for influenza safety enhanced by catalytic immune-adjuvant. Adv Sci. 2020;7:15.
Kumar S, Karmacharya M, Joshi SR, Gulenko O, Park J, Kim GH, Cho YK. Photoactive antiviral face masks with self-sterilization and reusability. Nano Lett. 2021;21:337–43.
Marzoli F, Bortolami A, Pezzuto A, Mazzetto E, Piro R, Terregino C, Bonfante F, Belluco S. A scientific overview of human coronaviruses survival on environmental surfaces. Sci Whole Environ. 2021;778: 146191.
Lin N, Verma D, Saini N, Arbi R, Munir M, Jovic M, Turak A. Antiviral nanoparticles for sanitizing surfaces: a roadmap to self-sterilizing in opposition to COVID-19. Nano At this time. 2021;40: 101267.
Tong YM, Shi GS, Hu GW, Hu XY, Han L, Xie XF, Xu YF, Zhang R, Solar J, Zhong J. Photograph-catalyzed TiO2 inactivates pathogenic viruses by attacking viral genome. Chem Eng J. 2021;414:10.
Shirvanimoghaddam Ok, Akbari MK, Yadav R, Al-Tamimi AK, Naebe M. Combat in opposition to COVID-19: the case of antiviral surfaces. APL Mater. 2021;9:14.
Campos EVR, Pereira AES, de Oliveira JL, Carvalho LB, Guilger-Casagrande M, de Lima R, Fraceto LF. How can nanotechnology assist to fight COVID-19? alternatives and pressing want. J Nanobiotechnol. 2020;18:23.
Karim SSA, Karim QA. Omicron SARS-CoV-2 variant: a brand new chapter within the COVID-19 pandemic. Lancet. 2021;398:2126–8.
Meng X, Zou S, Li D, He J, Fang L, Wang H, Yan X, Duan D, Gao L. Nanozyme-strip for fast and ultrasensitive nucleic acid detection of SARS-CoV-2. Biosens Bioelectron. 2022;217: 114739.
Wu L, Wang X, Wu X, Xu S, Liu M, Cao X, Tang T, Huang X, Huang H. MnO(2) nanozyme-mediated CRISPR-Cas12a system for the detection of SARS-CoV-2. ACS Appl Mater Interfaces. 2022;14:50534–42.
Liang C, Liu B, Li J, Lu J, Zhang E, Deng Q, Zhang L, Chen R, Fu Y, Li C, Li T. A nanoenzyme linked immunochromatographic sensor for fast and quantitative detection of SARS-CoV-2 nucleocapsid protein in human blood. Sens Actuators B Chem. 2021;349: 130718.
Li J, Li Y. One-pot high-yield synthesis of Pd nanocubes for Pd-Ir nanocube-based immunoassay of nucleocapsid protein from SARS-CoV-2. Anal Bioanal Chem. 2021;413:4635–44.
Wang D, Zhang B, Ding H, Liu D, Xiang J, Gao XJ, Chen X, Li Z, Yang L, Duan H, et al. TiO(2) supported single Ag atoms nanozyme for elimination of SARS-CoV2. Nano At this time. 2021;40: 101243.
Du X, Zhang M, Zhou H, Wang W, Zhang C, Zhang L, Qu Y, Li W, Liu X, Zhao M, et al. Decoy nanozymes allow multitarget blockade of proinflammatory cascades for the remedy of multi-drug-resistant bacterial sepsis. Analysis (Washington, DC). 2022;2022:9767643.
Tong Y, Shi G, Hu G, Hu X, Han L, Xie X, Xu Y, Zhang R, Solar J, Zhong J. Photograph-catalyzed TiO(2) inactivates pathogenic viruses by attacking viral genome. Chem Eng J. 2021;414: 128788.