W.H.O Cardiovascular ailments (CVDs). https://www.whoint/news-room/fact-sheets/element/cardiovascular-diseases-(cvds) Accessed Oct 2022
Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, et al. Coronary heart Illness and Stroke Statistics-2021 replace: a Report from the American Coronary heart Affiliation. Circulation. 2021;143:e254–e743.
Thygesen Okay, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD. Fourth Common Definition of myocardial infarction (2018). Circulation. 2018;138:e618–51.
Mohan JC, Narula J. New common definition of myocardial infarction: world implications, applicability, and wish for flexibility. Glob Coronary heart. 2012;7:377–80.
Harrington DH, Stueben F, Lenahan CM. ST-Elevation myocardial infarction and Non-ST-Elevation myocardial infarction: Medical and Surgical Interventions. Crit Care Nurs Clin North Am. 2019;31:49–64.
Mitsis A, Gragnano F. Myocardial infarction with and with out ST-segment elevation: a up to date reappraisal of similarities and variations. Curr Cardiol Rev. 2021;17:e230421189013.
Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, Byrne RA, Collet JP, Falk V, Head SJ, et al. 2018 ESC/EACTS pointers on myocardial revascularization. Eur Coronary heart J. 2019;40:87–165.
Ali MR, Salim Hossain M, Islam MA, Saiful Islam Arman M, Sarwar Raju G, Dasgupta P, Noshin TF. Facet of thrombolytic remedy: a assessment. ScientificWorldJournal. 2014;2014:586510.
Saleh M, Ambrose JA. Understanding myocardial infarction. F1000Res 2018, 7.
Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet. 2017;389:197–210.
Komosa A, Lesiak M, Siniawski A, Mularek-Kubzdela T, Grajek S. Significance of antiplatelet remedy in emergency myocardial infarction therapy. Postepy Kardiol Interwencyjnej. 2014;10:32–9.
Al-Lamee R, Thompson D, Dehbi HM, Sen S, Tang Okay, Davies J, Keeble T, Mielewczik M, Kaprielian R, Malik IS, et al. Percutaneous coronary intervention in secure angina (ORBITA): a double-blind, randomised managed trial. Lancet. 2018;391:31–40.
Lu L, Liu M, Solar R, Zheng Y, Zhang P. Myocardial infarction: signs and coverings. Cell Biochem Biophys. 2015;72:865–7.
Kim MS, Dean LS. In-stent restenosis. Cardiovasc Ther. 2011;29:190–8.
Buccheri D, Piraino D, Andolina G, Cortese B. Understanding and managing in-stent restenosis: a assessment of scientific knowledge, from pathogenesis to therapy. J Thorac Dis. 2016;8:E1150–e1162.
Le Tanneur C, Mongardon N, Haouache H, Allouche N, Andrivet P, Auvergne L, Houballah R, Radu C, Dhonneur G. Acute decrease limb ischemia after coronary artery bypass grafting. J Cardiothorac Vasc Anesth. 2015;29:1624–6.
Schimmer C, Reents W, Berneder S, Eigel P, Sezer O, Scheld H, Sahraoui Okay, Gansera B, Deppert O, Rubio A, et al. Prevention of sternal dehiscence and an infection in high-risk sufferers: a potential randomized multicenter trial. Ann Thorac Surg. 2008;86:1897–904.
Rydén L, Sartipy U, Evans M, Holzmann MJ. Acute kidney harm after coronary artery bypass grafting and long-term threat of end-stage renal illness. Circulation. 2014;130:2005–11.
Montrief T, Koyfman A, Lengthy B. Coronary artery bypass graft surgical procedure problems: a assessment for emergency clinicians. Am J Emerg Med. 2018;36:2289–97.
Shaban A, Leira EC. Neurologic problems of coronary heart surgical procedure. Handb Clin Neurol. 2021;177:65–75.
Gong FF, Vaitenas I, Malaisrie SC, Maganti Okay. Mechanical problems of Acute myocardial infarction: a assessment. JAMA Cardiol. 2021;6:341–9.
Nguyen PD, de Bakker DEM, Bakkers J. Cardiac regenerative capability: an evolutionary afterthought? Cell Mol Life Sci. 2021;78:5107–22.
Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek XY, Cabrera-Fuentes HA, Hausenloy DJ. Irritation following acute myocardial infarction: a number of gamers, dynamic roles, and novel therapeutic alternatives. Pharmacol Ther. 2018;186:73–87.
Marinković G, Koenis DS, de Camp L, Jablonowski R, Graber N, de Waard V, de Vries CJ, Goncalves I, Nilsson J, Jovinge S, Schiopu A. S100A9 hyperlinks irritation and restore in myocardial infarction. Circ Res. 2020;127:664–76.
Marin E, Boschetto F, Pezzotti G. Biomaterials and biocompatibility: an historic overview. J Biomed Mater Res A. 2020;108:1617–33.
Tapeinos C, Gao H, Bauleth-Ramos T, Santos HA. Progress in Stimuli-Responsive Biomaterials for treating Cardiovascular and Cerebrovascular Illnesses. Small. 2022;18:e2200291.
Schotman MJG, Dankers PYW. Components influencing Retention of Injected Biomaterials to deal with myocardial infarction. Adv Mater Interfaces 2022, 9.
Hernandez JL, Woodrow KA. Medical purposes of porous biomaterials: options of porosity and tissue-specific implications for Biocompatibility. Adv Healthc Mater 2022, 11.
Ahmed U, Ahmed R, Masoud MS, Tariq M, Ashfaq UA, Augustine R, Hasan A. Stem cells primarily based in vitro fashions: traits and prospects in biomaterials cytotoxicity research. Biomed Mater. 2021;16:042003.
Shirazi RN, Islam S, Weafer FM, Whyte W, Varela CE, Villanyi A, Ronan W, McHugh P, Roche ET. Multiscale Experimental and Computational modeling approaches to characterize remedy supply to the center from an Implantable Epicardial Biomaterial Reservoir. Adv Healthc Mater. 2019;8:e1900228.
Wang Y, Li G, Yang L, Luo R, Guo G. Improvement of modern Biomaterials and Units for the therapy of Cardiovascular Illnesses. Adv Mater 2022:e2201971.
Yalta Okay, Yilmaz MB, Yalta T, Palabiyik O, Taylan G, Zorkun C. Late Versus Early myocardial reworking after Acute myocardial infarction: a comparative assessment on mechanistic insights and scientific implications. J Cardiovasc Pharmacol Ther. 2020;25:15–26.
Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: protagonists of infarct irritation and restore after myocardial infarction. Circulation. 2010;121:2437–45.
Silva AC, Pereira C, Fonseca A, Pinto-do-Ó P, Nascimento DS. Bearing my coronary heart: the function of Extracellular Matrix on Cardiac Improvement, Homeostasis, and Damage Response. Entrance Cell Dev Biol. 2020;8:621644.
Vazir A, Fox Okay, Westaby J, Evans MJ, Westaby S. Can we take away scar and fibrosis from grownup human myocardium? Eur Coronary heart J. 2019;40:960–6.
Frangogiannis NG. Pathophysiology of myocardial infarction. Compr Physiol. 2015;5:1841–75.
Li H, Bao M, Nie Y. Extracellular matrix-based biomaterials for cardiac regeneration and restore. Coronary heart Fail Rev. 2021;26:1231–48.
Krziminski C, Kammann S, Hansmann J, Edenhofer F, Dandekar G, Walles H, Leistner M. Improvement of a bioreactor system for pre-endothelialized cardiac patch era with enhanced viscoelastic properties by mixed collagen I compression and stromal cell tradition. J Tissue Eng Regen Med. 2020;14:1749–62.
Roura S, Gálvez-Montón C, Bayes-Genis A. Fibrin, the popular scaffold for cell transplantation after myocardial infarction? An outdated molecule with a brand new life. J Tissue Eng Regen Med. 2017;11:2304–13.
Lv J, Liu W, Shi G, Zhu F, He X, Zhu Z, Chen H. Human cardiac extracellular matrix-chitosan-gelatin composite scaffold and its endothelialization. Exp Ther Med. 2020;19:1225–34.
Roche CD, Sharma P, Ashton AW, Jackson C, Xue M, Gentile C. Printability, sturdiness, contractility and vascular community formation in 3D Bioprinted Cardiac endothelial cells utilizing alginate-gelatin hydrogels. Entrance Bioeng Biotechnol. 2021;9:636257.
Shin J, Choi S, Kim JH, Cho JH, Jin Y, Kim S, Min S, Kim SK, Choi D, Cho SW. Tissue Tapes-phenolic hyaluronic acid hydrogel patches for off-the-Shelf Remedy. Adv Funct Mater 2019, 29.
Mohammadi Nasr S, Rabiee N, Hajebi S, Ahmadi S, Fatahi Y, Hosseini M, Bagherzadeh M, Ghadiri AM, Rabiee M, Jajarmi V, Webster TJ. Biodegradable nanopolymers in Cardiac tissue Engineering: from Idea in the direction of Nanomedicine. Int J Nanomedicine. 2020;15:4205–24.
Zanjanizadeh Ezazi N, Ajdary R, Correia A, Mäkilä E, Salonen J, Kemell M, Hirvonen J, Rojas OJ, Ruskoaho HJ, Santos HA. Fabrication and characterization of drug-loaded conductive poly(glycerol sebacate)/Nanoparticle-Based mostly Composite Patch for myocardial infarction purposes. ACS Appl Mater Interfaces. 2020;12:6899–909.
Rai R, Tallawi M, Frati C, Falco A, Gervasi A, Quaini F, Roether JA, Hochburger T, Schubert DW, Seik L, et al. Bioactive electrospun fibers of poly(glycerol sebacate) and poly(ε-caprolactone) for cardiac patch software. Adv Healthc Mater. 2015;4:2012–25.
Silvestri A, Sartori S, Boffito M, Mattu C, Di Rienzo AM, Boccafoschi F, Ciardelli G. Biomimetic myocardial patches fabricated with poly(ɛ-caprolactone) and polyethylene glycol-based polyurethanes. J Biomed Mater Res B Appl Biomater. 2014;102:1002–13.
Yan C, Ren Y, Solar X, Jin L, Liu X, Chen H, Wang Okay, Yu M, Zhao Y. Photoluminescent functionalized carbon quantum dots loaded electroactive Silk fibroin/PLA nanofibrous bioactive scaffolds for cardiac tissue engineering. J Photochem Photobiol B. 2020;202:111680.
Pushp P, Bhaskar R, Kelkar S, Sharma N, Pathak D, Gupta MK. Plasticized poly(vinylalcohol) and poly(vinylpyrrolidone) primarily based patches with tunable mechanical properties for cardiac tissue engineering purposes. Biotechnol Bioeng. 2021;118:2312–25.
Reis LA, Chiu LL, Feric N, Fu L, Radisic M. Biomaterials in myocardial tissue engineering. J Tissue Eng Regen Med. 2016;10:11–28.
McMahan S, Taylor A, Copeland KM, Pan Z, Liao J, Hong Y. Present advances in biodegradable artificial polymer primarily based cardiac patches. J Biomed Mater Res A. 2020;108:972–83.
Bejleri D, Davis ME. Decellularized extracellular matrix supplies for Cardiac Restore and Regeneration. Adv Healthc Mater. 2019;8:e1801217.
Kc P, Hong Y, Zhang G. Cardiac tissue-derived extracellular matrix scaffolds for myocardial restore: benefits and challenges. Regen Biomater. 2019;6:185–99.
Keane TJ, Swinehart IT, Badylak SF. Strategies of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Strategies. 2015;84:25–34.
Bassat E, Mutlak YE, Genzelinakh A, Shadrin IY, Baruch Umansky Okay, Yifa O, Kain D, Rajchman D, Leach J, Riabov Bassat D, et al. The extracellular matrix protein agrin promotes coronary heart regeneration in mice. Nature. 2017;547:179–84.
Huang Okay, Ozpinar EW, Su T, Tang J, Shen D, Qiao L, Hu S, Li Z, Liang H, Mathews Okay et al. An off-the-shelf synthetic cardiac patch improves cardiac restore after myocardial infarction in rats and pigs. Sci Transl Med 2020, 12.
Chen H, Fan L, Peng N, Yin Y, Mu D, Wang J, Meng R, Xie J. Galunisertib-Loaded gelatin methacryloyl hydrogel Microneedle Patch for Cardiac Restore after myocardial infarction. ACS Appl Mater Interfaces. 2022;14:40491–500.
Bernhard S, Tibbitt MW. Supramolecular engineering of hydrogels for drug supply. Adv Drug Deliv Rev. 2021;171:240–56.
Chen Z, Chen Y, Hedenqvist MS, Chen C, Cai C, Li H, Liu H, Fu J. Multifunctional conductive hydrogels and their purposes as sensible wearable units. J Mater Chem B. 2021;9:2561–83.
Jiang Y, Wang Y, Li Q, Yu C, Chu W. Pure polymer-based Stimuli-responsive hydrogels. Curr Med Chem. 2020;27:2631–57.
Maity S, Parshi N, Prodhan C, Chaudhuri Okay, Ganguly J. Characterization of a fluorescent hydrogel synthesized utilizing chitosan, polyvinyl alcohol and 9-anthraldehyde for the selective detection and discrimination of hint fe(3+) and Fe(2+) in water for live-cell imaging. Carbohydr Polym. 2018;193:119–28.
Liang S, Zhang Y, Wang H, Xu Z, Chen J, Bao R, Tan B, Cui Y, Fan G, Wang W, et al. Paintable and quickly Bondable Conductive Hydrogels as Therapeutic Cardiac Patches. Adv Mater. 2018;30:e1704235.
Zhang Y, Zhu D, Wei Y, Wu Y, Cui W, Liuqin L, Fan G, Yang Q, Wang Z, Xu Z, et al. A collagen hydrogel loaded with HDAC7-derived peptide promotes the regeneration of infarcted myocardium with purposeful enchancment in a rodent mannequin. Acta Biomater. 2019;86:223–34.
Zhou J, Liu W, Zhao X, Xian Y, Wu W, Zhang X, Zhao N, Xu FJ, Wang C. Pure Melanin/Alginate hydrogels obtain Cardiac Restore via ROS Scavenging and Macrophage polarization. Adv Sci (Weinh). 2021;8:e2100505.
Lee WY, Wei HJ, Lin WW, Yeh YC, Hwang SM, Wang JJ, Tsai MS, Chang Y, Sung HW. Enhancement of cell retention and purposeful advantages in myocardial infarction utilizing human amniotic-fluid stem-cell our bodies enriched with endogenous ECM. Biomaterials. 2011;32:5558–67.
Henning RJ, Khan A, Jimenez E. Chitosan hydrogels considerably restrict left ventricular infarction and reworking and protect myocardial contractility. J Surg Res. 2016;201:490–7.
Fan C, Shi J, Zhuang Y, Zhang L, Huang L, Yang W, Chen B, Chen Y, Xiao Z, Shen H, et al. Myocardial-infarction-responsive Good Hydrogels Concentrating on Matrix Metalloproteinase for On-Demand development issue supply. Adv Mater. 2019;31:e1902900.
Ding J, Yao Y, Li J, Duan Y, Nakkala JR, Feng X, Cao W, Wang Y, Hong L, Shen L, et al. A reactive oxygen species scavenging and O(2) Producing Injectable Hydrogel for myocardial infarction therapy in vivo. Small. 2020;16:e2005038.
Sylvester CB, Pugazenthi A, Grande-Allen KJ, Ghanta RK. Cell-Laden Bioactive Poly(ethylene glycol) hydrogels for learning mesenchymal stem cell habits in myocardial infarct-stiffness microenvironments. Cardiovasc Eng Technol. 2021;12:183–99.
Chen M, Wang Y, Zhao X, Zhang J, Peng Y, Bai J, Li S, Han D, Ren S, Qin Okay, et al. Goal-responsive DNA hydrogel with microfluidic chip sensible readout for quantitative point-of-care testing of creatine kinase MB. Talanta. 2022;243:123338.
Karam JP, Muscari C, Sindji L, Bastiat G, Bonafè F, Venier-Julienne MC, Montero-Menei NC. Pharmacologically energetic microcarriers related to thermosensitive hydrogel as a development issue releasing biomimetic 3D scaffold for cardiac tissue-engineering. J Management Launch. 2014;192:82–94.
Chachques JC, Lila N, Soler-Botija C, Martinez-Ramos C, Valles A, Autret G, Perier MC, Mirochnik N, Monleon-Pradas M, Bayes-Genis A, Semino CE. Elastomeric cardiopatch scaffold for myocardial restore and ventricular help. Eur J Cardiothorac Surg. 2020;57:545–55.
Guan H, Liu J, Liu D, Ding C, Zhan J, Hu X, Zhang P, Wang L, Lan Q, Qiu X. Elastic and Conductive Melanin/Poly(Vinyl Alcohol) Composite Hydrogel for Enhancing Restore Impact on myocardial infarction. Macromol Biosci 2022:e2200223.
Doescher C, Thai A, Cha E, Cheng PV, Agrawal DK, Thankam FG. Clever Hydrogels in Myocardial Regeneration and Engineering. Gels 2022, 8.
Bar A, Cohen S. Inducing endogenous Cardiac Regeneration: can Biomaterials join the dots? Entrance Bioeng Biotechnol. 2020;8:126.
De Jong WH, Borm PJ. Drug supply and nanoparticles:purposes and hazards. Int J Nanomedicine. 2008;3:133–49.
Korkusuz H, Ulbrich Okay, Welzel Okay, Koeberle V, Watcharin W, Bahr U, Chernikov V, Knobloch T, Petersen S, Huebner F, et al. Transferrin-coated gadolinium nanoparticles as MRI distinction agent. Mol Imaging Biol. 2013;15:148–54.
Mabrouk M, Das DB, Salem ZA, Beherei HH. Nanomaterials for Biomedical Functions: manufacturing, Characterisations, latest Traits and Difficulties. Molecules 2021, 26.
Singh MR. Utility of metallic nanomaterials in Nanomedicine. Adv Exp Med Biol. 2018;1052:83–102.
Díez-Pascual AM. Carbon-Based mostly nanomaterials. Int J Mol Sci 2021, 22.
Wang X, Zhu Y, Chen M, Yan M, Zeng G, Huang D. How do proteins ‘response’ to widespread carbon nanomaterials? Adv Colloid Interface Sci. 2019;270:101–7.
Jesorka A, Orwar O. Liposomes: applied sciences and analytical purposes. Annu Rev Anal Chem (Palo Alto Calif). 2008;1:801–32.
Karabasz A, Bzowska M, Szczepanowicz Okay. Biomedical Functions of multifunctional polymeric nanocarriers: a assessment of present literature. Int J Nanomedicine. 2020;15:8673–96.
Juárez-Maldonado A, Tortella G, Rubilar O, Fincheira P, Benavides-Mendoza A. Biostimulation and toxicity: the magnitude of the impression of nanomaterials in microorganisms and crops. J Adv Res. 2021;31:113–26.
Boyes WK, van Thriel C. Neurotoxicology of Nanomaterials. Chem Res Toxicol. 2020;33:1121–44.
Cheng Y, Chen Z, Yang S, Liu T, Yin L, Pu Y, Liang G. Nanomaterials-induced toxicity on cardiac myocytes and tissues, and rising toxicity evaluation methods. Sci Complete Environ. 2021;800:149584.
Garnizone M, Vartina E, Pilmane M. Morphologic comparability of blood vessels used for coronary artery bypass graft surgical procedure. Folia Morphol (Warsz). 2022;81:584–93.
Music HG, Rumma RT, Ozaki CK, Edelman ER, Chen CS. Vascular tissue Engineering: Progress, Challenges, and Scientific Promise. Cell Stem Cell. 2018;22:340–54.
Weinberg CB, Bell E. A blood vessel mannequin constructed from collagen and cultured vascular cells. Science. 1986;231:397–400.
Tanaka T, Abe Y, Cheng CJ, Tanaka R, Naito A, Asakura T. Improvement of Small-Diameter Elastin-Silk Fibroin vascular grafts. Entrance Bioeng Biotechnol. 2020;8:622220.
Harding SI, Afoke A, Brown RA, MacLeod A, Shamlou PA, Dunnill P. Engineering and cell attachment properties of human fibronectin-fibrinogen scaffolds to be used in tissue engineered blood vessels. Bioprocess Biosyst Eng. 2002;25:53–9.
Li X, Tang J, Bao L, Chen L, Hong FF. Efficiency enhancements of the BNC tubes from distinctive double-silicone-tube bioreactors by introducing chitosan and heparin for software as small-diameter synthetic blood vessels. Carbohydr Polym. 2017;178:394–405.
Zang S, Zhang R, Chen H, Lu Y, Zhou J, Chang X, Qiu G, Wu Z, Yang G. Investigation on synthetic blood vessels ready from bacterial cellulose. Mater Sci Eng C Mater Biol Appl. 2015;46:111–7.
Wang H, Xia H, Xu Z, Hu B, Natsuki T, Ni QQ. Warmth-stimuli form reminiscence impact of poly (ε-Caprolactone)-Cellulose acetate composite tubular scaffolds. Biomacromolecules. 2022;23:4074–84.
Lim J, Gained JY, Ahn CB, Kim J, Kim HJ, Jung JS. Comparability of hemodynamic power between expanded polytetrafluoroethylene and Dacron Synthetic Vessels. J Chest Surg. 2021;54:81–7.
Buscemi S, Palumbo VD, Maffongelli A, Fazzotta S, Palumbo FS, Licciardi M, Fiorica C, Puleio R, Cassata G, Fiorello L, et al. Electrospun PHEA-PLA/PCL Scaffold for vascular regeneration: a preliminary in vivo analysis. Transpl Proc. 2017;49:716–21.
Li Q, Mu L, Zhang F, Mo Z, Jin C, Qi W. Manufacture and property analysis of heparin grafted electrospinning PCU synthetic vascular scaffolds. Mater Sci Eng C Mater Biol Appl. 2017;78:854–61.
Yu E, Zhang J, Thomson JA, Turng LS. Fabrication and characterization of Electrospun Thermoplastic Polyurethane/Fibroin small-diameter vascular grafts for vascular tissue Engineering. Int Polym Course of. 2016;31:638–46.
Lee KW, Wang Y. Elastomeric PGS scaffolds in arterial tissue engineering. J Vis Exp 2011.
Jeong SI, Kim SY, Cho SK, Chong MS, Kim KS, Kim H, Lee SB, Lee YM. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers utilizing pulsatile perfusion bioreactors. Biomaterials. 2007;28:1115–22.
Nguyen TH, Lee BT. The impact of cross-linking on the microstructure, mechanical properties and biocompatibility of electrospun polycaprolactone-gelatin/PLGA-gelatin/PLGA-chitosan hybrid composite. Sci Technol Adv Mater. 2012;13:035002.
Chung S, Ingle NP, Montero GA, Kim SH, King MW. Bioresorbable elastomeric vascular tissue engineering scaffolds through soften spinning and electrospinning. Acta Biomater. 2010;6:1958–67.
Xu F, Fan Y. Electrostatic self-assemble modified Electrospun Poly-L-Lactic Acid/Poly-Vinylpyrrolidone composite polymer and its potential purposes in small-diameter Synthetic Blood Vessels. J Biomed Nanotechnol. 2020;16:101–10.
Papaioannou TG, Manolesou D, Dimakakos E, Tsoucalas G, Vavuranakis M, Tousoulis D. 3D bioprinting strategies and methods: purposes on Synthetic Blood Vessel Fabrication. Acta Cardiol Sin. 2019;35:284–9.
Thein-Han W, Xu HH. Prevascularization of a gas-foaming macroporous calcium phosphate cement scaffold through coculture of human umbilical vein endothelial cells and osteoblasts. Tissue Eng Half A. 2013;19:1675–85.
Williams Okay, Morton PG. Analysis and therapy of acute myocardial infarction. AACN Clin Points. 1995;6:375–86. quiz 491 – 372.
Chen Y, Tao Y, Zhang L, Xu W, Zhou X. Diagnostic and prognostic worth of biomarkers in acute myocardial infarction. Postgrad Med J. 2019;95:210–6.
Li D, Xiong Q, Lu D, Chen Y, Liang L, Duan H. Magnetic nanochains-based dynamic ELISA for speedy and ultrasensitive detection of acute myocardial infarction biomarkers. Anal Chim Acta. 2021;1166:338567.
George SM, Tandon S, Kandasubramanian B. Developments in Hydrogel-Functionalized Immunosensing Platforms. ACS Omega. 2020;5:2060–8.
Aydin S, Ugur Okay, Aydin S, Sahin İ, Yardim M. Biomarkers in acute myocardial infarction: present views. Vasc Well being Danger Manag. 2019;15:1–10.
Al Fatease A, Haque M, Umar A, Ansari SG, Mahnashi MH, Alhamhoom Y, Ansari ZA. Fabrication and characterization of Acute Myocardial Infarction Myoglobin Biomarker primarily based on chromium-doped zinc oxide nanoparticles. Biosens (Basel) 2022, 12.
Adeel M, Rahman MM, Lee JJ. Label-free aptasensor for the detection of cardiac biomarker myoglobin primarily based on gold nanoparticles embellished boron nitride nanosheets. Biosens Bioelectron. 2019;126:143–50.
He S, Zhang P, Solar J, Ji Y, Huang C, Jia N. Integrating potential-resolved electrochemiluminescence with molecularly imprinting immunoassay for simultaneous detection of twin acute myocardial infarction markers. Biosens Bioelectron. 2022;201:113962.
Singh N, Ali MA, Rai P, Ghori I, Sharma A, Malhotra BD, John R. Twin-modality microfluidic biosensor primarily based on nanoengineered mesoporous graphene hydrogels. Lab Chip. 2020;20:760–77.
McLeish MJ, Kenyon GL. Relating construction to mechanism in creatine kinase. Crit Rev Biochem Mol Biol. 2005;40:1–20.
Schlattner U, Tokarska-Schlattner M, Wallimann T. Mitochondrial creatine kinase in human well being and illness. Biochim Et Biophys Acta-Molecular Foundation Illness. 2006;1762:164–80.
Lai XH, Liang RL, Liu TC, Dong ZN, Wu YS, Li LH. A fluorescence Immunochromatographic Assay utilizing Europium (III) Chelate Microparticles for Speedy, quantitative and delicate detection of Creatine kinase MB. J Fluoresc. 2016;26:987–96.
Pu Q, Yang X, Guo Y, Dai T, Yang T, Ou X, Li J, Sheng S, Xie G. Simultaneous colorimetric willpower of acute myocardial infarction biomarkers by integrating self-assembled 3D gold nanovesicles right into a a number of immunosorbent assay. Mikrochim Acta. 2019;186:138.
Adhikari J, Keasberry NA, Mahadi AH, Yoshikawa H, Tamiya E, Ahmed MU. An ultra-sensitive label-free electrochemiluminescence CKMB immunosensor utilizing a novel nanocomposite-modified printed electrode. RSC Adv. 2019;9:34283–92.
Tilea I, Varga A, Serban RC. Previous, Current, and way forward for blood biomarkers for the prognosis of Acute myocardial infarction—guarantees and challenges. 2021, 11:881.
Cai Y, Kang Okay, Li Q, Wang Y, He X. Speedy and Delicate Detection of Cardiac Troponin I for point-of-care checks primarily based on Purple fluorescent microspheres. Molecules 2018, 23.
Tang M, Zhou Z, Shangguan L, Zhao F, Liu S. Electrochemiluminescent detection of cardiac troponin I by utilizing soybean peroxidase labeled-antibody as sign amplifier. Talanta. 2018;180:47–53.
Liao XJ, Xiao HJ, Cao JT, Ren SW, Liu YM. A novel split-type photoelectrochemical immunosensor primarily based on chemical redox biking amplification for delicate detection of cardiac troponin I. Talanta. 2021;233:122564.
Yola ML, Atar N. Improvement of cardiac troponin-I biosensor primarily based on boron nitride quantum dots together with molecularly imprinted polymer. Biosens Bioelectron. 2019;126:418–24.
Wu S, Zou S, Wang S, Li Z, Ma DL, Miao X. CTnI prognosis in myocardial infarction utilizing G-quadruplex selective ir(III) advanced as efficient electrochemiluminescence probe. Talanta. 2022;248:123622.
Tang L, Casas J. Quantification of cardiac biomarkers utilizing label-free and multiplexed gold nanorod bioprobes for myocardial infarction prognosis. Biosens Bioelectron. 2014;61:70–5.
Ji J, Lu W, Zhu Y, Jin H, Yao Y, Zhang H, Zhao Y. Porous hydrogel-encapsulated photonic barcodes for Multiplex Detection of Cardiovascular biomarkers. ACS Sens. 2019;4:1384–90.
Han YH, Kim SH, Kim SZ, Park WH. Caspase inhibitor decreases apoptosis in pyrogallol-treated lung most cancers Calu-6 cells through the prevention of GSH depletion. Int J Oncol. 2008;33:1099–105.
Li Z, Zhang J, Li Y, Zhao S, Zhang P, Zhang Y, Bi J, Liu G, Yue Z. Carbon dots primarily based photoelectrochemical sensors for ultrasensitive detection of glutathione and its purposes in probing of myocardial infarction. Biosens Bioelectron. 2018;99:251–8.
Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: function in metabolic ailments and potential as drug targets. Nat Rev Drug Discovery. 2008;7:489–503.
Li F, Zhao A, Li Z, Xi Y, Jiang J, He J, Wang J, Cui H. Multifunctionalized hydrogel beads for label-free Chemiluminescence Imaging Immunoassay of Acute myocardial infarction biomarkers. Anal Chem. 2022;94:2665–75.
Richards AM, Nicholls MG, Espiner EA, Lainchbury JG, Troughton RW, Elliott J, Frampton C, Turner J, Crozier IG, Yandle TG. B-type natriuretic peptides and ejection fraction for prognosis after myocardial infarction. Circulation. 2003;107:2786–92.
Dong X, Zhao G, Li X, Miao J, Fang J, Wei Q, Cao W. Electrochemiluminescence immunoassay for the N-terminal pro-B-type natriuretic peptide primarily based on resonance power switch between a self-enhanced luminophore composed of silver nanocubes on gold nanoparticles and a metal-organic framework of kind MIL-125. Mikrochim Acta. 2019;186:811.
Liu Q, Aroonyadet N, Music Y, Wang X, Cao X, Liu Y, Cong S, Wu F, Thompson ME, Zhou C. Extremely delicate and fast detection of Acute myocardial infarction biomarkers utilizing in(2)O(3) nanoribbon biosensors fabricated utilizing Shadow Masks. ACS Nano. 2016;10:10117–25.
Ibanez B, Aletras AH, Arai AE, Arheden H, Bax J, Berry C, Bucciarelli-Ducci C, Croisille P, Dall’Armellina E, Dharmakumar R, et al. Cardiac MRI endpoints in myocardial infarction experimental and scientific trials: JACC Scientific Knowledgeable Panel. J Am Coll Cardiol. 2019;74:238–56.
Hu B, Zeng M, Chen J, Zhang Z, Zhang X, Fan Z, Zhang X. Exterior magnetic Area-Induced focused supply of extremely delicate Iron oxide nanocubes for MRI of myocardial infarction. Small. 2016;12:4707–12.
Shevtsov MA, Nikolaev BP, Ryzhov VA, Yakovleva LY, Dobrodumov AV, Marchenko YY, Margulis BA, Pitkin E, Mikhrina AL, Guzhova IV, Multhoff G. Detection of experimental myocardium infarction in rats by MRI utilizing warmth shock protein 70 conjugated superparamagnetic iron oxide nanoparticle. Nanomedicine. 2016;12:611–21.
Wang F, Wen L, Liu J, Peng W, Meng Z, Chen Q, Wang Y, Ke B, Guo Y, Mi P. Albumin nanocomposites with MnO(2)/Gd(2)O(3) motifs for exact MR imaging of acute myocardial infarction in rabbit fashions. Biomaterials. 2020;230:119614.
Danila D, Johnson E, Kee P. CT imaging of myocardial scars with collagen-targeting gold nanoparticles. Nanomedicine. 2013;9:1067–76.
Kee PH, Danila D. CT imaging of myocardial scar burden with CNA35-conjugated gold nanoparticles. Nanomedicine. 2018;14:1941–7.
Pan D, Williams TA, Senpan A, Allen JS, Scott MJ, Gaffney PJ, Wickline SA, Lanza GM. Detecting vascular biosignatures with a colloidal, radio-opaque polymeric nanoparticle. J Am Chem Soc. 2009;131:15522–7.
Hyafil F, Cornily JC, Feig JE, Gordon R, Vucic E, Amirbekian V, Fisher EA, Fuster V, Feldman LJ, Fayad ZA. Noninvasive detection of macrophages utilizing a nanoparticulate distinction agent for computed tomography. Nat Med. 2007;13:636–41.
Sawall S, Franke D, Kirchherr A, Beckendorf J, Kuntz J, Maier J, Kraupner A, Backs J, Briel A, Kachelrieß M. In vivo quantification of myocardial infarction in mice utilizing Micro-CT and a Novel Blood Pool Agent. Distinction Media Mol Imaging. 2017;2017:2617047.
Zhou Q, Zeng Y, Xiong Q, Zhong S, Li P, Ran H, Yin Y, Reutelingsperger C, Prinze FW, Ling Z. Building of CNA35 collagen-targeted phase-changeable nanoagents for low-intensity centered Ultrasound-Triggered Ultrasound Molecular Imaging of Myocardial Fibrosis in rabbits. ACS Appl Mater Interfaces. 2019;11:23006–17.
Nahrendorf M, Sosnovik DE, Waterman P, Swirski FK, Pande AN, Aikawa E, Figueiredo JL, Pittet MJ, Weissleder R. Twin channel optical tomographic imaging of leukocyte recruitment and protease exercise within the therapeutic myocardial infarct. Circ Res. 2007;100:1218–25.
Keliher EJ, Ye YX, Wojtkiewicz GR, Aguirre AD, Tricot B, Senders ML, Groenen H, Fay F, Perez-Medina C, Calcagno C, et al. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic coronary heart illness. Nat Commun. 2017;8:14064.
Nahrendorf M, Hoyer FF, Meerwaldt AE, van Leent MMT, Senders ML, Calcagno C, Robson PM, Soultanidis G, Pérez-Medina C, Teunissen AJP, et al. Imaging Cardiovascular and Lung Macrophages with the Positron Emission Tomography Sensor (64)Cu-Macrin in mice, rabbits, and Pigs. Circ Cardiovasc Imaging. 2020;13:e010586.
Karuppagounder V, Giridharan VV, Arumugam S, Sreedhar R, Palaniyandi SS, Krishnamurthy P, Quevedo J, Watanabe Okay, Konishi T, Thandavarayan RA. Modulation of macrophage polarization and HMGB1-TLR2/TLR4 Cascade performs an important function for Cardiac Reworking in Senescence-Accelerated Susceptible mice. PLoS ONE. 2016;11:e0152922.
Fujiwara M, Matoba T, Koga JI, Okahara A, Funamoto D, Nakano Okay, Tsutsui H, Egashira Okay. Nanoparticle incorporating toll-like receptor 4 inhibitor attenuates myocardial ischaemia-reperfusion harm by inhibiting monocyte-mediated irritation in mice. Cardiovasc Res. 2019;115:1244–55.
Chen Y, Zeng Z, Ying H, Wu C, Chen S. Superparamagnetic iron oxide nanoparticles attenuate lipopolysaccharide-induced inflammatory responses via modulation of toll-like receptor 4 expression. J Appl Toxicol. 2020;40:1067–75.
Li Y, Chen X, Jin R, Chen L, Dang M, Cao H, Dong Y, Cai B, Bai G, Gooding JJ et al. Injectable hydrogel with MSNs/microRNA-21-5p supply permits each immunomodification and enhanced angiogenesis for myocardial infarction remedy in pigs. Sci Adv 2021, 7.
Bao L, Dou G, Tian R, Lv Y, Ding F, Liu S, Zhao R, Zhao L, Zhou J, Weng L, et al. Engineered neutrophil apoptotic our bodies ameliorate myocardial infarction by selling macrophage efferocytosis and irritation decision. Bioact Mater. 2022;9:183–97.
Hafstad AD, Nabeebaccus AA, Shah AM. Novel facets of ROS signalling in coronary heart failure. Primary Res Cardiol. 2013;108:359.
Hori M, Nishida Okay. Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovasc Res. 2009;81:457–64.
Xie J, Yao Y, Wang S, Fan L, Ding J, Gao Y, Li S, Shen L, Zhu Y, Gao C. Assuaging oxidative Damage of myocardial infarction by a fibrous polyurethane Patch with condensed ROS-Scavenging spine items. Adv Healthc Mater. 2022;11:e2101855.
Spaulding KA, Zhu Y, Takaba Okay, Ramasubramanian A, Badathala A, Haraldsson H, Collins A, Aguayo E, Shah C, Wallace AW, et al. Myocardial injection of a thermoresponsive hydrogel with reactive oxygen species scavenger properties improves border zone contractility. J Biomed Mater Res A. 2020;108:1736–46.
Li J, Shu Y, Hao T, Wang Y, Qian Y, Duan C, Solar H, Lin Q, Wang C. A chitosan-glutathione primarily based injectable hydrogel for suppression of oxidative stress injury in cardiomyocytes. Biomaterials. 2013;34:9071–81.
Dong Z, Guo J, Xing X, Zhang X, Du Y, Lu Q. RGD modified and PEGylated lipid nanoparticles loaded with puerarin: Formulation, characterization and protecting results on acute myocardial ischemia mannequin. Biomed Pharmacother. 2017;89:297–304.
Bo Z, Huang S, Li L, Chen L, Chen P, Luo X, Shi F, Zhu B, Shen L. EGR2 is a hub-gene in myocardial infarction and aggravates irritation and apoptosis in hypoxia-induced cardiomyocytes. BMC Cardiovasc Disord. 2022;22:373.
Liu Y, Zhong D, He Y, Jiang J, Xie W, Tang Z, Qiu J, Luo J, Wang X. Photoresponsive Hydrogel-Coated Upconversion Cyanobacteria Nanocapsules for myocardial infarction Prevention and Remedy. Adv Sci (Weinh) 2022:e2202920.
Carmeliet P, Jain RK. Molecular mechanisms and scientific purposes of angiogenesis. Nature. 2011;473:298–307.
Rocker AJ, Cavasin M, Johnson NR, Shandas R, Park D. Sulfonated Thermoresponsive Injectable Gel for Sequential Launch of Therapeutic Proteins to guard cardiac operate after myocardial infarction. ACS Biomater Sci Eng. 2022;8:3883–98.
Wu J, Zeng F, Huang XP, Chung JC, Konecny F, Weisel RD, Li RK. Infarct stabilization and cardiac restore with a VEGF-conjugated, injectable hydrogel. Biomaterials. 2011;32:579–86.
Lin YD, Luo CY, Hu YN, Yeh ML, Hsueh YC, Chang MY, Tsai DC, Wang JN, Tang MJ, Wei EI, et al. Instructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac restore. Sci Transl Med. 2012;4:146ra109.
Garbern JC, Minami E, Stayton PS, Murry CE. Supply of primary fibroblast development issue with a pH-responsive, injectable hydrogel to enhance angiogenesis in infarcted myocardium. Biomaterials. 2011;32:2407–16.
Fu B, Wang X, Chen Z, Jiang N, Guo Z, Zhang Y, Zhang S, Liu X, Liu L. Improved myocardial efficiency in infarcted rat coronary heart by injection of disulfide-cross-linked chitosan hydrogels loaded with primary fibroblast development issue. J Mater Chem B. 2022;10:656–65.
Guo W, Feng W, Huang J, Zhang J, Fan X, Ma S, Li M, Zhan J, Cai Y, Chen M. Supramolecular Self-Assembled Nanofibers effectively activate the precursor of hepatocyte development issue for angiogenesis in myocardial infarction remedy. ACS Appl Mater Interfaces. 2021;13:22131–41.
Demyanets S, Kaun C, Rychli Okay, Pfaffenberger S, Kastl SP, Hohensinner PJ, Rega G, Katsaros KM, Afonyushkin T, Bochkov VN, et al. Oncostatin M-enhanced vascular endothelial development issue expression in human vascular easy muscle cells entails PI3K-, p38 MAPK-, Erk1/2- and STAT1/STAT3-dependent pathways and is attenuated by interferon-γ. Primary Res Cardiol. 2011;106:217–31.
Jiang YL, Niu S, Lin Z, Li L, Yang P, Rao P, Yang L, Jiang L, Solar L. Injectable hydrogel with dual-sensitive habits for focused supply of oncostatin M to enhance cardiac restoration after myocardial infarction. J Mater Chem B. 2022;10:6514–31.
Day RM. Bioactive glass stimulates the secretion of angiogenic development elements and angiogenesis in vitro. Tissue Eng. 2005;11:768–77.
Qi Q, Zhu Y, Liu G, Yuan Z, Li H, Zhao Q. Native intramyocardial supply of bioglass with alginate hydrogels for post-infarct myocardial regeneration. Biomed Pharmacother. 2020;129:110382.
Ciuffreda MC, Malpasso G, Chokoza C, Bezuidenhout D, Goetsch KP, Mura M, Pisano F, Davies NH, Gnecchi M. Artificial extracellular matrix mimic hydrogel improves efficacy of mesenchymal stromal cell remedy for ischemic cardiomyopathy. Acta Biomater. 2018;70:71–83.
Tang J, Wang J, Huang Okay, Ye Y, Su T, Qiao L, Hensley MT, Caranasos TG, Zhang J, Gu Z, Cheng Okay. Cardiac cell-integrated microneedle patch for treating myocardial infarction. Sci Adv. 2018;4:eaat9365.
Murohara T, Asahara T. Nitric oxide and angiogenesis in heart problems. Antioxid Redox Sign. 2002;4:825–31.
Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Obvious hydroxyl radical manufacturing by peroxynitrite: implications for endothelial harm from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990;87:1620–4.
Vong LB, Bui TQ, Tomita T, Sakamoto H, Hiramatsu Y, Nagasaki Y. Novel angiogenesis therapeutics by redox injectable hydrogel – regulation of native nitric oxide era for efficient cardiovascular remedy. Biomaterials. 2018;167:143–52.
Tashakori-Miyanroudi M, Rakhshan Okay, Ramez M, Asgarian S, Janzadeh A, Azizi Y, Seifalian A, Ramezani F. Conductive carbon nanofibers integrated into collagen bio-scaffold assists myocardial harm restore. Int J Biol Macromol. 2020;163:1136–46.
Hoenig MR, Campbell GR, Rolfe BE, Campbell JH. Tissue-engineered blood vessels: various to autologous grafts? Arterioscler Thromb Vasc Biol. 2005;25:1128–34.
Joseph J, Domenico Bruno V, Sulaiman N, Ward A, Johnson TW, Child HM, Kerala Varma P, Jose R, Nair SV, Menon D, et al. A novel small diameter nanotextile arterial graft is related to surgical feasibility and security and elevated transmural endothelial ingrowth in pig. J Nanobiotechnol. 2022;20:71.
Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71:549–74.
Zhang Y, Mu W, Zhang Y, He X, Wang Y, Ma H, Zhu T, Li A, Hou Q, Yang W, et al. Current advances in Cardiac Patches: supplies, preparations, and Properties. ACS Biomater Sci Eng. 2022;8:3659–75.
Zhang L, Li T, Yu Y, Shi Okay, Bei Z, Qian Y, Qian Z. An injectable conductive hydrogel restores electrical transmission at myocardial infarct website to protect cardiac operate and improve restore. Bioact Mater. 2023;20:339–54.
Music X, Wang X, Zhang J, Shen S, Yin W, Ye G, Wang L, Hou H, Qiu X. A tunable self-healing ionic hydrogel with microscopic homogeneous conductivity as a cardiac patch for myocardial infarction restore. Biomaterials. 2021;273:120811.
Wang L, Liu Y, Ye G, He Y, Li B, Guan Y, Gong B, Mequanint Okay, Xing MMQ, Qiu X. Injectable and conductive cardiac patches restore infarcted myocardium in rats and minipigs. Nat Biomed Eng. 2021;5:1157–73.
Smits AM, van Vliet P, Hassink RJ, Goumans MJ, Doevendans PA. The function of stem cells in cardiac regeneration. J Cell Mol Med. 2005;9:25–36.
Tan Y, Wang L, Chen G, Liu W, Li Z, Wang Y, Wang L, Li W, Wu J, Hao J. Hyaluronate helps hESC-cardiomyocyte cell remedy for cardiac regeneration after acute myocardial infarction. Cell Prolif. 2020;53:e12942.
Wu T, Zhang X, Liu Y, Cui C, Solar Y, Liu W. Moist adhesive hydrogel cardiac patch loaded with anti-oxidative, autophagy-regulating molecule capsules and MSCs for restoring infarcted myocardium. Bioact Mater. 2023;21:20–31.
Wang Q, He X, Wang B, Pan J, Shi C, Li J, Wang L, Zhao Y, Dai J, Wang D. Injectable collagen scaffold promotes swine myocardial infarction restoration by long-term native retention of transplanted human umbilical wire mesenchymal stem cells. Sci China Life Sci. 2021;64:269–81.
Niu H, Li C, Guan Y, Dang Y, Li X, Fan Z, Shen J, Ma L, Guan J. Excessive oxygen preservation hydrogels to reinforce cell survival below hypoxic situation. Acta Biomater. 2020;105:56–67.
Chow A, Stuckey DJ, Kidher E, Rocco M, Jabbour RJ, Mansfield CA, Darzi A, Harding SE, Stevens MM, Athanasiou T. Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte encapsulating bioactive hydrogels enhance rat coronary heart operate Put up myocardial infarction. Stem Cell Experiences. 2017;9:1415–22.
Koudstaal S, Jansen Of Lorkeers SJ, Gaetani R, Gho JM, van Slochteren FJ, Sluijter JP, Doevendans PA, Ellison GM, Chamuleau SA. Concise assessment: coronary heart regeneration and the function of cardiac stem cells. Stem Cells Transl Med. 2013;2:434–43.
Singelyn JM, Sundaramurthy P, Johnson TD, Schup-Magoffin PJ, Hu DP, Faulk DM, Wang J, Mayle KM, Bartels Okay, Salvatore M, et al. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix will increase endogenous cardiomyocytes and preserves cardiac operate post-myocardial infarction. J Am Coll Cardiol. 2012;59:751–63.
Yang L, Xue S, Du M, Lian F. Extremely environment friendly MicroRNA supply utilizing Functionalized Carbon Dots for enhanced Conversion of fibroblasts to cardiomyocytes. Int J Nanomedicine. 2021;16:3741–54.
Yang H, Qin X, Wang H, Zhao X, Liu Y, Wo HT, Liu C, Nishiga M, Chen H, Ge J, et al. An in vivo miRNA supply system for restoring Infarcted Myocardium. ACS Nano. 2019;13:9880–94.
Jo YK, Lee D. Biopolymer Microparticles ready by Microfluidics for Biomedical Functions. Small. 2020;16:e1903736.
Fontana F, Martins JP, Torrieri G, Santos HA. Nuts and bolts: Microfluidics for the manufacturing of Biomaterials. Adv Mater Technol 2019, 4.
Music Y, Wang Y, Qi W, Li Y, Xuan J, Wang P, Qin L. Integrative volumetric bar-chart chip for speedy and quantitative point-of-care detection of myocardial infarction biomarkers. Lab Chip. 2016;16:2955–62.
Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T. 3D Printing of Customized Thick and Perfusable Cardiac Patches and Hearts. Adv Sci (Weinh). 2019;6:1900344.
Sato W, Zajkowski T, Moser F, Adamala KP. Artificial cells in biomedical purposes. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14:e1761.
Pawan KC, Hong Y, Zhang G. Cardiac tissue-derived extracellular matrix scaffolds for myocardial restore: benefits and challenges. Regenerative Biomaterials. 2019;6:185–99.
Bejarano J, Navarro-Marquez M, Morales-Zavala F, Morales JO, Garcia-Carvajal I, Araya-Fuentes E, Flores Y, Verdejo HE, Castro PF, Lavandero S, Kogan MJ. Nanoparticles for prognosis and remedy of atherosclerosis and myocardial infarction: evolution towards potential theranostic approaches. Theranostics. 2018;8:4710–32.