3D-printed hydrogel particles containing PRP laden with TDSCs promote tendon restore in a rat mannequin of tendinopathy | Journal of Nanobiotechnology


  • Hammerman M, Aspenberg P, Eliasson P. Microtrauma stimulates rat Achilles tendon therapeutic through an early gene expression sample just like mechanical loading. J Appl Physiol (1985). 2014;116:54–60.

    Article 
    PubMed 

    Google Scholar
     

  • Blomgran P, Hammerman M, Aspenberg P. Systemic corticosteroids enhance tendon therapeutic when given after the early inflammatory section. Sci Rep. 2017;7:1.

    Article 
    CAS 

    Google Scholar
     

  • Hope M, Saxby TS. Tendon therapeutic. Foot Ankle Clin. 2007;12:553–67.

    Article 
    PubMed 

    Google Scholar
     

  • Dakin SG, Newton J, Martinez FO, Hedley R, Gwilym S, Jones N, Reid HAB, Wooden S, Wells G, Appleton L, et al. Power irritation is a characteristic of Achilles tendinopathy and rupture. Br J Sports activities Med. 2018;52:359–67.

    Article 
    PubMed 

    Google Scholar
     

  • Flint JH, Wade AM, Giuliani J, Rue J-P. Defining the phrases acute and continual in orthopaedic sports activities accidents. Am J Sports activities Med. 2013;42:235–41.

    Article 
    PubMed 

    Google Scholar
     

  • Chisari E, Rehak L, Khan WS, Maffulli N. Tendon therapeutic in presence of continual low-level irritation: a scientific evaluation. Br Med Bull. 2019;132:97–116.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mallows AJ, Debenham J, Littlewood C. Are psychological variables a characteristic in tendinopathy: a scientific evaluation. Physiotherapy. 2016;102:e154-5.

    Article 

    Google Scholar
     

  • Mc Auliffe S, O’Sullivan Okay, Whiteley R, Korakakis V. Why do tendon researchers overlook the affected person’s psychological state? The evaluation with no papers. Br J Sports activities Med. 2021;55:244–5.

    Article 
    PubMed 

    Google Scholar
     

  • Darrieutort-Laffite C, Soslowsky LJ, Le Goff B. Molecular and structural results of percutaneous interventions in continual achilles tendinopathy. Int J Mol Sci. 2020;21:7000.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fitzpatrick J, Bulsara M, Zheng MH. The effectiveness of platelet-rich plasma within the remedy of tendinopathy: a meta-analysis of randomized managed medical trials. Am J Sports activities Med. 2017;45:226–33.

    Article 
    PubMed 

    Google Scholar
     

  • Vander Doelen T, Jelley W. Non-surgical remedy of patellar tendinopathy: a scientific evaluation of randomized managed trials. J Sci Med Sport. 2020;23:118–24.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang J, Wang JH. Platelet-rich plasma releasate promotes differentiation of tendon stem cells into lively tenocytes. Am J Sports activities Med. 2010;38:2477–86.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang J, Middleton KK, Fu FH, Im HJ, Wang JH. HGF mediates the anti-inflammatory results of PRP on injured tendons. PLoS ONE. 2013;8:e67303.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Wang JH. PRP remedy efficacy for tendinopathy: a evaluation of fundamental science research. Biomed Res Int. 2016;2016:9103792.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodas G, Soler-Wealthy R, Rius-Tarruella J, Alomar X, Balius R, Orozco L, Masci L, Maffulli N. Impact of autologous expanded bone marrow mesenchymal stem cells or leukocyte-poor platelet-rich plasma in continual patellar tendinopathy (with hole > 3 mm): preliminary outcomes after 6 months of a double-blind, randomized, potential examine. Am J Sports activities Med. 2021;49:1492–504.

    Article 
    PubMed 

    Google Scholar
     

  • Morizaki Y, Zhao C, An KN, Amadio PC. The consequences of platelet-rich plasma on bone marrow stromal cell transplants for tendon therapeutic in vitro. J Hand Surg Am. 2010;35:1833–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carvalho Ade M, Badial PR, Alvarez LE, Yamada AL, Borges AS, Deffune E, Hussni CA, Garcia Alves AL. Equine tendonitis remedy utilizing mesenchymal stem cells and platelet concentrates: a randomized managed trial. Stem Cell Res Ther. 2013;4:85.

    Article 
    PubMed 

    Google Scholar
     

  • Fluck M, Kasper S, Benn MC, Clement Frey F, von Rechenberg B, Giraud MN, Meyer DC, Wieser Okay, Gerber C. Transplant of autologous mesenchymal stem cells halts fatty atrophy of indifferent rotator cuff muscle after tendon restore: molecular, microscopic, and macroscopic outcomes from an ovine mannequin. Am J Sports activities Med. 2021;49:3970–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donderwinkel I, Tuan RS, Cameron NR, Frith JE. Tendon tissue engineering: present progress in the direction of an optimized tenogenic differentiation protocol for human stem cells. Acta Biomater. 2022;145:25–42.

    Article 
    PubMed 

    Google Scholar
     

  • Lee S, Chae DS, Tune BW, Lim S, Kim SW, Kim IK, Hwang KC. ADSC-based cell therapies for musculoskeletal issues: a evaluation of current medical trials. Int J Mol Sci. 2021;22:10586.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Search engine optimisation BM, Zhang L, et al. Identification of tendon stem/progenitor cells and the position of the extracellular matrix of their area of interest. Nat Med. 2007;13:1219–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan Q, Lui PP, Rui YF, Wong YM. Comparability of potentials of stem cells remoted from tendon and bone marrow for musculoskeletal tissue engineering. Tissue Eng Half A. 2012;18:840–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lui PP, Chan KM. Tendon-derived stem cells (TDSCs): from fundamental science to potential roles in tendon pathology and tissue engineering functions. Stem Cell Rev Rep. 2011;7:883–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Suen CW, Zhang JF, Li G. Present ideas on tenogenic differentiation and medical functions. J Orthop Translat. 2017;9:28–42.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shafiq M, Ali O, Han SB, Kim DH. Mechanobiological methods to reinforce stem cell performance for regenerative medication and tissue engineering. Entrance Cell Dev Biol. 2021;9:747398.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yue Okay, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical functions of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alge DL, Anseth KS. Bioactive hydrogels: lighting the best way. Nat Mater. 2013;12:950–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan Z, Yuan X, Zhao Y, Cai Q, Wang Y, Luo R, Yu S, Wang Y, Han J, Ge L, et al. Injectable GelMA cryogel microspheres for modularized cell supply and potential vascularized bone regeneration. Small. 2021;17:e2006596.

    Article 
    PubMed 

    Google Scholar
     

  • Ramirez-Calderon G, Susapto HH, Hauser CAE. Supply of endothelial cell-laden microgel elicits angiogenesis in self-assembling ultrashort peptide hydrogels in vitro. ACS Appl Mater Interfaces. 2021;13:29281–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keller S, Teora SP, Hu GX, Nijemeisland M, Wilson DA. Excessive-throughput design of biocompatible enzyme-based hydrogel microparticles with autonomous motion. Angew Chem Int Ed Engl. 2018;57:9814–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hudgens JL, Sugg KB, Grekin JA, Gumucio JP, Bedi A, Mendias CL. Platelet-rich plasma prompts proinflammatory signaling pathways and induces oxidative stress in tendon fibroblasts. Am J Sports activities Med. 2016;44:1931–40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao W, He J, Nichol JW, Wang L, Hutson CB, Wang B, Du Y, Fan H, Khademhosseini A. Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer community hydrogels. Acta Biomater. 2011;7:2384–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsang AS, Dart AJ, Biasutti SA, Jeffcott LB, Smith MM, Little CB. Results of tendon harm on unhurt regional tendons within the distal limb: an in-vivo examine utilizing an ovine tendinopathy mannequin. PLoS ONE. 2019;14:e0215830.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar M, Solar X, Wang Z, Guo S, Yu G, Yang H. Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their current functions in load-bearing tissue. Polymers (Basel). 2018;10:1290.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Y, Chan-Park MB. A biomimetic hydrogel based mostly on methacrylated dextran-graft-lysine and gelatin for 3D easy muscle cell tradition. Biomaterials. 2010;31:1158–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol. 2002;37:375–536.

    Article 
    PubMed 

    Google Scholar
     

  • Selimovic S, Oh J, Bae H, Dokmeci M, Khademhosseini A. Microscale methods for producing cell-encapsulating hydrogels. Polymers (Basel). 2012;4:1554.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franchi M, Trire A, Quaranta M, Orsini E, Ottani V. Collagen construction of tendon pertains to operate. ScientificWorldJournal. 2007;7:404–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar HB, Schaniel C, Leong DJ, Wang JHC. Biology and mechano-response of tendon cells: progress overview and views. J Orthop Res. 2015;33:785–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei B, Lu J. Characterization of Tendon-Derived stem cells and rescue Tendon Damage. Stem Cell Rev Rep. 2021;17:1534–51.

    Article 
    PubMed 

    Google Scholar
     

  • Cai Z, Zhang Y, Liu S, Liu X, Celecoxib. Past anti-inflammation, alleviates tendon-derived stem cell senescence in degenerative rotator cuff tendinopathy. Am J Sports activities Med. 2022;50:2488–96.

    Article 
    PubMed 

    Google Scholar
     

  • de Mos M, van der Windt AE, Jahr H, van Schie HT, Weinans H, Verhaar JA, van Osch GJ. Can platelet-rich plasma improve tendon restore? A cell tradition examine. Am J Sports activities Med. 2008;36:1171–8.

    Article 
    PubMed 

    Google Scholar
     

  • Giovanini AF, Deliberador TM, Gonzaga CC, de Oliveira Filho MA, Gohringer I, Kuczera J, Zielak JC, de Andrade City C. Platelet-rich plasma diminishes calvarial bone restore related to alterations in collagen matrix composition and elevated CD34 + cell prevalence. Bone. 2010;46:1597–603.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mazzocca AD, McCarthy MB, Chowaniec DM, Dugdale EM, Hansen D, Cote MP, Bradley JP, Romeo AA, Arciero RA, Beitzel Okay. The constructive results of various platelet-rich plasma strategies on human muscle, bone, and tendon cells. Am J Sports activities Med. 2012;40:1742–9.

    Article 
    PubMed 

    Google Scholar
     

  • Giusti I, D’Ascenzo S, Manco A, Di Stefano G, Di Francesco M, Rughetti A, Dal Mas A, Properzi G, Calvisi V, Dolo V. Platelet focus in platelet-rich plasma impacts tenocyte habits in vitro. Biomed Res Int. 2014;2014:630870.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Zhang J, Wu H, Hogan MV, Wang JH. The differential results of leukocyte-containing and pure platelet-rich plasma (PRP) on tendon stem/progenitor cells-implications of PRP software for the medical remedy of tendon accidents. Stem Cell Res Ther. 2015;6:173.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Buono A, Battery L, Denaro V, Maccauro G, Maffulli N. Tendinopathy and irritation: some truths. Int J Immunopathol Pharmacol. 2011;24:45–50.

    Article 
    PubMed 

    Google Scholar
     

  • Jomaa G, Kwan CK, Fu SC, Ling SK, Chan KM, Yung PS, Rolf C. A scientific evaluation of inflammatory cells and markers in human tendinopathy. BMC Musculoskelet Disord. 2020;21:78.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor DW, Petrera M, Hendry M, Theodoropoulos JS. A scientific evaluation of using platelet-rich plasma in sports activities medication as a brand new remedy for tendon and ligament accidents. Clin J Sport Med. 2011;21:344–52.

    Article 
    PubMed 

    Google Scholar
     

  • Vergadi E, Ieronymaki E, Lyroni Okay, Vaporidi Okay, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 2017;198:1006–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cong XX, Rao XS, Lin JX, Liu XC, Zhang GA, Gao XK, He MY, Shen WL, Fan W, Pioletti D, et al. Activation of AKT-mTOR signaling directs tenogenesis of mesenchymal stem cells. Stem Cells. 2018;36:527–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Crawford R, Chen C, Xiao Y. The important thing regulatory roles of the PI3K/Akt signaling pathway within the functionalities of mesenchymal stem cells and functions in tissue regeneration. Tissue Eng Half B Rev. 2013;19:516–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie S, Chen M, Yan B, He X, Chen X, Li D. Identification of a task for the PI3K/AKT/mTOR signaling pathway in innate immune cells. PLoS ONE. 2014;9:e94496.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao Y, Li Y, Fu SC, Shen J, Zhang H, Jiang C, Shu-Grasp Yung P. Platelet-rich plasma pretreatment protects anterior cruciate ligament fibroblasts correlated with PI3K-Akt-mTOR pathway beneath hypoxia situation. J Orthop Translation. 2022;34:102–12.

    Article 

    Google Scholar
     

  • Zhou W, Lin X, Chu J, Jiang T, Zhao H, Yan B, Zhang Z. Magnolol prevents ossified tendinopathy by inhibiting PGE2-induced osteogenic differentiation of TDSCs. Int Immunopharmacol. 2019;70:117–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles