Giger RJ, Hollis ER, Tuszynski MH. Steering molecules in axon regeneration. Chilly Spring Harbor Perspect Biol. 2010;2:a001867–a001867.
Qu QR, Tang LY, Liu Q, Lengthy YY, Wu X, Xu M, Qi F, Zhang H, Ai Ok, Zhou L. Proteomic evaluation of the sphincter in a neurogenic bladder attributable to T10 spinal twine harm. J Integr Neurosci. 2022;21:147.
Li JA, Shi MP, Cong L, Gu MY, Chen YH, Wang SY, Li ZH, Zan CF, Wei WF. Circulating exosomal lncRNA contributes to the pathogenesis of spinal twine harm in rats. Neural Regener Res. 2023;18:889–94.
Liu WZ, Ma ZJ, Li JR, Kang XW. Mesenchymal stem cell-derived exosomes: therapeutic alternatives and challenges for spinal twine harm. Stem Cell Res Ther. 2021;12:1–15.
Tang BL. The usage of mesenchymal stem cells (MSCs) for amyotrophic lateral sclerosis (ALS) remedy—a perspective on cell organic mechanisms. Rev Neurosci. 2017;28:725–38.
Joshua M. Reactive gliosis and the multicellular response to CNS injury and illness. Neuron. 2014;81:229–48.
Schwab ME, Bartholdi D. Degeneration and regeneration of axons within the lesioned spinal twine. Physiol Rev. 1996;76:319–70.
Mothe AJ, Tator CH. Advances in stem cell remedy for spinal twine harm. J Clin Make investments. 2012;122:3824–34.
Bradbury EJ, Moon LDF, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB. Chondroitinase ABC promotes practical restoration after spinal twine harm. Nature. 2002;416:636–40.
Shumsky JS, Tobias CA, Tumolo M, Lengthy WD, Giszter SF, Murray M. Delayed transplantation of fibroblasts genetically modified to secrete BDNF and NT-3 right into a spinal twine harm web site is related to restricted restoration of perform. Exp Neurol. 2003;184:114–30.
Ide C, Nakai Y, Nakano N, Web optimization TB, Yamada Y, Endo Ok, Noda T, Saito F, Suzuki Y, Fukushima M, Nakatani T. Bone marrow stromal cell transplantation for therapy of sub-acute spinal twine harm within the rat. Mind Res. 2010;1332:32–47.
Zhang H, Wang Y, Lv Q, Gao J, Hu L, He Z. MicroRNA-21 overexpression promotes the neuroprotective efficacy of mesenchymal stem cells for therapy of intracerebral hemorrhage. Entrance Neurol. 2018;9:931.
Chopp M, Zhang XH, Li Y, Wang L, Chen JL, Lu DY, Lu M, Rosenblum M. Spinal twine harm in rat: therapy with bone marrow stromal cell transplantation. NeuroReport. 2000;11:3001–5.
Lv LW, Sheng CH, Zhou YS. Extracellular vesicles as a novel therapeutic device for cell-free regenerative drugs in oral rehabilitation. J Oral Rehabil. 2020;47:29–54.
Solar G, Li G, Li D, Huang W, Zhang R, Zhang H, Duan Y, Wang B. hucMSC derived exosomes promote practical restoration in spinal twine harm mice by way of attenuating irritation. Mater Sci Eng C Mater Biol Appl. 2018;89:194–204.
Lamichhane TN, Sokic S, Schardt JS, Raiker RS, Lin JW, Jay SM. Rising roles for extracellular vesicles in tissue engineering and regenerative drugs. Tissue Eng Half B Rev. 2015;21:45–54.
Kiyotake EA, Martin MD, Detamore MS. Regenerative rehabilitation with conductive biomaterials for spinal twine harm. Acta Biomater. 2022;139:43–64.
Vandergriff A, Huang Ok, Shen D, Hu S, Hensley MT, Caranasos TG, Qian L, Cheng Ok. Focusing on regenerative exosomes to myocardial infarction utilizing cardiac homing peptide. Theranostics. 2018;8:1869–78.
El Andaloussi S, Maeger I, Breakefield XO, Wooden MJA. Extracellular vesicles: biology and rising therapeutic alternatives. Nat Rev Drug Discov. 2013;12:348–58.
Thery C, Witwer KW, Aikawa E, Jose Alcaraz M, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al. Minimal info for research of extracellular vesicles 2018 (MISEV2018): a place assertion of the Worldwide Society for Extracellular Vesicles and replace of the MISEV2014 pointers. J Extracell Vesicles. 2018;7:1535750.
Yanez-Mo M, Siljander PRM, Andreu Z, Zavec AB, Borras FE, Buzas EI, Buzas Ok, Casal E, Cappello F, Carvalho J, et al. Organic properties of extracellular vesicles and their physiological features. J Extracell Vesicles. 2015;4:27066–27066.
Wang X, Chen Y, Zhao Z, Meng Q, Yu Y, Solar J, Yang Z, Chen Y, Li J, Ma T, et al. Engineered exosomes with ischemic myocardium-targeting peptide for focused remedy in myocardial infarction. J Am Coronary heart Assoc. 2018;7: e008737.
Ibrahim AGE, Cheng Ok, Marban E. Exosomes as essential brokers of cardiac regeneration triggered by cell remedy. Stem Cell Rep. 2014;2:606–19.
Konoshenko M, Sagaradze G, Orlova E, Shtam T, Proskura Ok, Kamyshinsky R, Yunusova N, Alexandrova A, Efimenko A, Tamkovich S. Complete blood exosomes in breast most cancers: potential position in essential steps of tumorigenesis. Int J Mol Sci. 2020;21:7341.
Zeng W, Wen Z, Chen H, Duan Y. Exosomes as carriers for drug supply in most cancers remedy. Pharm Res. 2023;40(4):873–87.
Zhai X, Chen Ok, Yang H, Li B, Zhou TJK, Wang HJ, Zhou HP, Chen SF, Zhou XY, Wei XZ, et al. Extracellular vesicles derived from CD73 modified human umbilical twine mesenchymal stem cells ameliorate irritation after spinal twine harm. J Nanobiotechnol. 2021;19:1–20.
Kalluri R, LeBleu VS. The biology, perform, and biomedical purposes of exosomes. Science. 2020;367:640.
Seim RF, Willis ML, Pockets SM, Maile R, Coleman LG. Extracellular vesicles as regulators of immune perform in traumatic accidents and sepsis. Shock. 2023;59:180–9.
Lin LY, Du LM. The position of secreted components in stem cells-mediated immune regulation. Cell Immunol. 2018;326:24–32.
Xi Ok, Gu Y, Tang J, Chen H, Xu Y, Wu L, Cai F, Deng L, Yang H, Shi Q, et al. Microenvironment-responsive immunoregulatory electrospun fibers for selling nerve perform restoration. Nat Commun. 2020;11:4504.
Avcu G, Bal ZS, Duyu M, Akkus E, Karapinar B, Vardar F. Due to trauma A delayed prognosis of pott illness. Pediatr Emerg Care. 2015;31:E17–8.
Ekinci S, Agilli M, Ersen O, Ekinci GH. Letter to the editor concerning evaluation of adjusting paradigms of administration in 179 sufferers with spinal tuberculosis throughout a 12-year interval and proposal of a brand new administration algorithm. World Neurosurg. 2015;84:2072–2072.
Zhao J, Yu G, Cai M, Lei X, Yang Y, Wang Q, Zhai X. Bibliometric evaluation of world scientific exercise on umbilical twine mesenchymal stem cells: a swiftly increasing and shifting focus. Stem Cell Res Ther. 2018;9:1–9.
Xu X, Chen X, Jia F, Brown S, Gong Y, Xu Y. Provide chain finance: a scientific literature overview and bibliometric evaluation. Int J Prod Econ. 2018;204:160–73.
Hirsch JE. Does the h index have predictive energy? Proc Natl Acad Sci USA. 2007;104:19193–8.
Bagley SC, White H, Golomb BA. Logistic regression within the medical literature: requirements to be used and reporting, with specific consideration to 1 medical area. J Power Dis. 2001;54:979–85.
Jia Z-J, Hong B, Chen D-M, Huang Q-H, Yang Z-G, Yin C, Deng X-Q, Liu J-M. China’s rising contribution to international intracranial aneurysm analysis (1991–2012): a bibliometric research. PLoS ONE. 2014;9: e91594.
Van Eck NJ, Waltman L. Software program survey: VOSviewer, a pc program for bibliometric mapping. Scientometrics. 2010;84:523–38.
Ethical-Munoz JA, Herrera-Viedma E, Santisteban-Espejo A, Cobo MJ. Software program instruments for conducting bibliometric evaluation in science: an up-to-date overview. Profesional de la Informacion. 2020;29:4.
Van Eck NJ, Waltman L. Quotation-based clustering of publications utilizing CitNetExplorer and VOSviewer. Scientometrics. 2017;111:1053–70.
Chen CM. CiteSpace II: detecting and visualizing rising traits and transient patterns in scientific literature. J Am Soc Inf Sci Technol. 2006;57:359–77.
Chen C, Hu Z, Liu S, Tseng H. Rising traits in regenerative drugs: a scientometric evaluation in CiteSpace. Knowledgeable Opin Biol Ther. 2012;12:593–608.
Khalil GM, Gotway Crawford CA. A bibliometric evaluation of US-based analysis on the behavioral danger issue surveillance system. Am J Prev Med. 2015;48:50–7.
Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, Zhang ZG, Chopp M. MiR-133b promotes neural plasticity and practical restoration after therapy of stroke with multipotent mesenchymal stromal cells in rats by way of switch of exosome-enriched extracellular particles. Stem Cells. 2013;31:2737–46.
Liu W, Rong Y, Wang J, Zhou Z, Ge X, Ji C, Jiang D, Gong F, Li L, Chen J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells restore traumatic spinal twine harm by shifting microglial M1/M2 polarization. J Neuroinflamm. 2020;17:1–22.
Seal RP, Wang X, Guan Y, Raja SN, Woodbury CJ, Basbaum AI, Edwards RH. Harm-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature. 2009;462:651–5.
Tom VJ, Steinmetz MP, Miller JH, Doller CM, Silver J. Research on the event and habits of the dystrophic development cone, the hallmark of regeneration failure, in an in vitro mannequin of the glial scar and after spinal twine harm. J Neurosci. 2004;24:6531–9.
de Rivero Vaccari JP, Model F third, Adamczak S, Lee SW, Perez-Barcena J, Wang MY, Bullock MR, Dietrich WD, Keane RW. Exosome-mediated inflammasome signaling after central nervous system harm. J Neurochem. 2016;136(Suppl 1):39–48.
Guo S, Perets N, Betzer O, Ben-Shaul S, Sheinin A, Michaelevski I, Popovtzer R, Offen D, Levenberg S. Intranasal supply of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs full spinal twine harm. ACS Nano. 2019;13:10015–28.
Huang JH, Yin XM, Xu Y, Xu CC, Lin X, Ye FB, Cao Y, Lin FY. Systemic administration of exosomes launched from mesenchymal stromal cells attenuates apoptosis, irritation, and promotes angiogenesis after spinal twine harm in rats. J Neurotrauma. 2017;34:3388–96.
Hervera A, De Virgiliis F, Palmisano I, Zhou L, Tantardini E, Kong G, Hutson T, Danzi MC, Perry RB, Santos CXC, et al. Writer Correction: Reactive oxygen species regulate axonal regeneration by means of the discharge of exosomal NADPH oxidase 2 complexes into injured axons. Nat Cell Biol. 2018;20:1098.
Wu X, Wang L, Cong M, Shen M, He Q, Ding F, Shi H. Extracellular vesicles from pores and skin precursor-derived Schwann cells promote axonal outgrowth and regeneration of motoneurons by way of Akt/mTOR/p70S6K pathway. Ann Transl Med. 2020;8:1640.
Verkade P, Verkleij AJ, Gispen WH, Oestreicher AB. Ultrastructural proof for the shortage of co-transport of B-50/GAP-43 and calmodulin in myelinated axons of the regenerating rat sciatic nerve. J Neurocytol. 1996;25:583–95.
Caldero J, Casanovas A, Sorribas A, Esquerda JE. Calcitonin gene-related peptide in rat spinal twine motoneurons: subcellular distribution and adjustments induced by axotomy. Neuroscience. 1992;48:449–61.
Li JY, Kling-Petersen A, Dahlstrom A. Affect of spinal twine transection on the presence and axonal transport of CGRP-, chromogranin A-, VIP-, synapsin I-, and synaptophysin-like immunoreactivities in rat motor nerve. J Neurobiol. 1992;23:1094–110.
Palacios G, Mengod G, Sarasa M, Baudier J, Palacios JM. De novo synthesis of GAP-43: in situ hybridization histochemistry and lightweight and electron microscopy immunocytochemical research in regenerating motor neurons of cranial nerve nuclei within the rat mind. Mind Res Mol Mind Res. 1994;24:107–17.
Shojo H, Kibayashi Ok. Adjustments in localization of synaptophysin following fluid percussion harm within the rat mind. Mind Res. 2006;1078:198–211.
Ohta Ok, Inokuchi T, Gen E, Chang JW. Ultrastructural research of anterograde transport of glial cell line-derived neurotrophic issue from dorsal root ganglion neurons of rats in direction of the nerve terminal. Cells Tissues Organs. 2001;169:410–21.
Gueye Y, Ferhat L, Sbai O, Bianco J, Ould-Yahoui A, Bernard A, Charrat E, Chauvin JP, Risso JJ, Feron F, et al. Trafficking and secretion of matrix metalloproteinase-2 in olfactory ensheathing glial cells: a job in cell migration? Glia. 2011;59:750–70.
Khan NZ, Cao T, He J, Ritzel RM, Li Y, Henry RJ, Colson C, Stoica BA, Faden AI, Wu J. Spinal twine harm alters microRNA and CD81+ exosome ranges in plasma extracellular nanoparticles with neuroinflammatory potential. Mind Behav Immun. 2021;92:165–83.
Zhang C, Li D, Hu H, Wang Z, An J, Gao Z, Zhang Ok, Mei X, Wu C, Tian H. Engineered extracellular vesicles derived from major M2 macrophages with anti-inflammatory and neuroprotective properties for the therapy of spinal twine harm. J Nanobiotechnol. 2021;19:373.
Gosselin RD, Meylan P, Decosterd I. Extracellular microvesicles from astrocytes comprise practical glutamate transporters: regulation by protein kinase C and cell activation. Entrance Cell Neurosci. 2013;7:251.
Evans MA, Broughton BRS, Drummond GR, Ma H, Phan TG, Wallace EM, Lim R, Sobey CG. Amnion epithelial cells—a novel remedy for ischemic stroke? Neural Regen Res. 2018;13:1346–9.
Pourhadi M, Zali H, Ghasemi R, Vafaei-Nezhad S. Promising position of oral cavity mesenchymal stem cell-derived extracellular vesicles in neurodegenerative illnesses. Mol Neurobiol. 2022;59:6125–40.
Shen YP, Cai JY. The significance of utilizing exosome-loaded miRNA for the therapy of spinal twine harm. Mol Neurobiol. 2023;60:447–59.
Zhou Z, Li C, Bao TY, Zhao X, Xiong W, Luo CY, Yin GY, Fan J. Exosome-shuttled miR-672-5p from anti-inflammatory microglia restore traumatic spinal twine harm by inhibiting AIM2/ASC/caspase-1 signaling pathway mediated neuronal pyroptosis. J Neurotrauma. 2022;39:1057–74.
Yang H, Zhang P, Xie M, Luo J, Zhang J, Zhang G, Wang Y, Lin H, Ji Z. Parallel metabolomic profiling of cerebrospinal fluid, plasma, and spinal twine to determine biomarkers for spinal twine harm. J Mol Neurosci. 2022;72:126–35.
Wang HD, Wei ZJ, Li JJ, Feng SQ. Software worth of biofluid-based biomarkers for the prognosis and therapy of spinal twine harm. Neural Regen Res. 2022;17:963–71.
Ding SQ, Chen YQ, Chen J, Wang SN, Duan FX, Shi YJ, Hu JG, Lu HZ. Serum exosomal microRNA transcriptome profiling in subacute spinal twine injured rats. Genomics. 2020;112:2092–105.
Zhou Y, Wen LL, Li YF, Wu KM, Duan RR, Yao YB, Jing LJ, Gong Z, Teng JF, Jia YJ. Exosomes derived from bone marrow mesenchymal stem cells shield the injured spinal twine by inhibiting pericyte pyroptosis. Neural Regen Res. 2022;17:194–202.
Zhao L, Jiang X, Shi J, Gao S, Zhu Y, Gu T, Shi E. Exosomes derived from bone marrow mesenchymal stem cells overexpressing microRNA-25 shield spinal cords towards transient ischemia. J Thorac Cardiovasc Surg. 2019;157:508–17.
Rager TM, Olson JK, Zhou Y, Wang Y, Besner GE. Exosomes secreted from bone marrow-derived mesenchymal stem cells shield the intestines from experimental necrotizing enterocolitis. J Pediatr Surg. 2016;51:942–7.
Solar H, Cao X, Gong A, Huang Y, Xu Y, Zhang J, Solar J, Lv B, Li Z, Guan S, et al. Extracellular vesicles derived from astrocytes facilitated neurite elongation by activating the Hippo pathway. Exp Cell Res. 2022;411: 112937.
Xiao X, Li W, Xu Z, Solar Z, Ye H, Wu Y, Zhang Y, Xie L, Jiang D, Jia R, Wang X. Extracellular vesicles from human umbilical twine mesenchymal stem cells cut back lipopolysaccharide-induced spinal twine harm neuronal apoptosis by mediating miR-29b-3p/PTEN. Join Tissue Res. 2022;63:634–49.
Huang JH, Chen YN, He H, Fu CH, Xu ZY, Lin FY. Schwann cells-derived exosomes promote practical restoration after spinal twine harm by selling angiogenesis. Entrance Cell Neurosci. 2022;16:1077071.
Cao Y, Xu Y, Chen C, Xie H, Lu H, Hu J. Native supply of USC-derived exosomes harboring ANGPTL3 enhances spinal twine practical restoration after harm by selling angiogenesis. Stem Cell Res Ther. 2021;12:20.
Zhong D, Cao Y, Li CJ, Li M, Rong ZJ, Jiang L, Guo Z, Lu HB, Hu JZ. Neural stem cell-derived exosomes facilitate spinal twine practical restoration after harm by selling angiogenesis. Exp Biol Med (Maywood). 2020;245:54–65.
Zhang M, Wang L, Huang S, He X. Exosomes with excessive stage of miR-181c from bone marrow-derived mesenchymal stem cells inhibit irritation and apoptosis to alleviate spinal twine harm. J Mol Histol. 2021;52:301–11.
Wang Z, Tune Y, Han X, Qu P, Wang W. Lengthy noncoding RNA PTENP1 impacts the restoration of spinal twine harm by regulating the expression of miR-19b and miR-21. J Cell Physiol. 2020;235:3634–45.
Chang Q, Hao Y, Wang Y, Zhou Y, Zhuo H, Zhao G. Bone marrow mesenchymal stem cell-derived exosomal microRNA-125a promotes M2 macrophage polarization in spinal twine harm by downregulating IRF5. Mind Res Bull. 2021;170:199–210.
Liu C, Hu F, Jiao G, Guo Y, Zhou P, Zhang Y, Zhang Z, Yi J, You Y, Li Z, et al. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization by means of the ROS-MAPK-NFkappaB P65 signaling pathway after spinal twine harm. J Nanobiotechnol. 2022;20:65.
Zhang L, Fan C, Hao W, Zhuang Y, Liu X, Zhao Y, Chen B, Xiao Z, Chen Y, Dai J. NSCs migration promoted and drug delivered exosomes-collagen scaffold by way of a bio-specific peptide for one-step spinal twine harm restore. Adv Healthc Mater. 2021;10: e2001896.
Mestres I, Chuang JZ, Calegari F, Conde C, Sung CH. SARA regulates neuronal migration throughout neocortical improvement by means of L1 trafficking. Improvement. 2016;143:3143–53.
Tran AP, Warren PM, Silver J. The biology of regeneration failure and success after spinal twine harm. Physiol Rev. 2018;98:881–917.
Li L, Zhang Y, Mu J, Chen J, Zhang C, Cao H, Gao J. Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for efficient therapy of spinal twine harm. Nano Lett. 2020;20:4298–305.
Harrison EB, Hochfelder CG, Lamberty BG, Meays BM, Morsey BM, Kelso ML, Fox HS, Yelamanchili SV. Traumatic mind harm will increase ranges of miR-21 in extracellular vesicles: implications for neuroinflammation. FEBS Open Bio. 2016;6:835–46.
Luo Z, Peng W, Xu Y, Xie Y, Liu Y, Lu H, Cao Y, Hu J. Exosomal OTULIN from M2 macrophages promotes the restoration of spinal twine accidents by way of stimulating Wnt/beta-catenin pathway-mediated vascular regeneration. Acta Biomater. 2021;136:519–32.
Sugeno A, Piao W, Yamazaki M, Takahashi Ok, Arikawa Ok, Matsunaga H, Hosokawa M, Tominaga D, Goshima Y, Takeyama H, Ohshima T. Cortical transcriptome evaluation after spinal twine harm reveals the regenerative mechanism of central nervous system in CRMP2 knock-in mice. Neural Regen Res. 2021;16:1258–65.
Ralston HJ third, Ralston DD. Medial lemniscal and spinal projections to the macaque thalamus: an electron microscopic research of differing GABAergic circuitry serving thalamic somatosensory mechanisms. J Neurosci. 1994;14:2485–502.
Balch WE, Dunphy WG, Braell WA, Rothman JE. Reconstitution of the transport of protein between successive compartments of the golgi measured by the coupled incorporation of N-acetylglucosamine. Cell. 1984;39:405–16.
Sollner T, Whitehart SW, Brunner M, Erdjumentbromage H, Geromanos S, Tempst P, Rothman JE. SNAP receptors implicated in vesicle focusing on and fusion. Nature. 1993;362:318–24.
Novick P, Schekman R. Secretion and cell-surface development are blocked in a temperature-sensitive mutant of saccharomyces-cerevisiae. Proc Natl Acad Sci USA. 1979;76:1858–62.
Kaiser CA, Schekman R. Distinct units of SEC genes govern transport vesicle formation and fusion early within the secretory pathway. Cell. 1990;61:723–33.
Pan BT, Johnstone RM. Destiny of the transferrin receptor throughout maturation of sheep reticulocytes invitro—selective externalization of the receptor. Cell. 1983;33:967–77.
Harding C, Heuser J, Stahl P. Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes—demonstration of a pathway for receptor shedding. Eur J Cell Biol. 1984;35:256–63.
Ahuja CS, Mothe A, Khazaei M, Badhiwala JH, Gilbert EA, van der Kooy D, Morshead CM, Tator C, Fehlings MG. The forefront: rising neuroprotective and neuroregenerative cell-based therapies for spinal twine harm. Stem Cells Transl Med. 2020;9:1509–30.
Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, Ismail OHR, Athi Kumar RK, Lokanathan Y. Spinal twine harm: pathophysiology, multimolecular interactions, and underlying restoration mechanisms. Int J Mol Sci. 2020;21:7533.
Szymoniuk M, Litak J, Sakwa L, Dryla A, Zezulinski W, Czyzewski W, Kamieniak P, Blicharski T. Molecular mechanisms and scientific utility of multipotent stem cells for spinal twine harm. Cells. 2022;12:120.
Wu F, Li XH, Gong MJ, An JQ, Ding XY, Huang SL. Timing of splenectomy after acute spinal twine harm. eNeuro. 2022. https://doi.org/10.1523/ENEURO.0440-21.2021.
Mozer AB, Whittemore SR, Benton RL. Spinal microvascular expression of PV-1 is related to irritation, perivascular astrocyte loss, and diminished EC glucose transport potential in acute SCI. Curr Neurovasc Res. 2010;7:238–50.
Li C, Wu Z, Zhou L, Shao J, Hu X, Xu W, Ren Y, Zhu X, Ge W, Zhang Ok, et al. Temporal and spatial mobile and molecular pathological alterations with single-cell decision within the grownup spinal twine after harm. Sign Transduct Goal Ther. 2022;7:65.
Hejrati N, Aarabi B, Neal CJ, Ugiliweneza B, Kurpad SN, Shaffrey C, Visitor J, Toups EG, Harrop JS, Fehlings MG. Tendencies in the usage of corticosteroids within the administration of acute spinal twine harm in north American scientific trials networks (NACTN) websites. J Neurotrauma. 2023. https://doi.org/10.1089/neu.2022.0409.
Cheng YY, Zhao HK, Chen LW, Yao XY, Wang YL, Huang ZW, Li GP, Wang Z, Chen BY. Reactive astrocytes improve expression of proNGF within the mouse mannequin of contused spinal twine harm. Neurosci Res. 2020;157:34–43.
Lankford KL, Arroyo EJ, Nazimek Ok, Bryniarski Ok, Askenase PW, Kocsis JD. Intravenously delivered mesenchymal stem cell-derived exosomes goal M2-type macrophages within the injured spinal twine. PLoS ONE. 2018;13: e0190358.
Ortega MA, Fraile-Martinez O, Garcia-Montero C, Haro S, Alvarez-Mon MA, De Leon-Oliva D, Gomez-Lahoz AM, Monserrat J, Atienza-Perez M, Diaz D, et al. A complete have a look at the psychoneuroimmunoendocrinology of spinal twine harm and its development: mechanisms and scientific alternatives. Mil Med Res. 2023;10:26.
Zhang ZJ, Zhang XL, Wang CG, Teng WSY, Xing HY, Wang FQ, Yinwang E, Solar HX, Wu Y, Yu CC, et al. Enhancement of motor practical restoration utilizing immunomodulatory extracellular vesicles-loaded injectable thermosensitive hydrogel submit spinal twine harm. Chem Eng J. 2022;433: 134465.
Xiong W, Tian HQ, Li ZG, Peng ZB, Wang YS. Curcumin-primed umbilical twine mesenchymal stem cells-derived extracellular vesicles enhance motor practical restoration of mice with full spinal twine harm by decreasing irritation and enhancing axonal regeneration. Neurochem Res. 2023;48:1334–46.
Petrova V, Pearson CS, Ching J, Tribble JR, Solano AG, Yang YF, Love FM, Watt RJ, Osborne A, Reid E, et al. Protrudin features from the endoplasmic reticulum to help axon regeneration within the grownup CNS. Nat Commun. 2020;11:5614.
Yang T, Wu L, Wang H, Fang J, Yao N, Xu Y. Irritation stage after decompression surgical procedure for a rat mannequin of persistent extreme spinal twine compression and results on ischemia-reperfusion harm. Neurol Med Chir (Tokyo). 2015;55:578–86.
Li XQ, Wang J, Fang B, Tan WF, Ma H. Intrathecal antagonism of microglial TLR4 reduces inflammatory injury to blood-spinal twine barrier following ischemia/reperfusion harm in rats. Mol Mind. 2014;7:28.
Chen YY, Tian ZM, He L, Liu C, Wang NX, Rong LM, Liu B. Exosomes derived from miR-26a-modified MSCs promote axonal regeneration by way of the PTEN/AKT/mTOR pathway following spinal twine harm. Stem Cell Res Ther. 2021;12:1–15.
Ma WJ, Zhan YX, Zhang YX, Xie XP, Mao CC, Lin YF. Enhanced neural regeneration with a concomitant therapy of framework nucleic acid and stem cells in spinal twine harm. ACS Appl Mater Interfaces. 2020;12:2095–106.
Hervera A, De Virgiliis F, Palmisano I, Zhou LM, Tantardini E, Kong GP, Hutson T, Danzi MC, Perry RB, Santos CXC, et al. Reactive oxygen species regulate axonal regeneration by means of the discharge of exosomal NADPH oxidase 2 complexes into injured axons. Nat Cell Biol. 2018;20:307.
Yu YF, Hou Ok, Ji T, Wang XS, Liu YN, Zheng YY, Xu JY, Hou Y, Chi GF. The position of exosomal microRNAs in central nervous system illnesses. Mol Cell Biochem. 2021;476:2111–24.
Dutta D, Khan N, Wu J, Jay SM. Extracellular vesicles as an rising frontier in spinal twine harm pathobiology and remedy. Tendencies Neurosci. 2021;44:492–506.
Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al. Minimal info for research of extracellular vesicles 2018 (MISEV2018): a place assertion of the Worldwide Society for Extracellular Vesicles and replace of the MISEV2014 pointers. J Extracell Vesicles. 2018;7:1535750.
Izadpanah M, Seddigh A, Ebrahimi Barough S, Fazeli SAS, Ai J. Potential of extracellular vesicles in neurodegenerative illnesses: diagnostic and therapeutic indications. J Mol Neurosci. 2018;66:172–9.
Selmaj I, Mycko MP, Raine CS, Selmaj KW. The position of exosomes in CNS irritation and their involvement in a number of sclerosis. J Neuroimmunol. 2017;306:1–10.
Cardoso AM, Guedes JR, Cardoso AL, Morais C, Cunha P, Viegas AT, Costa R, Jurado A, Pedroso de Lima MC. Latest traits in nanotechnology towards CNS illnesses: lipid-based nanoparticles and exosomes for focused therapeutic supply. Int Rev Neurobiol. 2016;130:1–40.
Chen JC, Wu JH, Mu JF, Li LM, Hu JY, Lin HJ, Cao J, Gao JQ. An antioxidative sophora exosome-encapsulated hydrogel promotes spinal twine restore by regulating oxidative stress microenvironment. Nanomed-Nanotechnol. 2023;47: 102625.
Yin ZY, Yin J, Huo YF, Gu GX, Yu J, Li AM, Tang JH. KCC2 overexpressed exosomes meditated spinal twine harm restoration in mice. Biomed Mater. 2022;17: 064104.
Wang BC, Chang MM, Zhang RW, Wo J, Wu BW, Zhang H, Zhou ZG, Li ZZ, Zhang F, Zhong C, et al. Spinal twine harm target-immunotherapy with TNF-alpha autoregulated and feedback-controlled human umbilical twine mesenchymal stem cell derived exosomes remodelled by CRISPR/Cas9 plasmid. Biomater Adv. 2022;133: 112624.
Sung SE, Web optimization MS, Kim YI, Kang KK, Choi JH, Lee S, Sung M, Yim SG, Lim JH, Seok HG, et al. Human epidural AD-MSC exosomes enhance perform restoration after spinal twine harm in rats. Biomedicines. 2022;10:678.
Romanelli P, Bieler L, Heimel P, Skokic S, Jakubecova D, Kreutzer C, Zaunmair P, Smolcic T, Benedetti B, Rohde E, et al. Enhancing practical restoration by means of intralesional utility of extracellular vesicles in a rat mannequin of traumatic spinal twine harm. Entrance Cell Neurosci. 2022;15: 795008.
Li SQZ, Liao X, He YX, Chen R, Zheng WV, Tang MS, Guo XH, Chen JH, Hu S, Solar J. Exosomes derived from NGF-overexpressing bone marrow mesenchymal stem cell sheet promote spinal twine harm restore in a mouse mannequin. Neurochem Int. 2022;157: 105339.
Li CJ, Qin T, Liu YD, Wen HC, Zhao JY, Luo ZX, Peng W, Lu HB, Duan CY, Cao Y, Hu JZ. Microglia-derived exosomal microRNA-151-3p enhances practical therapeutic after spinal twine harm by attenuating neuronal apoptosis by way of regulating the p53/p21/CDK1 signaling pathway. Entrance Cell Dev Biol. 2022;9: 783017.
Zhang C, Huang Y, Ouyang FB, Su MZ, Li WB, Chen JL, Xiao HJ, Zhou XF, Liu BL. Extracellular vesicles derived from mesenchymal stem cells alleviate neuroinflammation and mechanical allodynia in interstitial cystitis rats by inhibiting NLRP3 inflammasome activation. J Neuroinflamm. 2022;19:1–14.
Liang Y, Wu JH, Zhu JH, Yang H. Exosomes secreted by hypoxia-pre-conditioned adipose-derived mesenchymal stem cells cut back neuronal apoptosis in rats with spinal twine harm. J Neurotrauma. 2022;39:701–14.
Hua T, Yang M, Tune HH, Kong EL, Deng MQ, Li YC, Li J, Liu ZX, Fu HL, Wang Y, Yuan HB. Huc-MSCs-derived exosomes attenuate inflammatory ache by regulating microglia pyroptosis and autophagy by way of the miR-146a-5p/TRAF6 axis. J Nanobiotechnol. 2022;20:1–18.
Liu W, Wang YX, Gong FY, Rong YL, Luo YJ, Tang PY, Zhou Z, Zhou ZM, Xu T, Jiang T, et al. Exosomes derived from bone mesenchymal stem cells restore traumatic spinal twine harm by suppressing the activation of A1 neurotoxic reactive astrocytes. J Neurotrauma. 2019;36:469–84.
Han M, Yang HR, Lu XD, Li YM, Liu ZH, Li F, Shang ZH, Wang XF, Li XZ, Li JL, et al. Three-dimensional-cultured MSC-derived exosome-hydrogel hybrid microneedle array patch for spinal twine restore. Nano Lett. 2022;22:6391–401.
Kim HY, Kumar H, Jo MJ, Kim J, Yoon JK, Lee JR, Kang M, Choo YW, Tune SY, Kwon SP, et al. Therapeutic efficacy-potentiated and diseased organ-targeting nanovesicles derived from mesenchymal stem cells for spinal twine harm therapy. Nano Lett. 2018;18:4965–75.
Huang W, Qu MJ, Li L, Liu T, Lin MM, Yu XB. SiRNA in MSC-derived exosomes silences CTGF gene for locomotor restoration in spinal twine harm rats. Stem Cell Res Ther. 2021;12:1–14.
Lai XW, Wang Y, Wang XK, Liu B, Rong LM. miR-146a-5p-modified hUCMSC-derived exosomes facilitate spinal twine perform restoration by focusing on neurotoxic astrocytes. Stem Cell Res Ther. 2022;13:487.
Ouyang X, Han XY, Chen ZH, Fang JF, Huang XN, Wei HB. MSC-derived exosomes ameliorate erectile dysfunction by alleviation of corpus cavernosum clean muscle apoptosis in a rat mannequin of cavernous nerve harm. Stem Cell Res Ther. 2018;9:1–12.
Zhang L, Han PB. Neural stem cell-derived exosomes suppress neuronal cell apoptosis by activating autophagy by way of miR-374-5p/STK-4 axis in spinal twine harm. J Musculoskel Neuron. 2022;22:411–21.
Chen JB, Zhang C, Li SY, Li ZM, Lai XJ, Xia QQ. Exosomes derived from nerve stem cells loaded with FTY720 promote the restoration after spinal twine harm in rats by PTEN/AKT sign pathway. J Immunol Res. 2021. https://doi.org/10.1155/2021/8100298.
Rong YL, Liu W, Wang JX, Fan J, Luo YJ, Li LW, Kong FQ, Chen J, Tang PY, Cai WH. Neural stem cell-derived small extracellular vesicles attenuate apoptosis and neuroinflammation after traumatic spinal twine harm by activating autophagy. Cell Dying Dis. 2019;10:340.
Rong YL, Liu W, Lv CT, Wang JX, Luo YJ, Jiang DD, Li LW, Zhou Z, Zhou W, Li QQ, et al. Neural stem cell small extracellular vesicle-based supply of 14-3-3t reduces apoptosis and neuroinflammation following traumatic spinal twine harm by enhancing autophagy by focusing on Beclin-1. Getting older. 2019;11:7723–45.
Xia B, Gao JB, Li SY, Huang LL, Zhu L, Ma T, Zhao LH, Yang YJ, Luo Ok, Shi XW, et al. Mechanical stimulation of Schwann cells promote peripheral nerve regeneration by way of extracellular vesicle-mediated switch of microRNA 23b-3p. Theranostics. 2020;10:8974–95.
Wei ZJ, Fan BY, Ding H, Liu Y, Tang HS, Pan DY, Shi JX, Zheng PY, Shi HY, Wu H, et al. Proteomics evaluation of Schwann cell-derived exosomes: a novel therapeutic technique for central nervous system harm. Mol Cell Biochem. 2019;457:51–9.
Li RY, Hu Q, Shi X, Luo ZY, Shao DH. Crosstalk between exosomes and autophagy in spinal twine harm: contemporary optimistic goal for therapeutic utility. Cell Tissue Res. 2023;391:1–17.
Feng J, Zhang Y, Zhu Z, Gu C, Waqas A, Chen L. Rising exosomes and exosomal miRNAs in spinal twine harm. Entrance Cell Dev Biol. 2021;9: 703989.
Tune N, Scholtemeijer M, Shah Ok. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Tendencies Pharmacol Sci. 2020;41:653–64.
Shao CL, Chen Y, Yang TY, Zhao HB, Li DZ. Mesenchymal stem cell derived exosomes suppress neuronal cell ferroptosis by way of IncGm36569/miR-5627-5p/FSP1 axis in acute spinal twine harm. Stem Cell Rev Rep. 2022;18:1127–42.
Pang QM, Chen SY, Fu SP, Zhou H, Zhang Q, Ao J, Luo XP, Zhang T. Regulatory position of mesenchymal stem cells on secondary irritation in spinal twine harm. J Inflamm Res. 2022;15:573–93.
Yousefifard M, Nasirinezhad F, Shardi Manaheji H, Janzadeh A, Hosseini M, Keshavarz M. Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for assuaging neuropathic ache in a spinal twine harm mannequin. Stem Cell Res Ther. 2016;7:36.
Liu B, Zheng WJ, Dai L, Fu SJ, Shi EY. Bone marrow mesenchymal stem cell derived exosomal miR-455-5p protects towards spinal twine ischemia reperfusion harm. Tissue Cell. 2022;74: 101678.
Wang CG, Wang M, Xia KS, Wang JK, Cheng F, Shi KS, Ying LW, Yu C, Xu HB, Xiao SN, et al. A bioactive injectable self-healing anti-inflammatory hydrogel with ultralong extracellular vesicles launch synergistically enhances motor practical restoration of spinal twine harm. Bioact Mater. 2021;6:2523–34.
Lu Y, Chen C, Wang H, Du R, Ji JW, Xu T, Yang CW, Chen XQ. Astrocyte-derived sEVs alleviate fibrosis and promote practical restoration after spinal twine harm in rats. Int Immunopharmacol. 2022;113: 109322.
Ge XH, Tang PY, Rong YL, Jiang DD, Lu X, Ji CY, Wang JX, Huang CY, Duan A, Liu Y, et al. Exosomal miR-155 from M1-polarized macrophages promotes EndoMT and impairs mitochondrial perform by way of activating NF-kappa B signaling pathway in vascular endothelial cells after traumatic spinal twine harm. Redox Biol. 2021;41: 101932.
Lee JR, Kyung JW, Kumar H, Kwon SP, Tune SY, Han IB, Kim BS. Focused supply of mesenchymal stem cell-derived nanovesicles for spinal twine harm therapy. Int J Mol Sci. 2020;21:4185.
Liau LL, Looi QH, Chia WC, Subramaniam T, Ng MH, Legislation JX. Therapy of spinal twine harm with mesenchymal stem cells. Cell Biosci. 2020;10:1–17.
Osorio-Querejeta I, Carregal-Romero S, Ayerdi-Izquierdo A, Mager I, Nash LA, Wooden M, Egimendia A, Betanzos M, Alberro A, Iparraguirre L, et al. MiR-219a-5p enriched extracellular vesicles induce OPC differentiation and EAE enchancment extra effectively than liposomes and polymeric nanoparticles. Pharmaceutics. 2020;12:186.
Yildirimer L, Zhang Q, Kuang S, Cheung CJ, Chu KA, He Y, Yang M, Zhao X. Engineering three-dimensional microenvironments in direction of in vitro illness fashions of the central nervous system. Biofabrication. 2019;11: 032003.
Cui H, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for organ regeneration. Adv Healthc Mater. 2017;6:1601118.
Yang Z, Shi J, Xie J, Wang Y, Solar J, Liu T, Zhao Y, Zhao X, Wang X, Ma Y, et al. Giant-scale era of practical mRNA-encapsulating exosomes by way of mobile nanoporation. Nat Biomed Eng. 2020;4:69–83.
Jeyaram A, Lamichhane TN, Wang S, Zou L, Dahal E, Kronstadt SM, Levy D, Parajuli B, Knudsen DR, Chao W, Jay SM. Enhanced loading of practical miRNA Cargo by way of pH gradient modification of extracellular vesicles. Mol Ther. 2020;28:975–85.
Mu JF, Li LM, Wu JH, Huang TC, Zhang Y, Cao J, Ma T, Chen JC, Zhang CY, Zhang XQ, et al. Hypoxia-stimulated mesenchymal stem cell-derived exosomes loaded by adhesive hydrogel for efficient angiogenic therapy of spinal twine harm. Biomater Sci. 2022;10:1803–11.
Cheng JY, Chen Z, Liu C, Zhong M, Wang SH, Solar YJ, Wen HQ, Shu T. Bone mesenchymal stem cell-derived exosomes-loaded injectable hydrogel for minimally invasive therapy of spinal twine harm. Nanomedicine. 2021;16:1567–79.
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wooden MJA. Supply of siRNA to the mouse mind by systemic injection of focused exosomes. Nat Biotechnol. 2011;29:341–5.
Hedayat M, Ahmadi M, Shoaran M, Rezaie J. Therapeutic utility of mesenchymal stem cells derived exosomes in neurodegenerative illnesses: a concentrate on non-coding RNAs cargo, drug supply potential, perspective. Life Sci. 2023;320: 121566.
Gao ZS, Zhang CJ, Xia N, Tian H, Li DY, Lin JQ, Mei XF, Wu C. Berberine-loaded M2 macrophage-derived exosomes for spinal twine harm remedy. Acta Biomater. 2021;126:211–23.
Ren ZH, Qi Y, Solar SY, Tao YY, Shi RY. Mesenchymal stem cell-derived exosomes: hope for spinal twine harm restore. Stem Cells Dev. 2020;29:1467–78.
Jaeger CB, Blight AR. Spinal twine compression harm in guinea pigs: structural adjustments of endothelium and its perivascular cell associations after blood-brain barrier breakdown and restore. Exp Neurol. 1997;144:381–99.
Zhu JW, Liu WS. A story of two databases: the usage of Net of Science and Scopus in tutorial papers. Scientometrics. 2020;123:321–35.
Rousseau S, Rousseau R. Bibliometric strategies and their use in enterprise and economics analysis. J Econ Surv. 2021;35:1428–51.
Lim YJ, Jung GN, Park WT, Web optimization MS, Lee GW. Therapeutic potential of small extracellular vesicles derived from mesenchymal stem cells for spinal twine and nerve harm. Entrance Cell Dev Biol. 2023;11:1151357.
Gimona M, Pachler Ok, Laner-Plamberger S, Schallmoser Ok, Rohde E. Manufacturing of human extracellular vesicle-based therapeutics for scientific use. Int J Mol Sci. 2017;18:1190.