Hwang, H. Y. et al. Nonlinear THz conductivity dynamics in p-type CVD-grown graphene. J. Phys. Chem. B 117, 15819–15824 (2013).
Hafez, H. A. et al. Extraordinarily environment friendly terahertz high-harmonic era in graphene by scorching Dirac fermions. Nature 561, 507–511 (2018).
Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).
Romagnoli, M. et al. Graphene-based built-in photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414 (2018).
Muench, J. E. et al. Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett. 19, 7632–7644 (2019).
Pisana, S. et al. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007).
Hwang, E. H., Sensarma, R. & Sarma, S. D. Plasmon–phonon coupling in graphene. Phys. Rev. B 82, 195406 (2010).
Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10, 682–686 (2015).
Koch, R. et al. Sturdy phonon–plasmon coupling in quasifreestanding graphene on silicon carbide. Phys. Rev. Lett. 116, 106802 (2016).
Kavokine, N., Bocquet, M.-L. & Bocquet, L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 602, 84–90 (2022).
Bui, A. T., Thiemann, F. L., Michaelides, A. & Cox, S. J. Classical quantum friction at water–carbon interfaces. Nano Lett. 23, 580–587 (2023).
Coquinot, B., Bocquet, L. & Kavokine, N. Quantum suggestions on the strong–liquid interface: flow-induced digital present and its destructive contribution to friction. Phys. Rev. X 13, 011019 (2023).
Lizée, M. et al. Robust digital winds blowing below liquid flows on carbon surfaces. Phys. Rev. X 13, 011020 (2023).
George, P. A. et al. Ultrafast optical-pump terahertz-probe spectroscopy of the service leisure and recombination dynamics in epitaxial graphene. Nano Lett. 8, 4248–4251 (2008).
Kar, S., Su, Y., Nair, R. R. & Sood, A. Ok. Probing photoexcited carriers in a few-layer MoS2 laminate by time-resolved optical pump terahertz probe spectroscopy. ACS Nano 9, 12004–12010 (2015).
Mihnev, M. T. et al. Digital cooling through interlayer Coulomb coupling in multilayer epitaxial graphene. Nat. Commun. 6, 8105 (2015).
Mihnev, M. T. et al. Microscopic origins of the terahertz service leisure and cooling dynamics in graphene. Nat. Commun. 7, 11617 (2016).
Pogna, E. A. et al. Scorching-carrier cooling in high-quality graphene is intrinsically restricted by optical phonons. ACS Nano 15, 11285–11295 (2021).
Zheng, W. et al. Band transport by massive Fröhlich polarons in MXenes. Nat. Phys. 18, 544–550 (2022).
Tielrooij, Ok. J. et al. Out-of-plane warmth switch in van der Waals stacks by electron–hyperbolic phonon coupling. Nat. Nanotechnol. 13, 41–46 (2018).
Phillpot, S. R. & McGaughey, A. J. Introduction to thermal transport. Mater. As we speak 8, 18–20 (2005).
Gutierrez-Varela, O., Merabia, S. & Santamaria, R. Measurement-dependent results of the thermal transport at gold nanoparticle–water interfaces. J. Chem. Phys. 157, 084702 (2022).
Herrero, C., Joly, L. & Merabia, S. Extremely-high liquid–strong thermal resistance utilizing nanostructured gold surfaces coated with graphene. Appl. Phys. Lett. 120, 171601 (2022).
Volokitin, A. I. & Persson, B. N. Close to-field radiative warmth switch and noncontact friction. Rev. Mod. Phys. 79, 1291–1329 (2007).
Biehs, S.-A. et al. Close to-field radiative warmth switch in many-body techniques. Rev. Mod. Phys. 93, 025009 (2021).
Maali, A., Cohen-Bouhacina, T. & Kellay, H. Measurement of the slip size of water circulation on graphite floor. Appl. Phys. Lett. 92, 053101 (2008).
Secchi, E. et al. Large radius-dependent circulation slippage in carbon nanotubes. Nature 537, 210–213 (2016).
Xie, Q. et al. Quick water transport in graphene nanofluidic channels. Nat. Nanotechnol. 13, 238–245 (2018).
Bistritzer, R. & MacDonald, A. H. Digital cooling in graphene. Phys. Rev. Lett. 102, 206410 (2009).
Betz, A. C. et al. Scorching electron cooling by acoustic phonons in graphene. Phys. Rev. Lett. 109, 056805 (2012).
Brida, D. et al. Ultrafast collinear scattering and service multiplication in graphene. Nat. Commun. 4, 1987 (2013).
Tomadin, A. et al. The ultrafast dynamics and conductivity of photoexcited graphene at completely different Fermi energies. Sci. Adv. 4, eaar5313 (2018).
Massicotte, M., Soavi, G., Principi, A. & Tielrooij, Ok. J. Scorching carriers in graphene-fundamentals and functions. Nanoscale 13, 8376–8411 (2021).
Mahan, G. D. Many-Particle Physics Ch. 7 (Springer, 2000).
Principi, A. et al. Tremendous-Planckian electron cooling in a van der Waals stack. Phys. Rev. Lett. 118, 126804 (2017).
Rammer, J. & Smith, H. Quantum field-theoretical strategies in transport principle of metals. Rev. Mod. Phys. 58, 323–359 (1986).
Clever, J. L., Roubinowitz, N., Belzig, W. & Basko, D. M. Signature of resonant modes in radiative warmth present noise spectrum. Phys. Rev. B 106, 165407 (2022).
Pendry, J. B. Radiative change of warmth between nanostructures. J. Phys. Condens. Matter 11, 6621–6633 (1999).
Volokitin, A. I. & Persson, B. N. J. Radiative warmth switch between nanostructures. Phys. Rev. B 63, 205404 (2001).
Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of graphene at finite doping. N. J. Phys. 8, 318–318 (2006).
Carlson, S., Brunig, F. N., Loche, P., Bonthuis, D. J. & Netz, R. R. Exploring the absorption spectrum of simulated water from MHz to infrared. J. Phys. Chem. A 124, 5599–5605 (2020).
Ying, X. & Kamenev, A. Plasmonic tuning of near-field warmth switch between graphene monolayers. Phys. Rev. B 102, 195426 (2020).
Tocci, G., Joly, L. & Michaelides, A. Friction of water on graphene and hexagonal boron nitride from ab initio strategies: very completely different slippage regardless of very related interface constructions. Nano Lett. 14, 6872–6877 (2014).
Tocci, G., Bilichenko, M., Joly, L. & Iannuzzi, M. Ab initio nanofluidics: disentangling the function of the vitality panorama and of density correlations on liquid/strong friction. Nanoscale 12, 10994–11000 (2020).
Yang, W. et al. A graphene Zener–Klein transistor cooled by a hyperbolic substrate. Nat. Nanotechnol. 13, 47–52 (2018).
Baudin, E., Voisin, C. & Plaçais, B. Hyperbolic phonon polariton electroluminescence as an digital cooling pathway. Adv. Funct. Mater. 30, 1904783 (2020).
Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).