Evaluation article laser-induced hyperthermia on graphene oxide composites | Journal of Nanobiotechnology


  • Mallory M, Gogineni E, Jones GC, Greer L, Simone CB. Therapeutic hyperthermia: the outdated, the brand new, and the upcoming. Crit Rev Oncol Hematol. 2016;97:56–64. Obtainable from: https://doi.org/10.1016/j.critrevonc.2015.08.003.

    Article 
    PubMed 

    Google Scholar
     

  • Chicheł A, Skowronek J, Kubaszewska M, Kanikowski M. Hyperthermia – Description of a technique and a evaluation of medical functions. Studies Pract Oncol Radiother [Internet]. 2007;12(5):267–75. Obtainable from: https://doi.org/10.1016/S1507-1367(10)60065-X.

  • Robinson J, Wizenberg M, M., McCready W. Mixed hyperthermia and radiation counsel a substitute for heavy particle remedy for decreased oxygen enhancement ratios. Nature. 1974;251:521–2. Obtainable from: https://doi.org/10.1038/251521a0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Track CW, Lokshina A, Rhee JG, Patten M, Levitt SH. Implication of blood move in hyperthermic remedy of tumors. IEEE Trans Biomed Eng. 1984;BME–31(1):9–16. Obtainable from: https://doi.org/10.1109/TBME.1984.325364.

    Article 

    Google Scholar
     

  • Tsuchido T, Katsui N, Takeuchi A, Takano M, Shibasaki I. Destruction of the outer membrane permeability barrier of Escherichia coli by warmth remedy. Appl Environ Microbiol. 1985;50(2):298–303. Obtainable from: https://doi.org/10.1128/aem.50.2.298-303.1985.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Track CW, Kang MS, Rhee JG, Levitt SH. The impact of hyperthermia on vascular perform, pH, and cell survival. Radiology. 1980;137(3):795–803. Obtainable from: https://doi.org/10.1148/radiology.137.3.7444064.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borráez Segura BA, Díez Rivera MC. RICE. Fundamentos de Cirugía Normal. Editorial Universidad Tecnológica de Pereira; 2020.

  • Wang S, Weng J, Fu X, Lin J, Fan W, Lu N, et al. Black phosphorus nanosheets for gentle hyperthermia-enhanced chemotherapy and chemo-photothermal mixture remedy. Nanotheranostics. 2017;1(2):208–16. Obtainable from: https://doi.org/10.7150/ntno.18767.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brace C. Thermal tumor ablation in medical use. IEEE Pulse. 2011;2(5):28–38. Obtainable from: https://doi.org/10.1109/mpul.2011.942603.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang B, Wang Y, Liu J, Zhai G. Current developments of phototherapy primarily based on graphene household nanomaterials. Curr Med Chem. 2016;24(3):268–91. Obtainable from: https://doi.org/10.2174/0929867323666161019141817.

    Article 

    Google Scholar
     

  • Habash RWY. Therapeutic hyperthermia [Internet]. 1stVol. 157, Handbook of Medical Neurology., Elsevier BV. ; 2018. 853–868 p. Obtainable from: https://doi.org/10.1016/B978-0-444-64074-1.00053-7.

  • Oh J, Yoon H, Park JH. Nanoparticle platforms for mixed photothermal and photodynamic remedy. Biomed Eng Lett. 2013;3(2):67–73. Obtainable from: https://doi.org/10.1007/s13534-013-0097-8.

    Article 

    Google Scholar
     

  • Gollavelli G, Ghule AV, Ling YC. Multimodal Imaging and Phototherapy of Most cancers and bacterial an infection by Graphene and associated nanocomposites. Molecules. 2022;27(17). Obtainable from: https://doi.org/10.3390/molecules27175588.

  • Zhang X, Wang S, Cheng G, Yu P, Chang J. Gentle-Responsive Nanomaterials for Most cancers Remedy. Engineering [Internet]. 2022;13:18–30. Obtainable from: https://doi.org/10.1016/j.eng.2021.07.023.

  • Du T, Cao J, Xiao Z, Liu J, Wei L, Li C et al. Van-mediated self-aggregating photothermal brokers mixed with multifunctional magnetic nickel oxide nanoparticles for exact elimination of bacterial infections. J Nanobiotechnology [Internet]. 2022;20(1):1–21. Obtainable from: https://doi.org/10.1186/s12951-022-01535-1.

  • Track C, Li F, Guo X, Chen W, Dong C, Zhang J, et al. Gold nanostars for most cancers cell-targeted SERS-imaging and NIR light-triggered plasmonic photothermal remedy (PPTT) within the first and second organic home windows. J Mater Chem B. 2019;7(12):2001–8. Obtainable from: https://doi.org/10.1039/C9TB00061E.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Assi HTI, Arsenault MG, Whelan WM, Kumaradas JC. A brand new thermal dose mannequin primarily based on Vogel-Tammann-Fulcher behaviour in thermal harm processes. Int J Hyperth [Internet]. 2022;39(1):697–705. Obtainable from: https://doi.org/10.1080/02656736.2022.2065367.

  • Van Rhoon GC. Is CEM43 nonetheless a related thermal dose parameter for hyperthermia remedy monitoring? Int J Hyperth. 2016;32(1):50–62. Obtainable from: https://doi.org/10.3109/02656736.2015.1114153.

    Article 

    Google Scholar
     

  • Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Primary rules of thermal dosimetry and thermal thresholds for tissue harm from hyperthermia. Int J Hyperth. 2003;19(3):267–94. Obtainable from: https://doi.org/10.1080/0265673031000119006.

    Article 
    CAS 

    Google Scholar
     

  • Zhang B, Wang Y, Zhai G. Biomedical functions of the graphene-based supplies. Mater Sci Eng C [Internet]. 2016;61:953–64. Obtainable from: https://doi.org/10.1016/j.msec.2015.12.073.

  • Muazim Ok, Hussain Z. Graphene oxide — A platform in the direction of theranostics. Mater Sci Eng C [Internet]. 2017;76:1274–88. Obtainable from: https://doi.org/10.1016/j.msec.2017.02.121.

  • Yang Ok, Zhang S, Zhang G, Solar X, Lee ST, Liu Z. Graphene in mice: Ultrahigh in vivo tumor uptake and environment friendly photothermal remedy. Nano Lett. 2010;10(9):3318–23. Obtainable from: https://doi.org/10.1021/nl100996u.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Renteria JD, Ramirez S, Malekpour H, Alonso B, Centeno A, Zurutuza A, et al. Strongly anisotropic thermal conductivity of free-standing decreased Graphene Oxide Movies annealed at excessive temperature. Adv Funct Mater. 2015;25(29):4664–72. Obtainable from: https://doi.org/10.1002/adfm.201501429.

    Article 
    CAS 

    Google Scholar
     

  • Savchuk OA, Carvajal JJ, Massons J, Aguiló M, Díaz F. Willpower of photothermal conversion effectivity of graphene and graphene oxide by way of an integrating sphere methodology. Carbon N Y. 2016;103:134–41. Obtainable from: https://doi.org/10.1016/j.carbon.2016.02.075.

    Article 
    CAS 

    Google Scholar
     

  • Huang Q, Li MY, Wang LL, Yuan H, Wang M, Wu Y, et al. Synthesis of novel cyclodextrin-modified decreased graphene oxide composites by a easy hydrothermal methodology. RSC Adv. 2018;8(66):37623–30. Obtainable from: https://doi.org/10.1039/C8RA07807F.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jun SW, Manivasagan P, Kwon J, Nguyen VT, Mondal S, Ly CD et al. Folic acid–conjugated chitosan-functionalized graphene oxide for extremely environment friendly photoacoustic imaging-guided tumor-targeted photothermal remedy. Int J Biol Macromol [Internet]. 2020;155:961–71. Obtainable from: https://doi.org/10.1016/j.ijbiomac.2019.11.055.

  • Wang Y, Zhang H, Xie J, Liu Y, Wang S, Zhao Q. Three dimensional mesoporous carbon nanospheres as carriers for chemo-photothermal remedy in contrast with two dimensional graphene oxide nanosheets. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2020;590(January):124498. Obtainable from: https://doi.org/10.1016/j.colsurfa.2020.124498.

  • Zhang Y, Li B, an, Li Z yuan, xia, Yu N, ying H, Zhang Y. Synthesis and characterization of Tamoxifen citrate modified decreased graphene oxide nano sheets for breast most cancers remedy. J Photochem Photobiol B Biol [Internet]. 2018;180(December 2017):68–71. Obtainable from: https://doi.org/10.1016/j.jphotobiol.2017.12.017.

  • Li C, Chen X, Zhang Z, Jiang G. Synthesis of Neogambogic Acid Mediated Lowered Graphene Oxide Nanosheets as Photothermal Radiotherapy Brokers and Impact on Breast Most cancers Cells. J Clust Sci [Internet]. 2020;31(5):1097–102. Obtainable from: https://doi.org/10.1007/s10876-019-01717-2.

  • Chang G, Wang Y, Gong B, Xiao Y, Chen Y, Wang S, et al. Lowered graphene oxide/amaranth extract/AuNPs composite hydrogel on tumor cells as built-in platform for localized and a number of synergistic remedy. ACS Appl Mater Interfaces. 2015;7(21):11246–56. Obtainable from: https://doi.org/10.1021/acsami.5b03907.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang X, Zhang M, Wang C, Zhang J, Wu H, Yang S. Graphene oxide / BaHoF5 / PEG nanocomposite for dual-modal imaging and warmth shock protein inhibitor-sensitized tumor photothermal remedy. Carbon N Y [Internet]. 2020;158:372–85. Obtainable from: https://doi.org/10.1016/j.carbon.2019.10.105.

  • Ma Y, Yan F, Liu L, Wei WJ, Zhao Z, Solar J. The improved photo-thermal remedy of Floor improved photoactive cadmium sulfide (CdS) quantum dots entrenched graphene oxide nanoflakes in tumor remedy. J Photochem Photobiol B Biol [Internet]. 2019;192(26):34–9. Obtainable from: https://doi.org/10.1016/j.jphotobiol.2018.12.014.

  • Thapa RK, Soe ZC, Ou W, Poudel Ok, Jeong JH, Jin SG et al. Palladium nanoparticle-decorated 2-D graphene oxide for efficient photodynamic and photothermal remedy of prostate strong tumors. Colloids Surfaces B Biointerfaces [Internet]. 2018;169(Could):429–37. Obtainable from: https://doi.org/10.1016/j.colsurfb.2018.05.051.

  • Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A. The usage of a glucose-reduced graphene oxide suspension for photothermal most cancers remedy. J Mater Chem. 2012;22(27):13773–81. Obtainable from: https://doi.org/10.1039/C2JM31396K.

    Article 
    CAS 

    Google Scholar
     

  • Wang C, Wang X, Chen Y, Fang Z. In-vitro photothermal remedy utilizing plant extract polyphenols functionalized graphene sheets for remedy of lung most cancers. J Photochem Photobiol B Biol [Internet]. 2020;204(415):111587. Obtainable from: https://doi.org/10.1016/j.jphotobiol.2019.111587.

  • Ma L, Feng X, Liang H, Wang Ok, Track Y, Tan L et al. A novel photothermally managed multifunctional scaffold for medical remedy of osteosarcoma and tissue regeneration. Mater Right this moment [Internet]. 2020;36(xx):48–62. Obtainable from: https://doi.org/10.1016/j.mattod.2019.12.005.

  • Sang R, Chen M, Yang Y, Li Y, Shi J, Deng Y, et al. HAp@GO drug supply automobile with dual-stimuli-triggered drug launch property and environment friendly synergistic remedy perform towards most cancers. J Biomed Mater Res – Half A. 2019;107(10):2296–309. Obtainable from: https://doi.org/10.1002/jbm.a.36738.

    Article 
    CAS 

    Google Scholar
     

  • Kang S, Hong YL, Ku BC, Lee S, Ryu S, Min DH, et al. Synthesis of biologically-active decreased graphene oxide by utilizing fucoidan as a multifunctional agent for mixture most cancers remedy. Nanotechnology. 2018;29:47. Obtainable from: https://doi.org/10.1088/1361-6528/aadfa5.

    Article 

    Google Scholar
     

  • Zaharie-Butucel D, Potara M, Suarasan S, Licarete E, Astilean S. Environment friendly mixed near-infrared-triggered remedy: Phototherapy over chemotherapy in chitosan-reduced graphene oxide-IR820 dye-doxorubicin nanoplatforms. J Colloid Interface Sci [Internet]. 2019;552:218–29. Obtainable from: https://doi.org/10.1016/j.jcis.2019.05.050.

  • Kargar S, Khoei S, Khoee S, Shirvalilou S, Mahdavi SR. Analysis of the mixed impact of NIR laser and ionizing radiation on mobile damages induced by IUdR-loaded PLGA-coated Nano-graphene oxide. Photodiagnosis Photodyn Ther [Internet]. 2018;21(September 2017):91–7. Obtainable from: https://doi.org/10.1016/j.pdpdt.2017.11.007.

  • He S, Li J, Chen M, Deng L, Yang Y, Zeng Z, et al. Graphene oxide-template gold nanosheets as extremely environment friendly near-infrared hyperthermia brokers for most cancers remedy. Int J Nanomedicine. 2020;15:8451–63. Obtainable from: https://doi.org/10.2147/ijn.s265134.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Podolska MJ, Barras A, Alexiou C, Frey B, Gaipl U, Boukherroub R, et al. Graphene Oxide Nanosheets for localized Hyperthermia—Physicochemical characterization, Biocompatibility, and induction of Tumor Cell Dying. Cells. 2020;9:776–94. Obtainable from: https://doi.org/10.3390/cells9030776.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costa-Almeida R, Bogas D, Fernandes JR, Timochenco L, Silva FALS, Meneses J, et al. Close to-infrared radiation-based gentle photohyperthermia remedy of non-melanoma pores and skin most cancers with PEGylated decreased nanographene oxide. Polym (Basel). 2020;12(8):1–19. Obtainable from: https://doi.org/10.3390/polym12081840.


    Google Scholar
     

  • Yan M, Liu Y, Zhu X, Wang X, Liu L, Solar H, et al. Nanoscale decreased graphene oxide-mediated Photothermal Remedy along with IDO inhibition and PD-L1 blockade synergistically promote Antitumor Immunity. ACS Appl Mater Interfaces. 2019;11(2):1876–85. Obtainable from: https://doi.org/10.1021/acsami.8b18751.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung HS, Kong WH, Sung DK, Lee MY, Beack SE, Keum DH, et al. Nanographene oxide-hyaluronic acid conjugate for photothermal ablation remedy of pores and skin most cancers. ACS Nano. 2014;8(1):260–8. Obtainable from: https://doi.org/10.1021/nn405383a.

    Article 
    CAS 

    Google Scholar
     

  • Robinson JT, Tabakman SM, Liang Y, Wang H, Sanchez Casalongue H, Vinh D, et al. Ultrasmall decreased graphene oxide with excessive near-infrared absorbance for photothermal remedy. J Am Chem Soc. 2011;133(17):6825–31. Obtainable from: https://doi.org/10.1021/ja2010175.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen C, Cheng R, Gong T, Huang Y, Li D, Zhao X et al. β-Cyclodextrin-cholic acid-hyaluronic acid polymer coated Fe3O4-graphene oxide nanohybrids as native chemo-photothermal synergistic brokers for enhanced liver tumor remedy. Colloids Surfaces B Biointerfaces [Internet]. 2021;199(November 2020):111510. Obtainable from: https://doi.org/10.1016/j.colsurfb.2020.111510.

  • Wu J, Li Z, Li Y, Pettitt A, Zhou F. Photothermal results of decreased graphene oxide on pancreatic most cancers. Technol Most cancers Res Deal with. 2018;17:1–7. Obtainable from: https://doi.org/10.1177/1533034618768637.

    Article 
    CAS 

    Google Scholar
     

  • Lim JH, Kim DE, Kim EJ, Ahrberg CD, Chung BG. Practical graphene oxide-based nanosheets for Photothermal Remedy. Macromol Res. 2018;26(6):557–65. Obtainable from: https://doi.org/10.1007/s13233-018-6067-3.

    Article 
    CAS 

    Google Scholar
     

  • Chen X, Li C, Wang X, Zhao X. Infrared heating of decreased graphene oxide nanosheets as photothermal radiation therapeutic brokers for tumor regressions. Mater Res Specific. 2019;6(8). Obtainable from: https://doi.org/10.1088/2053-1591/ab13c3.

  • Gai L-X, Wang W-Q, Wu X, Su X-J, Yang F-C. NIR absorbing decreased graphene oxide for photothermal radiotherapy for remedy of esophageal most cancers. J Photochem Photobiol B Biol [Internet]. 2019 Could;194(6):188–93. Obtainable from: https://doi.org/10.1016/j.jphotobiol.2019.03.014.

  • Maddinedi SB, Sonamuthu J, SuzuK Yildiz S, Han G, Cai Y, Gao J et al. Silk sericin induced fabrication of decreased graphene oxide and its in-vitro cytotoxicity, photothermal analysis. J Photochem Photobiol B Biol [Internet]. 2018;186(July):189–96. Obtainable from: https://doi.org/10.1016/j.jphotobiol.2018.07.020.

  • Gulzar A, Xu J, Yang D, Xu L, He F, Gai S, et al. Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial remedy. Dalt Trans. 2018;47(11):3931–9. Obtainable from: https://doi.org/10.1039/C7DT04141A.

    Article 
    CAS 

    Google Scholar
     

  • Zhang X, Luo L, Li L, He Y, Cao W, Liu H et al. Trimodal synergistic antitumor drug supply system primarily based on graphene oxide. Nanomedicine Nanotechnology, Biol Med [Internet]. 2019;15(1):142–52. Obtainable from: https://doi.org/10.1016/j.nano.2018.09.008.

  • Mauro N, Scialabba C, Agnello S, Cavallaro G, Giammona G. Folic acid-functionalized graphene oxide nanosheets by way of plasma etching as a platform to mix NIR anticancer phototherapy and focused drug supply. Mater Sci Eng C [Internet]. 2020;107(July 2019):110201. Obtainable from: https://doi.org/10.1016/j.msec.2019.110201.

  • Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H. Synergistic impact of chemo-photothermal remedy utilizing PEGylated graphene oxide. Biomaterials [Internet]. 2011;32(33):8555–61. Obtainable from: https://doi.org/10.1016/j.biomaterials.2011.07.071.

  • Mun SG, Choi HW, Lee JM, Lim JH, Ha JH, Kang MJ et al. rGO nanomaterial-mediated most cancers concentrating on and photothermal remedy in a microfluidic co-culture platform. Nano Converg [Internet]. 2020;7(1). Obtainable from: https://doi.org/10.1186/s40580-020-0220-3.

  • GLOBOCAN. Worldwide Company for Analysis on Most cancers. Most cancers Right this moment. [Internet]. Estimated age-standardized incidence charges (World) in 2020, worldwide, each sexes, all ages. 2020 [cited 2021 Jan 8]. Obtainable from: https://www.iarc.who.int/.

  • Wu X, Suo Y, Shi H, Liu R, Wu F, Wang T et al. Deep-Tissue Photothermal Remedy Utilizing Laser Illumination at NIR-IIa Window. Nano-Micro Lett [Internet]. 2020;12(1):1–13. Obtainable from: https://doi.org/10.1007/s40820-020-0378-6.

  • Vila M, Matesanz MC, Gonçalves G, Feito MJ, Linares J, Marques PAAP et al. Triggering cell dying by nanographene oxide mediated hyperthermia. Nanotechnology. 2014;25(3). Obtainable from: https://doi.org/10.1088/0957-4484/25/3/035101.

  • Bhuyan BK, Day KJ, Edgerton CE, Ogunbase O. Sensitivity of various cell strains and of various phases within the cell cycle to Hyperthermia. Most cancers Res. 1977;37(10):3780–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Raaphorst GP, Romano SL, Mitchell JB, Bedford JS, Dewey WC. Intrinsic variations in warmth and/or x-ray sensitivity of seven mammalian cell strains cultured and handled beneath an identical circumstances. Most cancers Res. 1979;39(February):396–401.

    CAS 
    PubMed 

    Google Scholar
     

  • Lepock JR. Mobile results of hyperthermia: relevance to the minimal dose for thermal harm. Int J Hyperth. 2003;19(3):252–66. Obtainable from: https://doi.org/10.1080/0265673031000065042.

    Article 
    CAS 

    Google Scholar
     

  • de Kraker MEA, Davey PG, Grundmann H. Mortality and hospital keep related to resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Med. 2011;8(10). Obtainable from: https://doi.org/10.1371/journal.pmed.1001104.

  • WHO WHO. Antimicrobial resistance [Internet]. 2021 [cited 2022 Sep 23]. Obtainable from: https://www.who.int/news-room/fact-sheets/element/antimicrobial-resistance.

  • Shi L, Chen J, Teng L, Wang L, Zhu G, Liu S, et al. The antibacterial functions of Graphene and its derivatives. Small. 2016;12(31):4165–84. Obtainable from: https://doi.org/10.1002/smll.201601841.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Li F, Gao Z, Fang L. Toxicology of graphene oxide nanosheets towards Paecilomyces catenlannulatus. Bull Environ Contam Toxicol [Internet]. 2015;95(1):25–30. Obtainable from: https://doi.org/10.1007/s00128-015-1499-3.

  • Pieper H, Chercheja S, Eigler S, Halbig CE, Filipovic MR, Mokhir A. Endoperoxides revealed as origin of the toxicity of Graphene Oxide. Angew Chemie – Int Ed. 2016;55(1):405–7. Obtainable from: https://doi.org/10.1002/anie.201507070.

    Article 
    CAS 

    Google Scholar
     

  • Ibelli T, Templeton S, Levi-Polyachenko N. Progress on using hyperthermia for mitigating bacterial infections. Int J Hyperth [Internet]. 2018;34(2):144–56. Obtainable from: https://doi.org/10.1080/02656736.2017.1369173.

  • Wu X, Li H, Xiao N. Development of Close to-infrared (NIR) laser interceded floor enactment of proline functionalized graphene oxide with silver nanoparticles for proficient antibacterial, antifungal and wound recuperating remedy in nursing care in hospitals. J Photochem Photobiol B Biol [Internet]. 2018;187(27):89–95. Obtainable from: https://doi.org/10.1016/j.jphotobiol.2018.07.015.

  • Shahnawaz Khan M, Abdelhamid HN, Wu HF. Close to infrared (NIR) laser mediated floor activation of graphene oxide nanoflakes for environment friendly antibacterial, antifungal and wound therapeutic remedy. Colloids Surfaces B Biointerfaces [Internet]. 2015;127:281–91. Obtainable from: https://doi.org/10.1016/j.colsurfb.2014.12.049.

  • Feng Y, Chen Q, Yin Q, Pan G, Tu Z, Liu L. Lowered Graphene Oxide Functionalized with Gold Nanostar Nanocomposites for synergistically killing Micro organism by way of intrinsic antimicrobial exercise and photothermal ablation. ACS Appl Bio Mater. 2019;2(2):747–56. Obtainable from: https://doi.org/10.1021/acsabm.8b00608.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng YW, Wang SH, Liu CM, Chien MY, Hsu CC, Liu TY. Amino-modified graphene oxide nanoplatelets for photo-thermal and anti-bacterial functionality. Surf Coatings Technol [Internet]. 2020;385(January):125441. Obtainable from: https://doi.org/10.1016/j.surfcoat.2020.125441.

  • Ma G, Qi J, Cui Q, Bao X, Gao D, Xing C. Graphene oxide composite for selective recognition, capturing, photothermal killing of micro organism over mammalian cells. Polym (Basel). 2020;12(5):1–14. Obtainable from: https://doi.org/10.3390/polym12051116.


    Google Scholar
     

  • Zhang Q, Liu X, Tan L, Cui Z, Li Z, Liang Y et al. An UV to NIR-driven platform primarily based on crimson phosphorus/graphene oxide movie for fast microbial inactivation. Chem Eng J [Internet]. 2020;383(July 2019):123088. Obtainable from: https://doi.org/10.1016/j.cej.2019.123088.

  • Li Y, Liu X, Tan L, Cui Z, Yang X, Zheng Y, et al. Fast Sterilization and Accelerated Wound Therapeutic utilizing Zn2 + and Graphene Oxide modified g-C3N4 beneath twin gentle irradiation. Adv Funct Mater. 2018;28(30):1–12. Obtainable from: https://doi.org/10.1002/adfm.201800299.

    Article 
    CAS 

    Google Scholar
     

  • Wang YW, Fu YY, Wu LJ, Li J, Yang HH, Chen GN. Focused photothermal ablation of pathogenic bacterium, Staphylococcus aureus, with nanoscale decreased graphene oxide. J Mater Chem B. 2013;1(19):2496–501. Obtainable from: https://doi.org/10.1039/C3TB20144A.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaushal S, Pinnaka AK, Soni S, Singhal NK. Antibody assisted graphene oxide coated gold nanoparticles for fast bacterial detection and close to infrared gentle enhanced antibacterial exercise. Sensors Actuators, B Chem [Internet]. 2021;329(August):129141. Obtainable from: https://doi.org/10.1016/j.snb.2020.129141.

  • Kainz Ok, Bauer MA, Madeo F, Carmona-Gutierrez D. Fungal infections in people: the silent disaster. Microb Cell. 2020;7(6):143–5. Obtainable from: https://doi.org/10.15698/mic2020.06.718.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Díez-Pascual AM. Antibacterial motion of nanoparticle loaded nanocomposites primarily based on graphene and its derivatives: a mini-review. Int J Mol Sci. 2020;21(10). Obtainable from: https://doi.org/10.3390/ijms21103563.

  • Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, et al. Antibacterial exercise of graphite, graphite oxide, graphene oxide, and decreased graphene oxide: membrane and oxidative stress. ACS Nano. 2011;5(9):6971–80. Obtainable from: https://doi.org/10.1021/nn202451x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pavlovsky L, Sturtevant RA, Youthful JG, Solomon MJ. Results of temperature on the morphological, polymeric, and mechanical properties of Staphylococcus epidermidis bacterial biofilms. Langmuir. 2015;31(6):2036–42. Obtainable from: https://doi.org/10.1021/la5044156.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles