Fluorescence-amplified nanocrystals within the second near-infrared window for in vivo real-time dynamic multiplexed imaging


  • Lu, L. & Zhang, F. A deep tissue optical sensing. Nat. Nanotechnol. 17, 566–568 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Huang, J. et al. Molecular optical imaging probes for early analysis of drug-induced acute kidney damage. Nat. Mater. 18, 1133–1143 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shuhendler, A. J. et al. Actual-time imaging of oxidative and nitrosative stress within the liver of dwell animals for drug-toxicity testing. Nat. Biotechnol. 32, 373–380 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Akemann, W. et al. Imaging mind electrical indicators with genetically focused voltage-sensitive fluorescent proteins. Nat. Strategies 7, 643–649 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Germain, R. N. et al. A decade of imaging mobile motility and interplay dynamics within the immune system. Science 336, 1676–1681 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ellenbroek, S. I. J. & van Rheenen, J. Imaging hallmarks of most cancers in dwelling mice. Nat. Rev. Most cancers 14, 406–418 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Harney, A. S. et al. Actual-time imaging reveals native, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hello macrophage–derived VEGFA. Most cancers Discov. 5, 932–943 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Beura, L. Ok. et al. Intravital mucosal imaging of CD8+ resident reminiscence T cells exhibits tissue-autonomous recall responses that amplify secondary reminiscence. Nat. Immunol. 19, 173–182 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Damisah, E. C. et al. A fluoro-Nissl dye identifies pericytes as distinct vascular mural cells throughout in vivo mind imaging. Nat. Neurosci. 20, 1023–1032 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gonzales, A. L. et al. Contractile pericytes decide the path of blood circulation at capillary junctions. Proc. Natl Acad. Sci. USA 117, 27022–27033 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hartmann, D. A. et al. Mind capillary pericytes exert a considerable however sluggish affect on blood circulation. Nat. Neurosci. 24, 633–645 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hofer, S. B. et al. Differential connectivity and response dynamics of excitatory and inhibitory neurons in visible cortex. Nat. Neurosci. 14, 1045–1052 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Knopfel, T. Genetically encoded optical indicators for the evaluation of neuronal circuits. Nat. Rev. Neurosci. 13, 687–700 (2012).

    Article 

    Google Scholar
     

  • Mehlenbacher, R. D. et al. Nanomaterials for in vivo imaging of mechanical forces and electrical fields. Nat. Rev. Mater. 3, 17080 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hontani, Y. et al. Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse mind. Sci. Adv. 7, eabf3531 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Horton, N. G. et al. In vivo three-photon microscopy of subcortical constructions inside an intact mouse mind. Nat. Photon. 7, 205–209 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H. J. et al. In vivo deep-brain structural and hemodynamic multiphoton microscopy enabled by quantum dots. Nano Lett. 19, 5260–5265 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xu, H. et al. Selection of cranial window sort for in vivo imaging impacts dendritic backbone turnover within the cortex. Nat. Neurosci. 10, 549–551 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Hong, G. et al. Close to-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bruns, O. T. et al. Subsequent-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 1, 0056 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chang, B. et al. A phosphorescent probe for in vivo imaging within the second near-infrared window. Nat. Biomed. Eng. 6, 629–639 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bandi, V. G. et al. Focused multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines. Nat. Strategies 19, 353–358 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jia, Q. et al. Orthogonal near-infrared-II imaging allows spatially distinguishing tissues based mostly on lanthanide-doped nanoprobes. Anal. Chem. 92, 14762–14768 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ortgies, D. H. et al. Lifetime-encoded infrared-emitting nanoparticles for in vivo multiplexed imaging. ACS Nano 12, 4362–4368 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, Y. et al. In vivo molecular imaging for immunotherapy utilizing ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 37, 1322–1331 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cosco, E. D. et al. Shortwave infrared polymethine fluorophores matched to excitation lasers allow non-invasive, multicolour in vivo imaging in actual time. Nat. Chem. 12, 1123–1130 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cosco, E. D. et al. Brilliant chromenylium polymethine dyes allow quick, four-color in vivo imaging with shortwave infrared detection. J. Am. Chem. Soc. 143, 6836–6846 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fan, Y. & Zhang, F. A brand new era of NIR-II probes: lanthanide-based nanocrystals for bioimaging and biosensing. Adv. Choose. Mater. 7, 1801417 (2019).

    Article 

    Google Scholar
     

  • Wang, F. & Liu, X. Upconversion multicolor fine-tuning: seen to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130, 5642–5643 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, Y. et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for organic imaging past 1500 nm. Nat. Commun. 8, 737 (2017).

    Article 

    Google Scholar
     

  • Suyver, J., Aebischer, A., García-Revilla, S., Gerner, P. & Güdel, H. Anomalous energy dependence of sensitized upconversion luminescence. Phys. Rev. B 71, 125123 (2005).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017).

    Article 

    Google Scholar
     

  • Shi, R. & Mudring, A. V. Phonon-mediated nonradiative leisure in Ln3+-doped luminescent nanocrystals. ACS Mater. Lett. 4, 1882–1903 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Quintanilla, M. et al. Cubic versus hexagonal—section, dimension and morphology results on the photoluminescence quantum yield of NaGdF4:Er3+/Yb3+ upconverting nanoparticles. Nanoscale 14, 1492–1504 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shen, Z. et al. An artery-specific fluorescent dye for finding out neurovascular coupling. Nat. Strategies 9, 273–276 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hill, R. A. et al. Regional blood circulation within the regular and ischemic mind is managed by arteriolar clean muscle cell contractility and never by capillary pericytes. Neuron 87, 95–110 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and performance in well being and irritation. Nat. Rev. Immunol. 13, 159–175 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kreisel, D. et al. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation throughout pulmonary irritation. Proc. Natl Acad. Sci. USA 107, 18073–18078 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Stark, Ok. et al. Capillary and arteriolar pericytes entice innate leukocytes exiting by means of venules and ‘instruct’ them with pattern-recognition and motility packages. Nat. Immunol. 14, 41–51 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Ng, L. G. et al. Visualizing the neutrophil response to sterile tissue damage in mouse dermis reveals a three-phase cascade of occasions. J. Make investments. Dermatol. 131, 2058–2068 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lim, Ok. et al. In situ neutrophil efferocytosis shapes T cell immunity to influenza an infection. Nat. Immunol. 21, 1046–1057 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Justicia, C. et al. Neutrophil infiltration will increase matrix metalloproteinase-9 within the ischemic mind after occlusion/reperfusion of the center cerebral artery in rats. J. Cereb. Blood Move. Metab. 23, 1430–1440 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Schmid, M. C. et al. Integrin CD11b activation drives anti-tumor innate immunity. Nat. Commun. 9, 5379 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, M. et al. Chemotaxis-driven supply of nano-pathogenoids for full eradication of tumors post-phototherapy. Nat. Commun. 11, 1126 (2020).

    Article 
    CAS 

    Google Scholar
     

  • LaFleur, M. W. et al. PTPN2 regulates the era of exhausted CD8+ T cell subpopulations and restrains tumor immunity. Nat. Immunol. 20, 1335–1347 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hyun, Y. M. et al. Uropod elongation is a standard closing step in leukocyte extravasation by means of infected vessels. J. Exp. Med. 209, 1349–1362 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Lim, Ok. et al. Neutrophil trails information influenza-specific CD8+ T cells within the airways. Science 349, aaa4352 (2015).

    Article 

    Google Scholar
     

  • Hong, G. et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores within the second near-infrared window. Nat. Commun. 5, 4206 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles