Meyers, M. A., McKittrick, J. & Chen, P. Y. Structural organic supplies: essential mechanics–supplies connections. Science 339, 773–779 (2013).
Rossetti, L. et al. The microstructure and micromechanics of the tendon–bone insertion. Nat. Mater. 16, 664–670 (2017).
Rinoldi, C., Kijenska-Gawronska, E., Khademhosseini, A., Tamayol, A. & Swieszkowski, W. Fibrous methods as potential options for tendon and ligament restore, therapeutic, and regeneration. Adv. Healthc. Mater. 10, 2001305 (2021).
Gracey, E. et al. Tendon and ligament mechanical loading within the pathogenesis of inflammatory arthritis. Nat. Rev. Rheumatol. 16, 193–207 (2020).
Musahl, V. & Karlsson, J. Anterior cruciate ligament tear. N. Engl. J. Med. 380, 2341–2348 (2019).
No, Y. J., Castilho, M., Ramaswamy, Y. & Zreiqat, H. Position of biomaterials and managed structure on tendon/ligament restore and regeneration. Adv. Mater. 32, 1904511 (2020).
Parmar, Okay. Tendon and ligament: fundamental science, harm and restore. Orthop. Trauma. 32, 241–244 (2018).
Baawa-Ameyaw, J. et al. Present ideas in graft choice for anterior cruciate ligament reconstruction. EFORT Open Rev. 6, 808–815 (2021).
Tang, Y. et al. Biomimetic biphasic electrospun scaffold for anterior cruciate ligament tissue engineering. Tissue Eng. Regen. Med. 18, 915–915 (2021).
Laranjeira, M., Domingues, R. M. A., Costa-Almeida, R., Reis, R. L. & Gomes, M. E. 3D mimicry of native-tissue-fiber structure guides tendon-derived cells and adipose stem cells into synthetic tendon constructs. Small 13, 1700689 (2017).
Kawakami, Y. et al. A cell-free biodegradable artificial synthetic ligament for the reconstruction of anterior cruciate ligament (ACL) in a rat mannequin. Acta Biomater. 121, 275–287 (2021).
Freedman, B. R. & Mooney, D. J. Biomaterials to imitate and heal connective tissues. Adv. Mater. 31, 1806695 (2019).
Wang, Z. et al. Purposeful regeneration of tendons utilizing scaffolds with bodily anisotropy engineered by way of microarchitectural manipulation. Sci. Adv. 4, eaat4537 (2018).
Li, H. G. et al. Purposeful regeneration of ligament–bone interface utilizing a triphasic silk-based graft. Biomaterials 106, 180–192 (2016).
Tulloch, S. J. et al. Major ACL reconstruction utilizing the LARS machine is related to a excessive failure charge at minimal of 6-year follow-up. Knee Surg. Sports activities Traumatol. Arthrosc. 27, 3626–3632 (2019).
Mayr, R., Rosenberger, R., Agraharam, D., Smekal, V. & El Attal, R. Revision anterior cruciate ligament reconstruction: an replace. Arch. Orthop. Trauma Surg. 132, 1299–1313 (2012).
Cross, L. M., Thakur, A., Jalili, N. A., Detamore, M. & Gaharwar, A. Okay. Nanoengineered biomaterials for restore and regeneration of orthopedic tissue interfaces. Acta Biomater. 42, 2–17 (2016).
Ducheyne, P., Mauck, R. L. & Smith, D. H. Biomaterials within the restore of sports activities accidents. Nat. Mater. 11, 652–654 (2012).
Koons, G. L., Diba, M. & Mikos, A. G. Supplies design for bone-tissue engineering. Nat. Rev. Mater. 5, 584–603 (2020).
Muller, R. Hierarchical microimaging of bone construction and performance. Nat. Rev. Rheumatol. 5, 373–381 (2009).
Wang, Y. et al. Purposeful regeneration and restore of tendons utilizing biomimetic scaffolds loaded with recombinant periostin. Nat. Commun. 12, 1293 (2021).
Liu, X. L. & Wang, S. T. Three-dimensional nano-biointerface as a brand new platform for guiding cell destiny. Chem. Soc. Rev. 43, 2385–2401 (2014).
Li, Y. L., Xiao, Y. & Liu, C. S. The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering. Chem. Rev. 117, 4376–4421 (2017).
Younesi, M., Islam, A., Kishore, V., Anderson, J. M. & Akkus, O. Tenogenic induction of human MSCs by anisotropically aligned collagen biotextiles. Adv. Funct. Mater. 24, 5762–5770 (2014).
De Volder, M. F. L., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon nanotubes: current and future industrial purposes. Science 339, 535–539 (2013).
Bai, Y. X. et al. Tremendous-durable ultralong carbon nanotubes. Science 369, 1104–1106 (2020).
Zhang, R. F., Zhang, Y. Y. & Wei, F. Horizontally aligned carbon nanotube arrays: progress mechanism, managed synthesis, characterization, properties and purposes. Chem. Soc. Rev. 46, 3661–3715 (2017).
Wang, L. Y. et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of a number of illness biomarkers. Nat. Biomed. Eng. 4, 159–171 (2020).
Deng, J. et al. Preparation of biomimetic hierarchically helical fiber actuators from carbon nanotubes. Nat. Protoc. 12, 1349–1358 (2017).
Mu, J. Okay. et al. Sheath-run synthetic muscular tissues. Science 365, 150–155 (2019).
Duo, X. et al. A novel idea to supply tremendous comfortable attribute ring-yarn with structural variation by way of against-twisting. J. Nat. Fibers 19, 5524–5536 (2022).
Aka, C. & Basal, G. Mechanical and fatigue behaviour of artifcial ligaments (ALs). J. Mech. Behav. Biomed. Mater. 126, 105063 (2022).
Brennan, D. A. et al. Mechanical concerns for electrospun nanofibers in tendon and ligament restore. Adv. Healthc. Mater. 7, 1701277 (2018).
Grana, W. A. et al. An evaluation of autograft fixation after anterior cruciate ligament reconstruction in a rabbit mannequin. Am. J. Sport. Med. 22, 344–351 (1994).
Bachy, M. et al. Anterior cruciate ligament surgical procedure within the rabbit. J. Orthop. Surg. Res. 8, 27 (2013).
Petite, H. et al. Tissue-engineered bone regeneration. Nat. Biotech. 18, 959–963 (2000).
Zhao, F. et al. A extra flattened bone tunnel has a constructive impact on tendon-bone therapeutic within the early interval after ACL reconstruction. Knee Surg. Sports activities Traumatol. Arthrosc. 27, 3543–3551 (2019).
Cooper, J. A. et al. Biomimetic tissue-engineered anterior cruciate ligament substitute. Proc. Natl Acad. Sci. USA 104, 3049–3054 (2007).
Mengsteab, P. Y. et al. Mechanically superior matrices promote osteointegration and regeneration of anterior cruciate ligament tissue in rabbits. Proc. Natl Acad. Sci. USA 117, 28655–28666 (2020).
Liddell, R. S., Liu, Z. M., Mendes, V. C. & Davies, J. E. Relative contributions of implant hydrophilicity and nanotopography to implant anchorage in bone at early time factors. Clin. Oral. Implants Res. 31, 49–63 (2020).
Dong, S. et al. Decellularized versus fresh-frozen allografts in anterior cruciate ligament reconstruction. Am. J. Sport. Med. 43, 1924–1934 (2015).
Bi, F. et al. Anterior cruciate ligament reconstruction in a rabbit mannequin utilizing silk-collagen scaffold and comparability with autograft. PLoS ONE 10, e0125900 (2015).
Wang, Y. et al. The predominant position of collagen within the nucleation, progress, construction and orientation of bone apatite. Nat. Mater. 11, 724–733 (2012).
Falgayrac, G. et al. Bone matrix high quality in paired iliac bone biopsies from postmenopausal ladies handled for 12 months with strontium ranelate or alendronate. Bone 153, 116107 (2021).
Mandair, G. S. & Morris, M. D. Contributions of Raman spectroscopy to the understanding of bone power. Bonekey Rep. 4, 620 (2015).
Yz, A. et al. Spatiotemporal blood vessel specification on the osteogenesis and angiogenesis interface of biomimetic nanofiber-enabled bone tissue engineering. Biomaterials 276, 121041 (2021).
Hu, Okay. & Olsen, B. R. Vascular endothelial progress issue management mechanisms in skeletal progress and restore. Dev. Dynam. 246, 227–234 (2017).
Ma, L. et al. CGRP-α software: a possible therapy to enhance osseoperception of endosseous dental implants. Med. Hypotheses 81, 297–299 (2013).
Parchi, P. D. et al. Anterior cruciate ligament reconstruction with LARS synthetic ligament—scientific outcomes after a long-term follow-up. Joints 6, 75–79 (2018).
Li, H. et al. Variations in synthetic ligament graft osseointegration of the anterior cruciate ligament in a sheep mannequin: a comparability between interference screw and cortical suspensory fixation. Ann. Transl. Med. 17, 1370 (2021).
Schmidt, T. et al. Does sterilization with fractionated electron beam irradiation stop ACL tendon allograft from tissue injury? Knee Surg. Sports activities Traumatol. Arthrosc. 25, 584–594 (2017).
Ding, C. et al. A quick workflow for identification and quantification of proteomes. Mol. Cell Proteom. 12, 2370–2380 (2013).
Feng, J. W. et al. Firmiana: in the direction of a one-stop proteomic cloud platform for information processing and evaluation. Nat. Biotech. 35, 409–412 (2017).