Hierarchical helical carbon nanotube fibre as a bone-integrating anterior cruciate ligament substitute


  • Meyers, M. A., McKittrick, J. & Chen, P. Y. Structural organic supplies: essential mechanics–supplies connections. Science 339, 773–779 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Rossetti, L. et al. The microstructure and micromechanics of the tendon–bone insertion. Nat. Mater. 16, 664–670 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rinoldi, C., Kijenska-Gawronska, E., Khademhosseini, A., Tamayol, A. & Swieszkowski, W. Fibrous methods as potential options for tendon and ligament restore, therapeutic, and regeneration. Adv. Healthc. Mater. 10, 2001305 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gracey, E. et al. Tendon and ligament mechanical loading within the pathogenesis of inflammatory arthritis. Nat. Rev. Rheumatol. 16, 193–207 (2020).

    Article 

    Google Scholar
     

  • Musahl, V. & Karlsson, J. Anterior cruciate ligament tear. N. Engl. J. Med. 380, 2341–2348 (2019).

    Article 

    Google Scholar
     

  • No, Y. J., Castilho, M., Ramaswamy, Y. & Zreiqat, H. Position of biomaterials and managed structure on tendon/ligament restore and regeneration. Adv. Mater. 32, 1904511 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Parmar, Okay. Tendon and ligament: fundamental science, harm and restore. Orthop. Trauma. 32, 241–244 (2018).

    Article 

    Google Scholar
     

  • Baawa-Ameyaw, J. et al. Present ideas in graft choice for anterior cruciate ligament reconstruction. EFORT Open Rev. 6, 808–815 (2021).

    Article 

    Google Scholar
     

  • Tang, Y. et al. Biomimetic biphasic electrospun scaffold for anterior cruciate ligament tissue engineering. Tissue Eng. Regen. Med. 18, 915–915 (2021).

    Article 

    Google Scholar
     

  • Laranjeira, M., Domingues, R. M. A., Costa-Almeida, R., Reis, R. L. & Gomes, M. E. 3D mimicry of native-tissue-fiber structure guides tendon-derived cells and adipose stem cells into synthetic tendon constructs. Small 13, 1700689 (2017).

    Article 

    Google Scholar
     

  • Kawakami, Y. et al. A cell-free biodegradable artificial synthetic ligament for the reconstruction of anterior cruciate ligament (ACL) in a rat mannequin. Acta Biomater. 121, 275–287 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Freedman, B. R. & Mooney, D. J. Biomaterials to imitate and heal connective tissues. Adv. Mater. 31, 1806695 (2019).

    Article 

    Google Scholar
     

  • Wang, Z. et al. Purposeful regeneration of tendons utilizing scaffolds with bodily anisotropy engineered by way of microarchitectural manipulation. Sci. Adv. 4, eaat4537 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. G. et al. Purposeful regeneration of ligament–bone interface utilizing a triphasic silk-based graft. Biomaterials 106, 180–192 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Tulloch, S. J. et al. Major ACL reconstruction utilizing the LARS machine is related to a excessive failure charge at minimal of 6-year follow-up. Knee Surg. Sports activities Traumatol. Arthrosc. 27, 3626–3632 (2019).

    Article 

    Google Scholar
     

  • Mayr, R., Rosenberger, R., Agraharam, D., Smekal, V. & El Attal, R. Revision anterior cruciate ligament reconstruction: an replace. Arch. Orthop. Trauma Surg. 132, 1299–1313 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Cross, L. M., Thakur, A., Jalili, N. A., Detamore, M. & Gaharwar, A. Okay. Nanoengineered biomaterials for restore and regeneration of orthopedic tissue interfaces. Acta Biomater. 42, 2–17 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ducheyne, P., Mauck, R. L. & Smith, D. H. Biomaterials within the restore of sports activities accidents. Nat. Mater. 11, 652–654 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Koons, G. L., Diba, M. & Mikos, A. G. Supplies design for bone-tissue engineering. Nat. Rev. Mater. 5, 584–603 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Muller, R. Hierarchical microimaging of bone construction and performance. Nat. Rev. Rheumatol. 5, 373–381 (2009).

    Article 

    Google Scholar
     

  • Wang, Y. et al. Purposeful regeneration and restore of tendons utilizing biomimetic scaffolds loaded with recombinant periostin. Nat. Commun. 12, 1293 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. L. & Wang, S. T. Three-dimensional nano-biointerface as a brand new platform for guiding cell destiny. Chem. Soc. Rev. 43, 2385–2401 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. L., Xiao, Y. & Liu, C. S. The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering. Chem. Rev. 117, 4376–4421 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Younesi, M., Islam, A., Kishore, V., Anderson, J. M. & Akkus, O. Tenogenic induction of human MSCs by anisotropically aligned collagen biotextiles. Adv. Funct. Mater. 24, 5762–5770 (2014).

    Article 
    CAS 

    Google Scholar
     

  • De Volder, M. F. L., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon nanotubes: current and future industrial purposes. Science 339, 535–539 (2013).

    Article 

    Google Scholar
     

  • Bai, Y. X. et al. Tremendous-durable ultralong carbon nanotubes. Science 369, 1104–1106 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, R. F., Zhang, Y. Y. & Wei, F. Horizontally aligned carbon nanotube arrays: progress mechanism, managed synthesis, characterization, properties and purposes. Chem. Soc. Rev. 46, 3661–3715 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. Y. et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of a number of illness biomarkers. Nat. Biomed. Eng. 4, 159–171 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Deng, J. et al. Preparation of biomimetic hierarchically helical fiber actuators from carbon nanotubes. Nat. Protoc. 12, 1349–1358 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mu, J. Okay. et al. Sheath-run synthetic muscular tissues. Science 365, 150–155 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Duo, X. et al. A novel idea to supply tremendous comfortable attribute ring-yarn with structural variation by way of against-twisting. J. Nat. Fibers 19, 5524–5536 (2022).

    Article 

    Google Scholar
     

  • Aka, C. & Basal, G. Mechanical and fatigue behaviour of artifcial ligaments (ALs). J. Mech. Behav. Biomed. Mater. 126, 105063 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Brennan, D. A. et al. Mechanical concerns for electrospun nanofibers in tendon and ligament restore. Adv. Healthc. Mater. 7, 1701277 (2018).

    Article 

    Google Scholar
     

  • Grana, W. A. et al. An evaluation of autograft fixation after anterior cruciate ligament reconstruction in a rabbit mannequin. Am. J. Sport. Med. 22, 344–351 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Bachy, M. et al. Anterior cruciate ligament surgical procedure within the rabbit. J. Orthop. Surg. Res. 8, 27 (2013).

    Article 

    Google Scholar
     

  • Petite, H. et al. Tissue-engineered bone regeneration. Nat. Biotech. 18, 959–963 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, F. et al. A extra flattened bone tunnel has a constructive impact on tendon-bone therapeutic within the early interval after ACL reconstruction. Knee Surg. Sports activities Traumatol. Arthrosc. 27, 3543–3551 (2019).

    Article 

    Google Scholar
     

  • Cooper, J. A. et al. Biomimetic tissue-engineered anterior cruciate ligament substitute. Proc. Natl Acad. Sci. USA 104, 3049–3054 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Mengsteab, P. Y. et al. Mechanically superior matrices promote osteointegration and regeneration of anterior cruciate ligament tissue in rabbits. Proc. Natl Acad. Sci. USA 117, 28655–28666 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liddell, R. S., Liu, Z. M., Mendes, V. C. & Davies, J. E. Relative contributions of implant hydrophilicity and nanotopography to implant anchorage in bone at early time factors. Clin. Oral. Implants Res. 31, 49–63 (2020).

    Article 

    Google Scholar
     

  • Dong, S. et al. Decellularized versus fresh-frozen allografts in anterior cruciate ligament reconstruction. Am. J. Sport. Med. 43, 1924–1934 (2015).

    Article 

    Google Scholar
     

  • Bi, F. et al. Anterior cruciate ligament reconstruction in a rabbit mannequin utilizing silk-collagen scaffold and comparability with autograft. PLoS ONE 10, e0125900 (2015).

    Article 

    Google Scholar
     

  • Wang, Y. et al. The predominant position of collagen within the nucleation, progress, construction and orientation of bone apatite. Nat. Mater. 11, 724–733 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Falgayrac, G. et al. Bone matrix high quality in paired iliac bone biopsies from postmenopausal ladies handled for 12 months with strontium ranelate or alendronate. Bone 153, 116107 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mandair, G. S. & Morris, M. D. Contributions of Raman spectroscopy to the understanding of bone power. Bonekey Rep. 4, 620 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Yz, A. et al. Spatiotemporal blood vessel specification on the osteogenesis and angiogenesis interface of biomimetic nanofiber-enabled bone tissue engineering. Biomaterials 276, 121041 (2021).

    Article 

    Google Scholar
     

  • Hu, Okay. & Olsen, B. R. Vascular endothelial progress issue management mechanisms in skeletal progress and restore. Dev. Dynam. 246, 227–234 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ma, L. et al. CGRP-α software: a possible therapy to enhance osseoperception of endosseous dental implants. Med. Hypotheses 81, 297–299 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Parchi, P. D. et al. Anterior cruciate ligament reconstruction with LARS synthetic ligament—scientific outcomes after a long-term follow-up. Joints 6, 75–79 (2018).

    Article 

    Google Scholar
     

  • Li, H. et al. Variations in synthetic ligament graft osseointegration of the anterior cruciate ligament in a sheep mannequin: a comparability between interference screw and cortical suspensory fixation. Ann. Transl. Med. 17, 1370 (2021).

    Article 

    Google Scholar
     

  • Schmidt, T. et al. Does sterilization with fractionated electron beam irradiation stop ACL tendon allograft from tissue injury? Knee Surg. Sports activities Traumatol. Arthrosc. 25, 584–594 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ding, C. et al. A quick workflow for identification and quantification of proteomes. Mol. Cell Proteom. 12, 2370–2380 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Feng, J. W. et al. Firmiana: in the direction of a one-stop proteomic cloud platform for information processing and evaluation. Nat. Biotech. 35, 409–412 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles