Peres, N. M. R., Guinea, F. & Castro Neto, A. H. Digital properties of disordered two-dimensional carbon. Phys. Rev. B Condens. Matter Mater. Phys. 73, 125411 (2006).
Sadowski, M. L., Martinez, G., Potemski, M., Berger, C. & De Heer, W. A. Landau stage spectroscopy of ultrathin graphite layers. Phys. Rev. Lett. 97, 266405 (2006).
Jiang, Z. et al. Infrared spectroscopy of Landau ranges of graphene. Phys. Rev. Lett. 98, 197403 (2007).
Gusynin, V. P., Sharapov, S. G. & Carbotte, J. P. Magneto-optical conductivity in graphene. J. Phys. Condens. Matter 19, 026222 (2007).
Crassee, I. et al. Large Faraday rotation in single- and multilayer graphene. Nat. Phys. 7, 48–51 (2011).
Crassee, I. et al. Multicomponent magneto-optical conductivity of multilayer graphene on SiC. Phys. Rev. B Condens. Matter Mater. Phys. 84, 035103 (2011).
Goerbig, M. O. Digital properties of graphene in a robust magnetic area. Rev. Mod. Phys. 83, 1193 (2011).
Orlita, M. et al. Approaching the Dirac level in high-mobility multilayer epitaxial graphene. Phys. Rev. Lett. 101, 267601 (2008).
Kallin, C. & Halperin, B. I. Excitations from a crammed Landau stage within the two-dimensional electron fuel. Phys. Rev. B 30, 5655 (1984).
Lozovik, Y. E. & Sokolik, A. A. Affect of Landau stage mixing on the properties of elementary excitations in graphene in robust magnetic area. Nanoscale Res. Lett. 7, 134 (2012).
Wang, W., Apell, S. P. & Kinaret, J. M. Edge magnetoplasmons and the optical excitations in graphene disks. Phys. Rev. B Condens. Matter Mater. Phys. 86, 125450 (2012).
Andreev, I. V., Muravev, V. M., Semenov, N. D., Zabolotnykh, A. A. & Kukushkin, I. V. Magnetodispersion of two-dimensional plasmon polaritons. Phys. Rev. B 104, 195436 (2021).
Petković, I., Williams, F. I. B. & Glattli, D. C. Edge magnetoplasmons in graphene. J. Phys. D: Appl. Phys. 47, 094010 (2014).
Poumirol, J. M. et al. Electrically managed terahertz magneto-optical phenomena in steady and patterned graphene. Nat. Commun. 8, 14626 (2017).
Slipchenko, T. M., Poumirol, J. M., Kuzmenko, A. B., Nikitin, A. Y. & Martín-Moreno, L. Interband plasmon polaritons in magnetized charge-neutral graphene. Commun. Phys. 4, 110 (2021).
Iyengar, A., Wang, J., Fertig, H. A. & Brey, L. Excitations from crammed Landau ranges in graphene. Phys. Rev. B Condens. Matter Mater. Phys. 75, 125430 (2007).
Keilmann, F. & Hillenbrand, R. Close to-field microscopy by elastic gentle scattering from a tip. Phil. Trans. R. Soc. A 362, 787–805 (2004).
Chen, X. et al. Fashionable scattering-type scanning near-field optical microscopy for superior materials analysis. Adv. Mater. 31, 1804774 (2019).
Dapolito, M. et al. Scattering-type scanning near-field optical microscopy with Akiyama piezo-probes. Appl. Phys. Lett. 120, 013104 (2022).
Fei, Z. et al. Edge and floor plasmons in graphene nanoribbons. Nano Lett. 15, 8271–8276 (2015).
Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).
Lundeberg, M. B. et al. Thermoelectric detection and imaging of propagating graphene plasmons. Nat. Mater. 16, 204–207 (2017).
Jing, R. et al. Terahertz response of monolayer and few-layer WTe2 on the nanoscale. Nat. Commun. 12, 5594 (2021).
Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007).
McLeod, A. S. et al. Nanotextured section coexistence within the correlated insulator V2O3. Nat. Phys. 13, 80–86 (2017).
Submit, Okay. W. et al. Coexisting first- and second-order digital section transitions in a correlated oxide. Nat. Phys. 14, 1056–1061 (2018).
Stinson, H. T. et al. Imaging the nanoscale section separation in vanadium dioxide skinny movies at terahertz frequencies. Nat. Commun. 9, 3604 (2018).
Sunku, S. S. et al. Nano-photocurrent mapping of native digital construction in twisted bilayer graphene. Nano Lett. 20, 2958–2964 (2020).
Woessner, A. et al. Close to-field photocurrent nanoscopy on naked and encapsulated graphene. Nat. Commun. 7, 10783 (2016).
Shao, Y. et al. Nonlinear nanoelectrodynamics of a Weyl steel. Proc. Natl Acad. Sci. USA 118, e2116366118 (2021).
Sunku, S. S. et al. Hyperbolic enhancement of photocurrent patterns in minimally twisted bilayer graphene. Nat. Commun. 12, 1641 (2021).
Nedoliuk, I. O., Hu, S., Geim, A. Okay. & Kuzmenko, A. B. Colossal infrared and terahertz magneto-optical exercise in a two-dimensional Dirac materials. Nat. Nanotechnol. 14, 756–761 (2019).
Kotov, V. N., Uchoa, B., Pereira, V. M., Guinea, F. & Castri Neto, A. H. Electron-electron interactions in graphene: present standing and views. Rev. Mod. Phys. 84, 1067 (2012).
Shizuya, Okay. Many-body corrections to cyclotron resonance in monolayer and bilayer graphene. Phys. Rev. B 81, 075407 (2010).
Henriksen, E. A. et al. Interplay-induced shift of the cyclotron resonance of graphene utilizing infrared spectroscopy. Phys. Rev. Lett. 104, 067404 (2010).
Xu, X., Gabor, N. M., Alden, J. S., Van Der Zande, A. M. & McEuen, P. L. Photograph-thermoelectric impact at a graphene interface junction. Nano Lett. 10, 562–566 (2010).
Checkelsky, J. G. & Ong, N. P. Thermopower and Nernst impact in graphene in a magnetic area. Phys. Rev. B 80, 081413(R) (2009).
Wei, P., Bao, W., Pu, Y., Lau, C. N. & Shi, J. Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Lett. 102, 166808 (2009).
Lundeberg, M. B. & Koppens, F. H. L. Thermodynamic reciprocity in scanning photocurrent maps. Preprint at https://arxiv.org/abs/2011.04311 (2020).
Cao, H. et al. Photograph-Nernst present in graphene. Nat. Phys. 12, 236–239 (2016).
Olbrich, P. et al. Large photocurrents in a Dirac fermion system at cyclotron resonance. Phys. Rev. B Condens. Matter Mater. Phys. 87, 235439 (2013).
Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 486, 82–85 (2012).
Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31–35 (2016).
Giubileo, F. & Di Bartolomeo, A. The position of contact resistance in graphene field-effect units. Prog. Surf. Sci. 92, 143–175 (2017).
Chen, X. et al. Speedy simulations of hyperspectral near-field photographs of three-dimensional heterogeneous surfaces—half II. Choose. Specific 30, 11228 (2022).
Maissen, C., Chen, S., Nikulina, E., Govyadinov, A. & Hillenbrand, R. Probes for ultrasensitive THz nanoscopy. ACS Photonics 6, 1279–1288 (2019).
Xin, N. et al. Large magnetoresistance of Dirac plasma in high-mobility graphene. Nature 616, 270–274 (2023).
Li, Q. et al. Chiral magnetic impact in ZrTe5. Nat. Phys. 12, 550–554 (2016).
Tseng, C. C. et al. Gate-tunable proximity results in graphene on layered magnetic insulators. Nano Lett. 22, 8495–8501 (2022).
Bloch, J., Cavalleri, A., Galitski, V., Hafezi, M. & Rubio, A. Strongly correlated electron–photon techniques. Nature 606, 41–48 (2022).
Ma, C. et al. Moiré band topology in twisted bilayer graphene. Nano Lett. 20, 6076–6083 (2020).
Yu, J. et al. Correlated Hofstadter spectrum and flavour section diagram in magic-angle twisted bilayer graphene. Nat. Phys. 18, 825–831 (2022).
Hu, B., Tao, J., Zhang, Y. & Wang, Q. J. Magneto-plasmonics in graphene-dielectric sandwich. Choose. Specific 22, 21727 (2014).
Yan, H. et al. Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. Nano Lett. 12, 3766–3771 (2012).
Kim, R. H. J., Park, J.-M., Haeuser, S. J., Luo, L. & Wang, J. A sub-2 Kelvin cryogenic magneto-terahertz scattering-type scanning near-field optical microscope (cm-THz-sSNOM). Rev. Sci. Instrum. 94, 043702 (2023).
Fei, Z. et al. Infrared nanoscopy of Dirac plasmons on the graphene-SiO2 interface. Nano Lett. 11, 4701–4705 (2011).
Knoll, B. & Keilmann, F. Enhanced dielectric distinction in scattering-type scanning near-field optical microscopy. Choose. Commun. 182, 321–328 (2000).
Purdie, D. G. et al. Cleansing interfaces in layered supplies heterostructures. Nat. Commun. 9, 5387 (2018).
Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).