Acín, A. et al. The quantum applied sciences roadmap: a European group view. New J. Phys. 20, 080201 (2018).
Browaeys, A. & Lahaye, T. Many-body physics with individually managed Rydberg atoms. Nat. Phys. 16, 132–142 (2020).
Zhong, H.-S. et al. Quantum computational benefit utilizing photons. Science 370, 1460–1463 (2020).
Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Materials platforms for spin-based photonic quantum applied sciences. Nat. Rev. Mater. 3, 38–51 (2018).
Gangloff, D. A. et al. Quantum interface of an electron and a nuclear ensemble. Science 364, 62–66 (2019).
Gangloff, D. A. et al. Witnessing quantum correlations in a nuclear ensemble by way of an electron spin qubit. Nat. Phys. 17, 1247–1253 (2021).
Zaporski, L. et al. Superb refocusing of an optically energetic spin qubit beneath robust hyperfine interactions. Nat. Nanotechnol. 18, 257–263 (2023).
Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Strong-state digital spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013).
Bhaskar, M. Ok. et al. Quantum nonlinear optics with a germanium-vacancy shade heart in a nanoscale diamond waveguide. Phys. Rev. Lett. 118, 223603 (2017).
Trusheim, M. E. et al. Rework-limited photons from a coherent tin-vacancy spin in diamond. Phys. Rev. Lett. 124, 023602 (2020).
Higginbottom, D. B. et al. Optical commentary of single spins in silicon. Nature 607, 266–270 (2022).
Bergeron, L. et al. Silicon-integrated telecommunications photon–spin interface. PRX Quantum 1, 020301 (2020).
Chartrand, C. et al. Extremely enriched 28Si reveals exceptional optical linewidths and high quality construction for well-known harm facilities. Phys. Rev. B 98, 195201 (2018).
Babin, C. et al. Fabrication and nanophotonic waveguide integration of silicon carbide color centres with preserved spin-optical coherence. Nat. Mater. 21, 67–73 (2022).
Christle, D. J. et al. Remoted spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X 7, 021046 (2017).
Bourassa, A. et al. Entanglement and management of single nuclear spins in isotopically engineered silicon carbide. Nat. Mater. 19, 1319–1325 (2020).
Kindem, J. M. et al. Management and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).
Raha, M. et al. Optical quantum nondemolition measurement of a single uncommon earth ion qubit. Nat. Commun. 11, 1605 (2020).
Kornher, T. et al. Sensing particular person nuclear spins with a single rare-earth electron spin. Phys. Rev. Lett. 124, 170402 (2020).
Högele, A., Galland, C., Winger, M. & Imamoglu, A. Photon antibunching within the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).
Ishii, A. et al. Enhanced single-photon emission from carbon-nanotube dopant states coupled to silicon microcavities. Nano Lett. 18, 3873–3878 (2018).
Ferrari, A. C. et al. Science and expertise roadmap for graphene, associated two-dimensional crystals, and hybrid programs. Nanoscale 7, 4598–4810 (2015).
Mounet, N. et al. Two-dimensional supplies from high-throughput computational exfoliation of experimentally identified compounds. Nat. Nanotechnol. 13, 246–252 (2018).
Gjerding, M. N. et al. Latest progress of the Computational 2D Supplies Database (C2DB). 2D Mater. 8, 044002 (2021).
Iyengar, S. A., Puthirath, A. B. & Swaminathan, V. Realizing quantum applied sciences in nanomaterials and nanoscience. Adv. Mater. 2022, 2107839 (2022).
Wang, G. et al. Colloquium: Excitons in atomically skinny transition metallic dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).
Cassabois, G., Valvin, P. & Gil, B. Hexagonal boron nitride is an oblique bandgap semiconductor. Nat. Photon. 10, 262–266 (2016).
Backes, C. et al. Manufacturing and processing of graphene and associated supplies. 2D Mater. 7, 022001 (2020).
Aharonovich, I., Englund, D. & Toth, M. Strong-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).
Brotons-Gisbert, M., Martínez-Pastor, J. P., Ballesteros, G. C., Gerardot, B. D. & Sánchez-Royo, J. F. Engineering mild emission of two-dimensional supplies in each the weak and powerful coupling regimes. Nanophotonics 7, 253–267 (2018).
Tonndorf, P. et al. On-chip waveguide coupling of a layered semiconductor single-photon supply. Nano Lett. 17, 5446–5451 (2017).
Cai, T. et al. Coupling emission from single localized defects in two-dimensional semiconductor to floor plasmon polaritons. Nano Lett. 17, 6564–6568 (2017).
Tran, T. T. et al. Deterministic coupling of quantum emitters in 2D supplies to plasmonic nanocavity arrays. Nano Lett. 17, 2634–2639 (2017).
Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).
Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).
Stern, H. L. et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 13, 618 (2022).
Seifert, P. et al. Magic-angle bilayer graphene nanocalorimeters: towards broadband, energy-resolving single photon detection. Nano Lett. 20, 3459–3464 (2020).
Tonndorf, P. et al. Single-photon emission from localized excitons in an atomically skinny semiconductor. Optica 2, 347–352 (2015).
Koperski, M. et al. Single photon emitters in exfoliated WSe2 buildings. Nat. Nanotechnol. 10, 503–506 (2015).
Srivastava, A. et al. Optically energetic quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).
Chakraborty, C., Kinnischtzke, L., Goodfellow, Ok. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum mild from an atomically skinny semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).
He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).
Palacios-Berraquero, C. et al. Atomically skinny quantum light-emitting diodes. Nat. Commun. 7, 12978 (2016).
Yu, L. et al. Website-controlled quantum emitters in monolayer MoSe2. Nano Lett. 21, 2376–2381 (2021).
Klein, J. et al. Website-selectively generated photon emitters in monolayer MoS2 by way of native helium ion irradiation. Nat. Commun. 10, 2755 (2019).
Zhao, H., Pettes, M. T., Zheng, Y. & Htoon, H. Website-controlled telecom-wavelength single-photon emitters in atomically-thin MoTe2. Nat. Commun. 12, 6753 (2021).
Tran, T. T., Bray, Ok., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).
Montblanch, A. R.-P. et al. Confinement of long-lived interlayer excitons in WS2/WSe2 heterostructures. Commun. Phys. 4, 119 (2021).
Kremser, M. et al. Discrete interactions between just a few interlayer excitons trapped at a MoSe2–WSe2 heterointerface. npj 2D Mater. Appl. 4, 8 (2020).
Zhaon, H. et al. Manipulating interlayer excitons for ultra-pure near-infrared quantum mild era. Preprint at https://arxiv.org/abs/2205.02472 (2022).
Wang, W. & Ma, X. Pressure-induced trapping of oblique excitons in MoSe2/WSe2 heterostructures. ACS Photon. 7, 2460–2467 (2020).
Baek, H. et al. Extremely energy-tunable quantum mild from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).
Tonndorf, P. et al. Single-photon emitters in GaSe. 2D Mater. 4, 021010 (2017).
Mudd, G. W. et al. The direct-to-indirect band hole crossover in two-dimensional van der Waals indium selenide crystals. Sci. Rep. 6, 39619 (2016).
Feuer, M. S. G. et al. Identification of exciton complexes in a charge-tunable Janus WSeS monolayer. ACS Nano 17, 7326–7334 (2023).
Luo, Y., Liu, N., Li, X., Hone, J. C. & Strauf, S. Single photon emission in WSe2 up 160 Ok by quantum yield management. 2D Mater. 6, 035017 (2019).
Parto, Ok., Azzam, S. I., Banerjee, Ok. & Moody, G. Defect and pressure engineering of monolayer WSe2 allows site-controlled single-photon emission as much as 150 Ok. Nat. Commun. 12, 3585 (2021).
Palacios-Berraquero, C. et al. Giant-scale quantum-emitter arrays in atomically skinny semiconductors. Nat. Commun. 8, 15093 (2017).
Kumar, S. et al. Resonant laser spectroscopy of localized excitons in monolayer WSe2. Optica 3, 882–886 (2016).
Barbone, M. et al. Cost-tuneable biexciton complexes in monolayer WSe2. Nat. Commun. 9, 3721 (2018).
Mostaani, E. et al. Cost-carrier complexes in monolayer semiconductors. Preprint at https://arxiv.org/abs/2209.01593 (2022).
Branny, A., Kumar, S., Proux, R. & Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017).
Luo, Y. et al. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 13, 1137–1142 (2018).
Rosenberger, M. R. et al. Quantum calligraphy: writing single-photon emitters in a two-dimensional supplies platform. ACS Nano 13, 904–912 (2019).
Flatten, L. C. et al. Microcavity enhanced single photon emission from two-dimensional WSe2. Appl. Phys. Lett. 112, 191105 (2018).
Iff, O. et al. Deterministic coupling of quantum emitters in WSe2 monolayers to plasmonic nanocavities. Decide. Categorical 26, 25944–25951 (2018).
Chakraborty, C. et al. Quantum-confined Stark impact of particular person defects in a van der Waals heterostructure. Nano Lett. 17, 2253–2258 (2017).
Kim, H., Moon, J. S., Noh, G., Lee, J. & Kim, J.-H. Place and frequency management of strain-induced quantum emitters in WSe2 monolayers. Nano Lett. 19, 7534–7539 (2019).
Iff, O. et al. Pressure-tunable single photon sources in WSe2 monolayers. Nano Lett. 19, 6931–6936 (2019).
Lindlau, J. et al. The position of momentum-dark excitons within the elementary optical response of bilayer WSe2. Nat. Commun. 9, 2586 (2018).
Zhang, S. et al. Defect construction of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 119, 046101 (2017).
Linhart, L. et al. Localized intervalley defect excitons as single-photon emitters in WSe2. Phys. Rev. Lett. 123, 146401 (2019).
Xu, Y. et al. Creation of moiré bands in a monolayer semiconductor by spatially periodic dielectric screening. Nat. Mater. 20, 645–649 (2021).
Moon, H. et al. Pressure-correlated localized exciton vitality in atomically skinny semiconductors. ACS Photon. 7, 1135–1140 (2020).
Darlington, T. P. et al. Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol. 15, 854–860 (2020).
Gelly, R. J. et al. Probing darkish exciton navigation by way of a neighborhood pressure panorama in a WSe2 monolayer. Nat. Commun. 13, 232 (2022).
Chakraborty, C., Goodfellow, Ok. M. & Vamivakas, A. N. Localized emission from defects in MoSe2 layers. Decide. Mater. Categorical 6, 2081–2087 (2016).
Branny, A. et al. Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics, and cost tuning. Appl. Phys. Lett. 108, 142101 (2016).
Wang, W., Jones, L. O., Chen, J.-S., Schatz, G. C. & Ma, X. Using ultraviolet photons to generate single-photon emitters in semiconductor monolayers. ACS Nano 16, 21240–21247 (2022).
Klein, J. et al. Engineering the luminescence and era of particular person defect emitters in atomically skinny MoS2. ACS Photon. 8, 669–677 (2021).
Barthelmi, Ok. et al. Atomistic defects as single-photon emitters in atomically skinny MoS2. Appl. Phys. Lett. 117, 070501 (2020).
Hötger, A. et al. Gate-switchable arrays of quantum mild emitters in contacted monolayer MoS2 van der Waals heterodevices. Nano Lett. 21, 1040–1046 (2021).
Ye, Y. et al. Single photon emission from deep-level defects in monolayer WS2. Phys. Rev. B 95, 245313 (2017).
Daveau, R. S. et al. Spectral and spatial isolation of single tungsten diselenide quantum emitters utilizing hexagonal boron nitride wrinkles. APL Photon. 5, 096105 (2020).
Cadiz, F. et al. Excitonic linewidth approaching the homogeneous restrict in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).
Iff, O. et al. Substrate engineering for high-quality emission of free and localized excitons from atomic monolayers in hybrid architectures. Optica 4, 669–673 (2017).
Abidi, I. H. et al. Selective defect formation in hexagonal boron nitride. Adv. Decide. Mater. 7, 1900397 (2019).
Ngoc My Duong, H. et al. Results of high-energy electron irradiation on quantum emitters in hexagonal boron nitride. ACS Appl. Mater. Interfaces 10, 24886–24891 (2018).
Tawfik, S. A. et al. First-principles investigation of quantum emission from hBN defects. Nanoscale 9, 13575–13582 (2017).
Gottscholl, A. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020).
Meuret, S. et al. Photon bunching in cathodoluminescence. Phys. Rev. Lett. 114, 197401 (2015).
Li, X. et al. Nonmagnetic quantum emitters in boron nitride with ultranarrow and sideband-free emission spectra. ACS Nano 11, 6652–6660 (2017).
Hayee, F. et al. Revealing a number of lessons of steady quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater. 19, 534–539 (2020).
Mendelson, N. et al. Figuring out carbon because the supply of seen single-photon emission from hexagonal boron nitride. Nat. Mater. 20, 321–328 (2021).
Li, Ok., Sensible, T. J. & Ping, Y. Carbon trimer as a 2 eV single-photon emitter candidate in hexagonal boron nitride: a first-principles examine. Phys. Rev. Mater. 6, L042201 (2022).
Golami, O. et al. Ab initio and group theoretical examine of properties of a carbon trimer defect in hexagonal boron nitride. Phys. Rev. B 105, 184101 (2022).
Tan, Q. et al. Donor–acceptor pair quantum emitters in hexagonal boron nitride. Nano Lett. 22, 1331–1337 (2022).
Mendelson, N., Doherty, M., Toth, M., Aharonovich, I. & Tran, T. T. Pressure-induced modification of the optical traits of quantum emitters in hexagonal boron nitride. Adv. Mater. 32, 1908316 (2020).
Xia, Y. et al. Room-temperature large Stark impact of single photon emitter in van der Waals materials. Nano Lett. 19, 7100–7105 (2019).
White, S. J. U. et al. Electrical management of quantum emitters in a Van der Waals heterostructure. Mild Sci. Appl. 11, 186 (2022).
Li, X., Scully, R. A., Shayan, Ok., Luo, Y. & Strauf, S. Close to-unity mild assortment effectivity from quantum emitters in boron nitride by coupling to metallo-dielectric antennas. ACS Nano 13, 6992–6997 (2019).
Vogl, T., Lecamwasam, R., Buchler, B. C., Lu, Y. & Lam, P. Ok. Compact cavity-enhanced single-photon era with hexagonal boron nitride. ACS Photon. 6, 1955–1962 (2019).
Fröch, J. E. et al. Coupling hexagonal boron nitride quantum emitters to photonic crystal cavities. ACS Nano 14, 7085–7091 (2020).
Kim, S. et al. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 9, 2623 (2018).
Chejanovsky, N. et al. Single-spin resonance in a van der Waals embedded paramagnetic defect. Nat. Mater. 20, 1079–1084 (2021).
Exarhos, A. L., Hopper, D. A., Patel, R. N., Doherty, M. W. & Bassett, L. C. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat. Commun. 10, 222 (2019).
Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metallic dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).
Karni, O. et al. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Phys. Rev. Lett. 123, 247402 (2019).
Zhang, Y. et al. Each-other-layer dipolar excitons in a spin–valley locked superlattice. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01350-1 (2023).
Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).
Jin, C. et al. Commentary of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).
Seyler, Ok. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).
Tran, Ok. et al. Proof for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).
Huang, D., Choi, J., Shih, C.-Ok. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).
Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled synthetic lattices. Sci. Adv. 3, e1701696 (2017).
Brotons-Gisbert, M. et al. Spin–layer locking of interlayer excitons trapped in moiré potentials. Nat. Mater. 19, 630–636 (2020).
Li, F., Wei, W., Zhao, P., Huang, B. & Dai, Y. Digital and optical properties of pristine and vertical and lateral heterostructures of Janus MoSSe and WSSe. J. Phys. Chem. Lett. 8, 5959–5965 (2017).
Lu, A.-Y. et al. Janus monolayers of transition metallic dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017).
Qin, Y. et al. Reaching the excitonic restrict in 2D Janus monolayers by in situ deterministic progress. Adv. Mater. 34, 2106222 (2022).
Gan, Z. et al. Chemical vapor deposition of high-optical-quality large-area monolayer Janus transition metallic dichalcogenides. Adv. Mater. 34, 2205226 (2022).
Van Tuan, D. et al. Six-Physique and Eight-Physique Exciton States in Monolayer WSe2. Phys. Rev. Lett. 129, 076801 (2022).
Gao, T., v. Helversen, M., Anton-Solanas, C., Schneider, C. & Heindel, T. Atomically-thin single-photon sources for quantum communication. npj 2D Mater. Appl. 7, 4 (2022).
So, J.-P. et al. Polarization management of deterministic single-photon emitters in monolayer WSe2. Nano Lett. 21, 1546–1554 (2021).
White, D. et al. Atomically-thin quantum dots built-in with lithium niobate photonic chips. Decide. Mater. Categorical 9, 441–448 (2019).
Peyskens, F., Chakraborty, C., Muneeb, M., Van Thourhout, D. & Englund, D. Integration of single photon emitters in 2D layered supplies with a silicon nitride photonic chip. Nat. Commun. 10, 4435 (2019).
Kianinia, M. et al. Strong solid-state quantum system working at 800 Ok. ACS Photon. 4, 768–773 (2017).
Vogl, T. et al. Radiation tolerance of two-dimensional material-based units for area functions. Nat. Commun. 10, 1202 (2019).
Vogl, T., Knopf, H., Weissflog, M., Lam, P. Ok. & Eilenberger, F. Delicate single-photon check of prolonged quantum principle with two-dimensional hexagonal boron nitride. Phys. Rev. Res. 3, 013296 (2021).
Zeng, H. Z. J. et al. Built-in room temperature single-photon supply for quantum key distribution. Decide. Lett. 47, 1673–1676 (2022).
Samaner, Ç., Paçal, S., Mutlu, G., Uyanık, Ok. & Ates, S. Free-space quantum key distribution with single photons from defects in hexagonal boron nitride. Adv. Quantum Technol. 5, 2200059 (2022).
Brotons-Gisbert, M. et al. Coulomb blockade in an atomically skinny quantum dot coupled to a tunable Fermi reservoir. Nat. Nanotechnol. 14, 442–446 (2019).
Mukherjee, A. et al. Commentary of site-controlled localized charged excitons in CrI3/WSe2 heterostructures. Nat. Commun. 11, 5502 (2020).
He, Y.-M. et al. Cascaded emission of single photons from the biexciton in monolayered WSe2. Nat. Commun. 7, 13409 (2016).
Younger, R. J. et al. Entangled photons from the biexciton cascade of quantum dots. J. Appl. Phys. 101, 081711 (2007).
Dey, P. et al. Gate-controlled spin–valley locking of resident carriers in WSe2 monolayers. Phys. Rev. Lett. 119, 137401 (2017).
Lu, X. et al. Optical initialization of a single spin–valley in charged WSe2 quantum dots. Nat. Nanotechnol. 14, 426–431 (2019).
Wang, Y. et al. Spin–valley locking impact in defect states of monolayer MoS2. Nano Lett. 20, 2129–2136 (2020).
Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).
Morell, N. et al. Top quality issue mechanical resonators primarily based on WSe2 monolayers. Nano Lett. 16, 5102–5108 (2016).
Xie, H. et al. Tunable exciton–optomechanical coupling in suspended monolayer MoSe2. Nano Lett. 21, 2538–2543 (2021).
Bereyhi, M. J. et al. Perimeter modes of nanomechanical resonators exhibit high quality elements exceeding 109 at room temperature. Phys. Rev. X 12, 021036 (2022).
Beccari, A. et al. Strained crystalline nanomechanical resonators with high quality elements above 10 billion. Nat. Phys. 18, 436–441 (2022).
Patel, S. D. et al. Floor acoustic wave cavity optomechanics with WSe2 single photon emitters. Preprint at https://arxiv.org/abs/2211.15811 (2022).
Kolkowitz, S. et al. Coherent sensing of a mechanical resonator with a single-spin qubit. Science 335, 1603–1606 (2012).
Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. In direction of quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003).
Marletto, C. & Vedral, V. Gravitationally induced entanglement between two huge particles is ample proof of quantum results in gravity. Phys. Rev. Lett. 119, 240402 (2017).
Exarhos, A. L., Hopper, D. A., Grote, R. R., Alkauskas, A. & Bassett, L. C. Optical signatures of quantum emitters in suspended hexagonal boron nitride. ACS Nano 11, 3328–3336 (2017).
Gottscholl, A. et al. Room temperature coherent management of spin defects in hexagonal boron nitride. Sci. Adv. 7, eabf3630 (2021).
Gottscholl, A. et al. Spin defects in hBN as promising temperature, stress and magnetic subject quantum sensors. Nat. Commun. 12, 4480 (2021).
Gao, X. et al. Excessive-contrast plasmonic-enhanced shallow spin defects in hexagonal boron nitride for quantum sensing. Nano Lett. 21, 7708–7714 (2021).
Dovzhenko, Y. et al. Magnetostatic twists in room-temperature skyrmions explored by nitrogen–emptiness heart spin texture reconstruction. Nat. Commun. 9, 2712 (2018).
Gross, I. et al. Actual-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).
Healey, A. J. et al. Quantum microscopy with van der Waals heterostructures. Nat. Phys. 19, 87–91 (2023).
Mahdikhanysarvejahany, F. et al. Localized interlayer excitons in MoSe2–WSe2 heterostructures with no moiré potential. Nat. Commun. 13, 5354 (2022).
Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).
Wang, X. et al. Mild-induced ferromagnetism in moiré superlattices. Nature 604, 468–473 (2022).
Husimi, Ok. & Syôzi, I. The statistics of honeycomb and triangular lattice. I. Prog. Theor. Phys. 5, 177–186 (1950).
Kanamori, J. Electron correlation and ferromagnetism of transition metals. Prog. Theor. Phys. 30, 275–289 (1963).
Solar, B. et al. Proof for equilibrium exciton condensation in monolayer WTe2. Nat. Phys. 18, 94–99 (2022).
Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).
Yagmurcukardes, M. et al. Quantum properties and functions of 2D Janus crystals and their superlattices. Appl. Phys. Rev. 7, 011311 (2020).
Riis-Jensen, A. C., Pandey, M. & Thygesen, Ok. S. Environment friendly cost separation in 2D Janus van der Waals buildings with built-in electrical fields and intrinsic p–n doping. J. Phys. Chem. C. 122, 24520–24526 (2018).
Jauregui, L. A. et al. Electrical management of interlayer exciton dynamics in atomically skinny heterostructures. Science 366, 870–875 (2019).
Guo, H., Zhang, X. & Lu, G. Tuning moiré excitons in Janus heterobilayers for high-temperature Bose–Einstein condensation. Sci. Adv. 8, eabp9757 (2022).
Zhang, Z. et al. Endoepitaxial progress of monolayer mosaic heterostructures. Nat. Nanotechnol. 17, 493–499 (2022).
Guo, Y. et al. Designing synthetic two-dimensional landscapes by way of atomic-layer substitution. Proc. Natl Acad. Sci. USA 118, e2106124118 (2021).
Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).
Hadfield, R. H. Single-photon detectors for optical quantum data functions. Nat. Photon. 3, 696–705 (2009).
Varnava, M., Browne, D. E. & Rudolph, T. How good should single photon sources and detectors be for environment friendly linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).
Cheng, R. et al. Broadband on-chip single-photon spectrometer. Nat. Commun. 10, 4104 (2019).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Cao, Y. et al. High quality heterostructures from two-dimensional crystals unstable in air by their meeting in inert ambiance. Nano Lett. 15, 4914–4921 (2015).
Orchin, G. J. et al. Niobium diselenide superconducting photodetectors. Appl. Phys. Lett. 114, 251103 (2019).
Seifert, P. et al. A high-Tc van der Waals superconductor primarily based photodetector with ultra-high responsivity and nanosecond rest time. 2D Mater. 8, 035053 (2021).
Lee, G.-H. et al. Graphene-based Josephson junction microwave bolometer. Nature 586, 42–46 (2020).
Walsh, E. D. et al. Josephson junction infrared single-photon detector. Science 372, 409–412 (2021).
Zhang, S. et al. Nano-spectroscopy of excitons in atomically skinny transition metallic dichalcogenides. Nat. Commun. 13, 542 (2022).
Avdeev, I. D. & Smirnov, D. S. Hyperfine interplay in atomically skinny transition metallic dichalcogenides. Nanoscale Adv. 1, 2624–2632 (2019).
Winter, M. Molybdenum: isotope information. WebElements http://www.webelements.com/molybdenum/isotopes.html (2023).
Fanciulli, M. Electron paramagnetic resonance and rest in BN and BN:C. Philos. Magazine. B 76, 363–381 (1997).
Katzir, A., Suss, J. T., Zunger, A. & Halperin, A. Level defects in hexagonal boron nitride. EPR, thermoluminescence, and thermally-stimulated-current measurements. Phys. Rev. B 11, 2370–2377 (1975).
Murzakhanov, F. F. et al. Electron–nuclear coherent coupling and nuclear spin readout by way of optically polarized V−B spin states in hBN. Nano Lett. 22, 2718–2724 (2022).
Gao, X. et al. Nuclear spin polarization and management in hexagonal boron nitride. Nat. Mater. 21, 1024–1028 (2022).
Pompili, M. et al. Realization of a multinode quantum community of distant solid-state qubits. Science 372, 259–264 (2021).
Hermans, S. L. N. et al. Qubit teleportation between non-neighbouring nodes in a quantum community. Nature 605, 663–668 (2022).
Hermans, S. L. N. et al. Entangling distant qubits utilizing the single-photon protocol: an in-depth theoretical and experimental examine. New J. Phys. 25, 013011 (2023).
Michaels, C. P. et al. Multidimensional cluster states utilizing a single spin–photon interface coupled strongly to an intrinsic nuclear register. Quantum 5, 565 (2021).
Raussendorf, R., Browne, D. E. & Briegel, H. J. Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003).
Music, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 374, 1140–1144 (2021).
Li, W. et al. Native sensing of correlated electrons in dual-moiré heterostructures utilizing dipolar excitons. Preprint at https://arxiv.org/abs/2111.09440 (2021).
Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).
Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metallic dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020).
Dirnberger, F. et al. Quasi-1D exciton channels in strain-engineered 2D supplies. Sci. Adv. 7, eabj3066 (2021).
Sahoo, P. Ok., Memaran, S., Xin, Y., Balicas, L. & Gutiérrez, H. R. One-pot progress of two-dimensional lateral heterostructures by way of sequential edge-epitaxy. Nature 553, 63–67 (2018).
Voiry, D., Mohite, A. & Chhowalla, M. Section engineering of transition metallic dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015).
Stefan, L. et al. Multiangle reconstruction of area morphology with all-optical diamond magnetometry. Phys. Rev. Appl. 16, 014054 (2021).
Errando-Herranz, C. et al. Resonance fluorescence from waveguide-coupled, strain-localized, two-dimensional quantum emitters. ACS Photon. 8, 1069–1076 (2021).
Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).
Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon machine. Nature 419, 594–597 (2002).
Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins beneath ambient circumstances. Nature 455, 648–651 (2008).
Somaschi, N. et al. Close to-optimal single-photon sources within the stable state. Nat. Photon. 10, 340–345 (2016).
Healey, A. J. et al. Quantum microscopy with van der Waals heterostructures. Nat. Phys. 19, 87–91 (2023).
Kalb, N. et al. Entanglement distillation between solid-state quantum community nodes. Science 356, 928–932 (2017).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Data (Cambridge Univ. Press, 2000).
Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).
Wang, D. et al. Turning a molecule right into a coherent two-level quantum system. Nat. Phys. 15, 483–489 (2019).
Magnard, P. et al. Microwave quantum hyperlink between superconducting circuits housed in spatially separated cryogenic programs. Phys. Rev. Lett. 125, 260502 (2020).
Senellart, P., Solomon, G. & White, A. Excessive-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).
Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).