Mackinawite nanozymes as reactive oxygen species scavengers for acute kidney damage alleviation | Journal of Nanobiotechnology


  • Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney damage from sepsis: present ideas, epidemiology, pathophysiology, prevention and remedy. Kidney Int. 2019;96(5):1083–99.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bellomo R, Kellum JA, Ronco C. Acute kidney damage. Lancet. 2012;380(9843):756–66.

    Article 
    PubMed 

    Google Scholar
     

  • Raup-Konsavage WM, Wang Y, Wang WW, Feliers D, Ruan H, Reeves WB. Neutrophil peptidyl arginine deiminase-4 has a pivotal position in ischemia/reperfusion-induced acute kidney damage. Kidney Int. 2018;93(2):365–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim S, Lee SA, Yoon H, Kim MY, Yoo JK, Ahn SH, Park CH, Park J, Nam BY, Park JT, et al. Exosome-based supply of super-repressor IκBα ameliorates kidney ischemia-reperfusion damage. Kidney Int. 2021;100(3):570–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salmasi V, Maheshwari Ok, Yang D, Mascha EJ, Singh A, Sessler DI, Kurz A. Relationship between intraoperative hypotension, outlined by both discount from baseline or absolute thresholds, and acute kidney and myocardial damage after noncardiac surgical procedure: a retrospective cohort evaluation. Anesthesiology. 2017;126(1):47–65.

    Article 
    PubMed 

    Google Scholar
     

  • Mathis MR, Naik BI, Freundlich RE, Shanks AM, Heung M, Kim M, Burns ML, Colquhoun DA, Rangrass G, Janda A, et al. Preoperative danger and the affiliation between hypotension and postoperative acute kidney damage. Anesthesiology. 2020;132(3):461–75.

    Article 
    PubMed 

    Google Scholar
     

  • Kang R, Li R, Dai P, Li Z, Li Y, Li C. Deoxynivalenol induced apoptosis and irritation of IPEC-J2 cells by selling ROS manufacturing. Environ Pollut. 2019;251:689–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lankadeva YR, Could CN, Bellomo R, Evans RG. Function of perioperative hypotension in postoperative acute kidney damage: a story overview. Br J Anaesth. 2022;128(6):931–48.

    Article 
    PubMed 

    Google Scholar
     

  • Ertuğlu LA, Kanbay A, Afşar B, Elsürer Afşar R, Kanbay M. COVID-19 and acute kidney damage. Tuberk Toraks. 2020;68(4):407–18.

    Article 
    PubMed 

    Google Scholar
     

  • Kant S, Menez SP, Hanouneh M, Effective DM, Crews DC, Brennan DC, Sperati CJ, Jaar BG. The COVID-19 nephrology compendium: AKI, CKD, ESKD and transplantation. BMC Nephrol. 2020;21(1):449.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirsch JS, Ng JH, Ross DW, Sharma P, Shah HH, Barnett RL, Hazzan AD, Fishbane S, Jhaveri KD. Acute kidney damage in sufferers hospitalized with COVID-19. Kidney Int. 2020;98(1):209–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan L, Chaudhary Ok, Saha A, Chauhan Ok, Vaid A, Zhao S, Paranjpe I, Somani S, Richter F, Miotto R, et al. AKI in hospitalized sufferers with COVID-19. J Am Soc Nephrol. 2021;32(1):151–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Star RA. Remedy of acute renal failure. Kidney Int. 1998;54(6):1817–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palevsky PM, Zhang JH, O’Connor TZ, Chertow GM, Crowley ST, Choudhury D, Finkel Ok, Kellum JA, Paganini E, Schein RM, et al. Depth of renal help in critically sick sufferers with acute kidney damage. N Engl J Med. 2008;359(1):7–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Quan F, Cao Q, Lin Y, Yue C, Bi R, Cui X, Yang H, Yang Y, Birnbaumer L, et al. Quercetin alleviates acute kidney damage by inhibiting ferroptosis. J Adv Res. 2021;28:231–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su L, Zhang J, Gomez H, Kellum JA, Peng Z. Mitochondria ROS and mitophagy in acute kidney damage. Autophagy. 2023;19(2):401–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agita A, Alsagaff MT. Irritation, immunity, and hypertension. Acta Med Indones. 2017;49(2):158–65.

    PubMed 

    Google Scholar
     

  • Sato Y, Yanagita M. Immune cells and irritation in AKI to CKD development. Am J Physiol Renal Physiol. 2018;315(6):F1501–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sul OJ, Ra SW. Quercetin prevents lps-induced oxidative stress and irritation by modulating NOX2/ROS/NF-kB in lung epithelial cells. Molecules. 2021;26(22):6949.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen C, Wang D, Yu Y, Zhao T, Min N, Wu Y, Kang L, Zhao Y, Du L, Zhang M, et al. Legumain promotes tubular ferroptosis by facilitating chaperone-mediated autophagy of GPX4 in AKI. Cell Dying Dis. 2021;12(1):65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren Q, Guo F, Tao S, Huang R, Ma L, Fu P. Flavonoid fisetin alleviates kidney irritation and apoptosis through inhibiting Src-mediated NF-κB p65 and MAPK signaling pathways in septic AKI mice. Biomed Pharmacother. 2020;122: 109772.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Feng X, Li B, Sha J, Wang C, Yang T, Cui H, Fan H. Dexmedetomidine protects towards lipopolysaccharide-induced acute kidney damage by enhancing autophagy by means of inhibition of the PI3K/AKT/mTOR pathway. Entrance Pharmacol. 2020;11:128.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilde B, Katsounas A. Immune dysfunction and albumin-related immunity in liver cirrhosis. Mediators Inflamm. 2019;2019:7537649.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu T, Xiao B, Xiang F, Tan J, Chen Z, Zhang X, Wu C, Mao Z, Luo G, Chen X, et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of irritation associated illnesses. Nat Commun. 2020;11(1):2788.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin Q, Li S, Jiang N, Shao X, Zhang M, Jin H, Zhang Z, Shen J, Zhou Y, Zhou W, et al. PINK1-parkin pathway of mitophagy protects towards contrast-induced acute kidney damage through lowering mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol. 2019;26: 101254.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu M, Chen W, Miao M, Jin Q, Zhang S, Bai M, Fan J, Zhang Y, Zhang A, Jia Z, et al. Anti-anemia drug FG4592 retards the AKI-to-CKD transition by bettering vascular regeneration and antioxidative functionality. Clin Sci (Lond). 2021;135(14):1707–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leowattana W. Antiviral medication and acute kidney damage (AKI). Infect Disord Drug Targets. 2019;19(4):375–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni D, Jiang D, Kutyreff CJ, Lai J, Yan Y, Barnhart TE, Yu B, Im HJ, Kang L, Cho SY, et al. Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney damage in mice. Nat Commun. 2018;9(1):5421.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Q, Ding F, Zhang S, Li Q, Liu X, Track H, Zuo X, Fan C, Mou S, Ge Z. Sequential remedy of acute kidney damage with a DNA nanodevice. Nano Lett. 2021;21(10):4394–402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding F, Zhang S, Liu S, Feng J, Li J, Li Q, Ge Z, Zuo X, Fan C, Xia Q. Molecular visualization of early-stage acute kidney damage with a DNA framework nanodevice. Adv Sci (Weinh). 2022;9(20): e2105947.

    Article 
    PubMed 

    Google Scholar
     

  • Li F, Li T, Solar C, Xia J, Jiao Y, Xu H. Selenium-doped carbon quantum dots for free-radical scavenging. Angew Chem Int Ed Engl. 2017;56(33):9910–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Yu D, Fang J, Zhou Y, Li D, Liu Z, Ren J, Qu X. Phenol-like group functionalized graphene quantum dots structurally mimicking pure antioxidants for extremely environment friendly acute kidney damage remedy. Chem Sci. 2020;11(47):12721–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou J, Liu W, Zhao X, Xian Y, Wu W, Zhang X, Zhao N, Xu FJ, Wang C. Pure melanin/alginate hydrogels obtain cardiac restore by means of ros scavenging and macrophage polarization. Adv Sci (Weinh). 2021;8(20): e2100505.

    Article 
    PubMed 

    Google Scholar
     

  • Solar T, Jiang D, Rosenkrans ZT, Ehlerding EB, Ni D, Qi C, Kutyreff CJ, Barnhart TE, Engle JW, Huang P, et al. A melanin-based pure antioxidant protection nanosystem for theranostic utility in acute kidney damage. Adv Funct Mater. 2019;29(48):1904833.

    Article 
    CAS 

    Google Scholar
     

  • Hou J, Wang H, Ge Z, Zuo T, Chen Q, Liu X, Mou S, Fan C, Xie Y, Wang L. Treating acute kidney damage with antioxidative black phosphorus nanosheets. Nano Lett. 2020;20(2):1447–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dillon KM, Carrazzone RJ, Wang Y, Powell CR, Matson JB. Polymeric persulfide prodrugs: mitigating oxidative stress by means of managed supply of reactive sulfur species. ACS Macro Lett. 2020;9(4):606–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang DY, Liu H, Zhu KS, He T, Younis MR, Yang C, Lei S, Wu J, Lin J, Qu J, et al. Prussian blue-based theranostics for ameliorating acute kidney damage. J Nanobiotechnology. 2021;19(1):266.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu X, Zhang H. Therapeutic methods of iron-based nanomaterials for most cancers remedy. Biomed Mater. 2021;16(3): 032003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alphandéry E. Mild-interacting iron-based nanomaterials for localized most cancers detection and remedy. Acta Biomater. 2021;124:50–71.

    Article 
    PubMed 

    Google Scholar
     

  • Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, et al. Intrinsic peroxidase-like exercise of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chopra A. Trastuzumab-dextran iron oxide nanoparticles. In: Chopra A, editor. Molecular imaging and distinction agent database (MICAD). Bethesda: Nationwide Heart for Biotechnology Info; 2004.


    Google Scholar
     

  • Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, Pajarinen JS, Nejadnik H, Goodman S, Moseley M, et al. Iron oxide nanoparticles inhibit tumour progress by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11(11):986–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trujillo-Alonso V, Pratt EC, Zong H, Lara-Martinez A, Kaittanis C, Rabie MO, Longo V, Becker MW, Roboz GJ, Grimm J, et al. FDA-approved ferumoxytol shows anti-leukaemia efficacy towards cells with low ferroportin ranges. Nat Nanotechnol. 2019;14(6):616–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mutalik C, Hsiao YC, Chang YH, Krisnawati DI, Alimansur M, Jazidie A, Nuh M, Chang CC, Wang DY, Kuo TR. Excessive UV-Vis-NIR light-induced antibacterial exercise by heterostructured Tio2-FeS2 nanocomposites. Int J Nanomedicine. 2020;15:8911–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan M, Yu X, Zhao W, Peng Y, Peng S, Li J, Lu L. Extracellular matrix-degrading STING nanoagonists for delicate NIR-II photothermal-augmented chemodynamic-immunotherapy. J Nanobiotechnology. 2022;20(1):23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Dillon KM, Li Z, Winckler EW, Matson JB. Assuaging mobile oxidative stress by means of remedy with superoxide-triggered persulfide prodrugs. Angew Chem Int Ed Engl. 2020;59(38):16698–704.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy B, Bhattacharya R, Mukherjee P. Hydrogen sulfide signaling in mitochondria and illness. Faseb J. 2019;33(12):13098–125.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao X, Nie X, Xiong S, Cao L, Wu Z, Moore PK, Bian JS. Renal protecting impact of polysulfide in cisplatin-induced nephrotoxicity. Redox Biol. 2018;15:513–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang L, Ma R, Gao XJ, Chen L, Liu Y, Huo Y, Wei T, Wang X, Wang Q, Wang H, et al. Metastable iron sulfides gram-dependently counteract resistant gardnerella vaginalis for bacterial vaginosis remedy. Adv Sci (Weinh). 2022;9(10): e2104341.

    Article 
    PubMed 

    Google Scholar
     

  • Ren H, Yong J, Yang Q, Yang Z, Liu Z, Xu Y, Wang H, Jiang X, Miao W, Li X. Self-assembled FeS-based cascade bioreactor with enhanced tumor penetration and synergistic therapies to set off strong most cancers immunotherapy. Acta Pharm Sin B. 2021;11(10):3244–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding L, Jiang J, Cheng L, Wang Y, Zhang W, Li D, Xu Z, Jiang J, Gao L, Li Z. Oral administration of nanoiron sulfide supernatant for the remedy of gallbladder stones with persistent cholecystitis. ACS Appl Bio Mater. 2021;4(5):3773–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Z, Qiu Z, Liu Q, Huang Y, Li D, Shen X, Fan Ok, Xi J, Gu Y, Tang Y, et al. Changing organosulfur compounds to inorganic polysulfides towards resistant bacterial infections. Nat Commun. 2018;9(1):3713.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen X, Ma R, Huang Y, Chen L, Xu Z, Li D, Meng X, Fan Ok, Xi J, Yan X, et al. Nano-decocted ferrous polysulfide coordinates ferroptosis-like dying in micro organism for anti-infection remedy. Nano In the present day. 2020;35: 100981.

    Article 
    CAS 

    Google Scholar
     

  • Chauhan P, Gupta Ok, Ravikumar G, Saini DK, Chakrapani H. Carbonyl sulfide (COS) donor induced protein persulfidation protects towards oxidative stress. Chem Asian J. 2019;14(24):4717–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhattacherjee D, Sufian A, Mahato SK, Begum S, Banerjee Ok, De S, Srivastava HK, Bhabak KP. Trisulfides over disulfides: extremely selective artificial methods, anti-proliferative actions and sustained H2S launch profiles. Chem Commun (Camb). 2019;55(90):13534–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boursiquot S, Mullet M, Ehrhardt JJ. XPS examine of the response of chromium (VI) with mackinawite (FeS). Surf Interface Anal. 2002;34(1):293–7.

    Article 
    CAS 

    Google Scholar
     

  • Zhao M, Wang Y, Li L, Liu S, Wang C, Yuan Y, Yang G, Chen Y, Cheng J, Lu Y, et al. Mitochondrial ROS promote mitochondrial dysfunction and irritation in ischemic acute kidney damage by disrupting TFAM-mediated mtDNA upkeep. Theranostics. 2021;11(4):1845–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng Y, Yu B, Li Z, Yuan Z, Organ CL, Trivedi RK, Wang S, Lefer DJ, Wang B. An esterase-sensitive prodrug method for controllable supply of persulfide species. Angew Chem Int Ed Engl. 2017;56:11749–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni X, Kelly SS, Xu S, Xian M. The trail to managed supply of reactive sulfur species. Acc Chem Res. 2021;54:3968–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Pedraza-Chaverri J. Mitochondrial redox signaling and oxidative stress in kidney illnesses. Biomolecules. 2021;11(8):1144.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukhopadhyay S, Veroniaina H, Chimombe T, Han L, Zhenghong W, Xiaole Q. Synthesis and compatibility analysis of versatile mesoporous silica nanoparticles with purple blood cells: an outline. RSC Adv. 2019;9(61):35566–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ansari SA, Husain Q. Potential purposes of enzymes immobilized on/in nano supplies: a overview. Biotechnol Adv. 2012;30(3):512–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles