Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney damage from sepsis: present ideas, epidemiology, pathophysiology, prevention and remedy. Kidney Int. 2019;96(5):1083–99.
Bellomo R, Kellum JA, Ronco C. Acute kidney damage. Lancet. 2012;380(9843):756–66.
Raup-Konsavage WM, Wang Y, Wang WW, Feliers D, Ruan H, Reeves WB. Neutrophil peptidyl arginine deiminase-4 has a pivotal position in ischemia/reperfusion-induced acute kidney damage. Kidney Int. 2018;93(2):365–74.
Kim S, Lee SA, Yoon H, Kim MY, Yoo JK, Ahn SH, Park CH, Park J, Nam BY, Park JT, et al. Exosome-based supply of super-repressor IκBα ameliorates kidney ischemia-reperfusion damage. Kidney Int. 2021;100(3):570–84.
Salmasi V, Maheshwari Ok, Yang D, Mascha EJ, Singh A, Sessler DI, Kurz A. Relationship between intraoperative hypotension, outlined by both discount from baseline or absolute thresholds, and acute kidney and myocardial damage after noncardiac surgical procedure: a retrospective cohort evaluation. Anesthesiology. 2017;126(1):47–65.
Mathis MR, Naik BI, Freundlich RE, Shanks AM, Heung M, Kim M, Burns ML, Colquhoun DA, Rangrass G, Janda A, et al. Preoperative danger and the affiliation between hypotension and postoperative acute kidney damage. Anesthesiology. 2020;132(3):461–75.
Kang R, Li R, Dai P, Li Z, Li Y, Li C. Deoxynivalenol induced apoptosis and irritation of IPEC-J2 cells by selling ROS manufacturing. Environ Pollut. 2019;251:689–98.
Lankadeva YR, Could CN, Bellomo R, Evans RG. Function of perioperative hypotension in postoperative acute kidney damage: a story overview. Br J Anaesth. 2022;128(6):931–48.
Ertuğlu LA, Kanbay A, Afşar B, Elsürer Afşar R, Kanbay M. COVID-19 and acute kidney damage. Tuberk Toraks. 2020;68(4):407–18.
Kant S, Menez SP, Hanouneh M, Effective DM, Crews DC, Brennan DC, Sperati CJ, Jaar BG. The COVID-19 nephrology compendium: AKI, CKD, ESKD and transplantation. BMC Nephrol. 2020;21(1):449.
Hirsch JS, Ng JH, Ross DW, Sharma P, Shah HH, Barnett RL, Hazzan AD, Fishbane S, Jhaveri KD. Acute kidney damage in sufferers hospitalized with COVID-19. Kidney Int. 2020;98(1):209–18.
Chan L, Chaudhary Ok, Saha A, Chauhan Ok, Vaid A, Zhao S, Paranjpe I, Somani S, Richter F, Miotto R, et al. AKI in hospitalized sufferers with COVID-19. J Am Soc Nephrol. 2021;32(1):151–60.
Star RA. Remedy of acute renal failure. Kidney Int. 1998;54(6):1817–31.
Palevsky PM, Zhang JH, O’Connor TZ, Chertow GM, Crowley ST, Choudhury D, Finkel Ok, Kellum JA, Paganini E, Schein RM, et al. Depth of renal help in critically sick sufferers with acute kidney damage. N Engl J Med. 2008;359(1):7–20.
Wang Y, Quan F, Cao Q, Lin Y, Yue C, Bi R, Cui X, Yang H, Yang Y, Birnbaumer L, et al. Quercetin alleviates acute kidney damage by inhibiting ferroptosis. J Adv Res. 2021;28:231–43.
Su L, Zhang J, Gomez H, Kellum JA, Peng Z. Mitochondria ROS and mitophagy in acute kidney damage. Autophagy. 2023;19(2):401–14.
Agita A, Alsagaff MT. Irritation, immunity, and hypertension. Acta Med Indones. 2017;49(2):158–65.
Sato Y, Yanagita M. Immune cells and irritation in AKI to CKD development. Am J Physiol Renal Physiol. 2018;315(6):F1501–12.
Sul OJ, Ra SW. Quercetin prevents lps-induced oxidative stress and irritation by modulating NOX2/ROS/NF-kB in lung epithelial cells. Molecules. 2021;26(22):6949.
Chen C, Wang D, Yu Y, Zhao T, Min N, Wu Y, Kang L, Zhao Y, Du L, Zhang M, et al. Legumain promotes tubular ferroptosis by facilitating chaperone-mediated autophagy of GPX4 in AKI. Cell Dying Dis. 2021;12(1):65.
Ren Q, Guo F, Tao S, Huang R, Ma L, Fu P. Flavonoid fisetin alleviates kidney irritation and apoptosis through inhibiting Src-mediated NF-κB p65 and MAPK signaling pathways in septic AKI mice. Biomed Pharmacother. 2020;122: 109772.
Zhao Y, Feng X, Li B, Sha J, Wang C, Yang T, Cui H, Fan H. Dexmedetomidine protects towards lipopolysaccharide-induced acute kidney damage by enhancing autophagy by means of inhibition of the PI3K/AKT/mTOR pathway. Entrance Pharmacol. 2020;11:128.
Wilde B, Katsounas A. Immune dysfunction and albumin-related immunity in liver cirrhosis. Mediators Inflamm. 2019;2019:7537649.
Liu T, Xiao B, Xiang F, Tan J, Chen Z, Zhang X, Wu C, Mao Z, Luo G, Chen X, et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of irritation associated illnesses. Nat Commun. 2020;11(1):2788.
Lin Q, Li S, Jiang N, Shao X, Zhang M, Jin H, Zhang Z, Shen J, Zhou Y, Zhou W, et al. PINK1-parkin pathway of mitophagy protects towards contrast-induced acute kidney damage through lowering mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol. 2019;26: 101254.
Wu M, Chen W, Miao M, Jin Q, Zhang S, Bai M, Fan J, Zhang Y, Zhang A, Jia Z, et al. Anti-anemia drug FG4592 retards the AKI-to-CKD transition by bettering vascular regeneration and antioxidative functionality. Clin Sci (Lond). 2021;135(14):1707–26.
Leowattana W. Antiviral medication and acute kidney damage (AKI). Infect Disord Drug Targets. 2019;19(4):375–82.
Ni D, Jiang D, Kutyreff CJ, Lai J, Yan Y, Barnhart TE, Yu B, Im HJ, Kang L, Cho SY, et al. Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney damage in mice. Nat Commun. 2018;9(1):5421.
Chen Q, Ding F, Zhang S, Li Q, Liu X, Track H, Zuo X, Fan C, Mou S, Ge Z. Sequential remedy of acute kidney damage with a DNA nanodevice. Nano Lett. 2021;21(10):4394–402.
Ding F, Zhang S, Liu S, Feng J, Li J, Li Q, Ge Z, Zuo X, Fan C, Xia Q. Molecular visualization of early-stage acute kidney damage with a DNA framework nanodevice. Adv Sci (Weinh). 2022;9(20): e2105947.
Li F, Li T, Solar C, Xia J, Jiao Y, Xu H. Selenium-doped carbon quantum dots for free-radical scavenging. Angew Chem Int Ed Engl. 2017;56(33):9910–4.
Wang H, Yu D, Fang J, Zhou Y, Li D, Liu Z, Ren J, Qu X. Phenol-like group functionalized graphene quantum dots structurally mimicking pure antioxidants for extremely environment friendly acute kidney damage remedy. Chem Sci. 2020;11(47):12721–30.
Zhou J, Liu W, Zhao X, Xian Y, Wu W, Zhang X, Zhao N, Xu FJ, Wang C. Pure melanin/alginate hydrogels obtain cardiac restore by means of ros scavenging and macrophage polarization. Adv Sci (Weinh). 2021;8(20): e2100505.
Solar T, Jiang D, Rosenkrans ZT, Ehlerding EB, Ni D, Qi C, Kutyreff CJ, Barnhart TE, Engle JW, Huang P, et al. A melanin-based pure antioxidant protection nanosystem for theranostic utility in acute kidney damage. Adv Funct Mater. 2019;29(48):1904833.
Hou J, Wang H, Ge Z, Zuo T, Chen Q, Liu X, Mou S, Fan C, Xie Y, Wang L. Treating acute kidney damage with antioxidative black phosphorus nanosheets. Nano Lett. 2020;20(2):1447–54.
Dillon KM, Carrazzone RJ, Wang Y, Powell CR, Matson JB. Polymeric persulfide prodrugs: mitigating oxidative stress by means of managed supply of reactive sulfur species. ACS Macro Lett. 2020;9(4):606–12.
Zhang DY, Liu H, Zhu KS, He T, Younis MR, Yang C, Lei S, Wu J, Lin J, Qu J, et al. Prussian blue-based theranostics for ameliorating acute kidney damage. J Nanobiotechnology. 2021;19(1):266.
Wu X, Zhang H. Therapeutic methods of iron-based nanomaterials for most cancers remedy. Biomed Mater. 2021;16(3): 032003.
Alphandéry E. Mild-interacting iron-based nanomaterials for localized most cancers detection and remedy. Acta Biomater. 2021;124:50–71.
Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, et al. Intrinsic peroxidase-like exercise of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83.
Chopra A. Trastuzumab-dextran iron oxide nanoparticles. In: Chopra A, editor. Molecular imaging and distinction agent database (MICAD). Bethesda: Nationwide Heart for Biotechnology Info; 2004.
Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, Pajarinen JS, Nejadnik H, Goodman S, Moseley M, et al. Iron oxide nanoparticles inhibit tumour progress by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11(11):986–94.
Trujillo-Alonso V, Pratt EC, Zong H, Lara-Martinez A, Kaittanis C, Rabie MO, Longo V, Becker MW, Roboz GJ, Grimm J, et al. FDA-approved ferumoxytol shows anti-leukaemia efficacy towards cells with low ferroportin ranges. Nat Nanotechnol. 2019;14(6):616–22.
Mutalik C, Hsiao YC, Chang YH, Krisnawati DI, Alimansur M, Jazidie A, Nuh M, Chang CC, Wang DY, Kuo TR. Excessive UV-Vis-NIR light-induced antibacterial exercise by heterostructured Tio2-FeS2 nanocomposites. Int J Nanomedicine. 2020;15:8911–20.
Zhan M, Yu X, Zhao W, Peng Y, Peng S, Li J, Lu L. Extracellular matrix-degrading STING nanoagonists for delicate NIR-II photothermal-augmented chemodynamic-immunotherapy. J Nanobiotechnology. 2022;20(1):23.
Wang Y, Dillon KM, Li Z, Winckler EW, Matson JB. Assuaging mobile oxidative stress by means of remedy with superoxide-triggered persulfide prodrugs. Angew Chem Int Ed Engl. 2020;59(38):16698–704.
Murphy B, Bhattacharya R, Mukherjee P. Hydrogen sulfide signaling in mitochondria and illness. Faseb J. 2019;33(12):13098–125.
Cao X, Nie X, Xiong S, Cao L, Wu Z, Moore PK, Bian JS. Renal protecting impact of polysulfide in cisplatin-induced nephrotoxicity. Redox Biol. 2018;15:513–21.
Fang L, Ma R, Gao XJ, Chen L, Liu Y, Huo Y, Wei T, Wang X, Wang Q, Wang H, et al. Metastable iron sulfides gram-dependently counteract resistant gardnerella vaginalis for bacterial vaginosis remedy. Adv Sci (Weinh). 2022;9(10): e2104341.
Ren H, Yong J, Yang Q, Yang Z, Liu Z, Xu Y, Wang H, Jiang X, Miao W, Li X. Self-assembled FeS-based cascade bioreactor with enhanced tumor penetration and synergistic therapies to set off strong most cancers immunotherapy. Acta Pharm Sin B. 2021;11(10):3244–61.
Ding L, Jiang J, Cheng L, Wang Y, Zhang W, Li D, Xu Z, Jiang J, Gao L, Li Z. Oral administration of nanoiron sulfide supernatant for the remedy of gallbladder stones with persistent cholecystitis. ACS Appl Bio Mater. 2021;4(5):3773–85.
Xu Z, Qiu Z, Liu Q, Huang Y, Li D, Shen X, Fan Ok, Xi J, Gu Y, Tang Y, et al. Changing organosulfur compounds to inorganic polysulfides towards resistant bacterial infections. Nat Commun. 2018;9(1):3713.
Shen X, Ma R, Huang Y, Chen L, Xu Z, Li D, Meng X, Fan Ok, Xi J, Yan X, et al. Nano-decocted ferrous polysulfide coordinates ferroptosis-like dying in micro organism for anti-infection remedy. Nano In the present day. 2020;35: 100981.
Chauhan P, Gupta Ok, Ravikumar G, Saini DK, Chakrapani H. Carbonyl sulfide (COS) donor induced protein persulfidation protects towards oxidative stress. Chem Asian J. 2019;14(24):4717–24.
Bhattacherjee D, Sufian A, Mahato SK, Begum S, Banerjee Ok, De S, Srivastava HK, Bhabak KP. Trisulfides over disulfides: extremely selective artificial methods, anti-proliferative actions and sustained H2S launch profiles. Chem Commun (Camb). 2019;55(90):13534–7.
Boursiquot S, Mullet M, Ehrhardt JJ. XPS examine of the response of chromium (VI) with mackinawite (FeS). Surf Interface Anal. 2002;34(1):293–7.
Zhao M, Wang Y, Li L, Liu S, Wang C, Yuan Y, Yang G, Chen Y, Cheng J, Lu Y, et al. Mitochondrial ROS promote mitochondrial dysfunction and irritation in ischemic acute kidney damage by disrupting TFAM-mediated mtDNA upkeep. Theranostics. 2021;11(4):1845–63.
Zheng Y, Yu B, Li Z, Yuan Z, Organ CL, Trivedi RK, Wang S, Lefer DJ, Wang B. An esterase-sensitive prodrug method for controllable supply of persulfide species. Angew Chem Int Ed Engl. 2017;56:11749–53.
Ni X, Kelly SS, Xu S, Xian M. The trail to managed supply of reactive sulfur species. Acc Chem Res. 2021;54:3968–78.
Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Pedraza-Chaverri J. Mitochondrial redox signaling and oxidative stress in kidney illnesses. Biomolecules. 2021;11(8):1144.
Mukhopadhyay S, Veroniaina H, Chimombe T, Han L, Zhenghong W, Xiaole Q. Synthesis and compatibility analysis of versatile mesoporous silica nanoparticles with purple blood cells: an outline. RSC Adv. 2019;9(61):35566–78.
Ansari SA, Husain Q. Potential purposes of enzymes immobilized on/in nano supplies: a overview. Biotechnol Adv. 2012;30(3):512–23.