Nanostructures for prevention, prognosis, and remedy of viral respiratory infections: from influenza virus to SARS-CoV-2 variants | Journal of Nanobiotechnology


  • Trovato M, Sartorius R, D’Apice L, Manco R, De Berardinis P. Viral rising ailments: challenges in creating vaccination methods. Entrance Immunol. 2020;11:2130.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adhikari S, Adhikari U, Mishra A, Guragain BS. Nanomaterials for diagnostic, remedy and prevention of COVID-19. Appl Sci Technol Ann. 2020;1:155–64.

    Article 

    Google Scholar
     

  • Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, et al. Medical, laboratory and imaging options of COVID-19: a scientific evaluate and meta-analysis. Journey Med Infect Dis. 2020;34: 101623.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang G, Chen S, Zhang J. Bioinspired and biomimetic nanotherapies for the remedy of infectious ailments. Entrance Pharmacol. 2019;10:751.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang Z, Zhang X, Shu Y, Guo M, Zhang H, Tao W. Insights from nanotechnology in COVID-19 remedy. Nano Right this moment. 2021;36: 101019.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. Nanotechnology for COVID-19: therapeutics and vaccine analysis. ACS Nano. 2020;14:7760–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Riel D, de Wit E. Subsequent-generation vaccine platforms for COVID-19. Nat Mater. 2020;19:810–2.

    Article 
    PubMed 

    Google Scholar
     

  • Draz MS, Shafiee H. Functions of gold nanoparticles in virus detection. Theranostics. 2018;8:1985.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paull JRA, Heery GP, Bobardt MD, Castellarnau A, Luscombe CA, Fairley JK, et al. Virucidal and antiviral exercise of astodrimer sodium in opposition to SARS-CoV-2 in vitro. Antivir Res. 2021;191: 105089.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Zhao J, Chen Z, Wu H, Wang S. A molybdenum-based nanoplatform with multienzyme mimicking capacities for oxidative stress-induced acute liver damage remedy. Inorg Chem Entrance. 2023;10:1305–14.

    Article 
    CAS 

    Google Scholar
     

  • Aasi A, Aghaei SM, Panchapakesan B. A density useful principle examine on the interplay of toluene with transition metallic adorned carbon nanotubes: a promising platform for early detection of lung most cancers from human breath. Nanotechnology. 2020;31: 415707.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian Okay, Wang Y, Hua L, Chen A, Zhang Y. New methodology of lung most cancers detection by saliva check utilizing surface-enhanced Raman spectroscopy. Thorac Most cancers. 2018;9:1556–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao H, Zhang N, Zhang R, Duan M, Xie T, Pan J, et al. Severity detection for the coronavirus illness 2019 (COVID-19) sufferers utilizing a machine studying mannequin primarily based on the blood and urine checks. medRxiv. 2020. https://doi.org/10.3389/fcell.2020.00683.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang X, Wang S, Zhang X, Ye C, Wang S, An X. Growth of PVA-based microsphere as a possible embolization agent. Biomater Adv. 2022;135: 112677.

    Article 

    Google Scholar
     

  • Arifin NFT, Yusof N, Nordin NAHM, Jaafar J, Ismail AF, Aziz F, et al. Potential software of biomass derived graphene for COVID-19 pandemic. Mater Right this moment Proc. 2021;46:1959–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang B, Salieb-Beugelaar GB, Nigo MM, Weidmann M, Hunziker P. Diagnosing dengue virus an infection: fast checks and the function of micro/nanotechnologies. Nanomed Nanotechnol Biol Med. 2015;11:1745–61.

    Article 
    CAS 

    Google Scholar
     

  • Maduray Okay, Parboosing R. Steel nanoparticles: a promising remedy for viral and arboviral infections. Biol Hint Elem Res. 2020;199(8):3159–76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Medhi R, Srinoi P, Ngo N, Tran HV, Lee TR. Nanoparticle-based methods to fight COVID-19. ACS Appl Nano Mater. 2020;3:8557–80.

    Article 
    CAS 

    Google Scholar
     

  • Pung R, Chiew CJ, Younger BE, Chin S, Chen MIC, Clapham HE, et al. Investigation of three clusters of COVID-19 in Singapore: implications for surveillance and response measures. Lancet. 2020;395:1039–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cappellano G, Abreu H, Casale C, Dianzani U, Chiocchetti A. Nano-microparticle platforms in creating next-generation. Vaccines. 2021;9:1–18.

    Article 

    Google Scholar
     

  • Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev. 2005;105(4):1547–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pramanik A, Gao Y, Patibandla S, Mitra D, McCandless MG, Fassero LA, et al. The fast prognosis and efficient inhibition of coronavirus utilizing spike antibody hooked up gold nanoparticles. Nanoscale Adv. 2021;3:1588–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moitra P, Alafeef M, Alafeef M, Alafeef M, Dighe Okay, Frieman MB, et al. Selective naked-eye detection of SARS-CoV-2 mediated by N gene focused antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano. 2020;14:7617–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeremiah SS, Miyakawa Okay, Morita T, Yamaoka Y, Ryo A. Potent antiviral impact of silver nanoparticles on SARS-CoV-2. Biochem Biophys Res Commun. 2020;533:195–200.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pilaquinga F, Morey J, Torres M, Seqqat R, Piña MDLN. Silver nanoparticles as a possible remedy in opposition to SARS-CoV-2: a evaluate. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13:1–19.

    Article 

    Google Scholar
     

  • Thorlund Okay, Awad T, Boivin G, Thabane L. Systematic evaluate of influenza resistance to the neuraminidase inhibitors. BMC Infect Dis. 2011;11:1–13.

    Article 

    Google Scholar
     

  • Damage AC, Ho H-T, Barr I. Resistance to anti-influenza medication: adamantanes and neuraminidase inhibitors. Knowledgeable Rev Anti Infect Ther. 2006;4:795–805.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Vries E, Stelma FF, Boucher CAB. Emergence of a multidrug-resistant pandemic influenza A (H1N1) virus. N Engl J Med. 2010;363:1381–2.

    Article 
    PubMed 

    Google Scholar
     

  • Meng J, Stobart CC, Hotard AL, Moore ML. An outline of respiratory syncytial virus. PLoS Pathog. 2014;10: e1004016.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Efstathiou C, Abidi SH, Harker J, Stevenson NJ. Revisiting respiratory syncytial virus’s interplay with host immunity, in the direction of novel therapeutics. Cell Mol Life Sci. 2020;77:1–14.

    Article 

    Google Scholar
     

  • Trus I, Udenze D, Berube N, Wheler C, Martel M-J, Gerdts V, et al. CpG-recoding in Zika virus genome causes host-age-dependent attenuation of an infection with safety in opposition to deadly heterologous problem in mice. Entrance Immunol. 2020;10:3077.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y. From SARS and MERS to COVID-19: a short abstract and comparability of extreme acute respiratory infections attributable to three extremely pathogenic human coronaviruses. Respir Res. 2020;21:1–14.

    Article 

    Google Scholar
     

  • Fung SY, Yuen KS, Ye ZW, Chan CP, Jin DY. A tug-of-war between extreme acute respiratory syndrome coronavirus 2 and host antiviral defence: classes from different pathogenic viruses. Emerg Microbes Infect. 2020;9:558–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses-drug discovery and therapeutic choices. Nat Rev Drug Discov. 2016;15:327–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92:424–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim Y, Ng Y, Tam J, Liu D. Human coronaviruses: a evaluate of virus–host interactions. Illnesses. 2016;4:26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdelrahman Z, Li M, Wang X. Comparative evaluate of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza a respiratory viruses. Entrance Immunol. 2020;11:2309.

    Article 

    Google Scholar
     

  • Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Coronavirus membrane fusion mechanism gives a possible goal for antiviral growth. Antivir Res. 2020;178: 104792.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, Yang C, Xu X, Xu W, Liu S. Structural and useful properties of SARS-CoV-2 spike protein: potential antivirus drug growth for COVID-19. Acta Pharmacol Sin. 2020;41:1141–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science (80-). 2020;370:856–60.

    Article 
    CAS 

    Google Scholar
     

  • Wang Okay, Chen W, Zhang Z, Deng Y, Lian JQ, Du P, et al. CD147-spike protein is a novel route for SARS-CoV-2 an infection to host cells. Sign Transduct Goal Ther. 2020;5:1–10.

    CAS 

    Google Scholar
     

  • Sigrist CJA, Bridge A, Le Mercier P. A possible function for integrins in host cell entry by SARS-CoV-2. Antivir Res. 2020;177: 104759.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ortiz ME, Thurman A, Pezzulo AA, Leidinger MR, Klesney-Tait JA, Karp PH, et al. Heterogeneous expression of the SARS-Coronavirus-2 receptor ACE2 within the human respiratory tract. EBioMedicine. 2020;60: 102976.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zumla A, Hui DS, Perlman S. Center East respiratory syndrome. Lancet. 2015;386:995–1007.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleine-Weber H, Elzayat MT, Hoffmann M, Pöhlmann S. Purposeful evaluation of potential cleavage websites within the MERS-coronavirus spike protein. Sci Rep. 2018;8:1–11.

    Article 
    CAS 

    Google Scholar
     

  • Millet JK, Whittaker GR. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology. 2018;517:3–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry will depend on ACE2 and TMPRSS2 and is blocked by a clinically confirmed protease inhibitor. Cell. 2020;181:271–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffmann M, Kleine-Weber H, Pöhlmann S. A multibasic cleavage website within the spike protein of SARS-CoV-2 is important for an infection of human lung cells. Mol Cell. 2020;78:779–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci. 2020;117:11727–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dittmayer C, Meinhardt J, Radbruch H, Radke J, Heppner BI, Heppner FL, et al. Why misinterpretation of electron micrographs in SARS-CoV-2-infected tissue goes viral. Lancet. 2020;396:e64–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19:155–70.

    Article 
    PubMed 

    Google Scholar
     

  • Kasuga Y, Zhu B, Jang Okay-J, Yoo J-S. Innate immune sensing of coronavirus and viral evasion methods. Exp Mol Med. 2021;53:723–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee S, Channappanavar R, Kanneganti T-D. Coronaviruses: innate immunity, inflammasome activation, inflammatory cell loss of life, and cytokines. Tendencies Immunol. 2020;41(12):1083–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184(4):861–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Rivero Vaccari JC, Dietrich WD, Keane RW, de Rivero Vaccari JP. The inflammasome in occasions of COVID-19. Entrance Immunol. 2020;11:2474.

    Article 

    Google Scholar
     

  • Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021;19(7):409–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim S, Lei Z, Dicker J, Cao Y, Zhang XF, Im W. Differential interactions between human ACE2 and spike RBD of SARS-CoV-2 variants of concern. bioRxiv Prepr. Serv Biol. 2021;453598.

  • Saito A, Nasser H, Uriu Okay, Kosugi Y, Irie T, Shirakawa Okay, et al. SARS-CoV-2 spike P681R mutation enhances and accelerates viral fusion. bioRxiv. 2021. https://doi.org/10.1101/2021.06.17.448820.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Xiao T, Cai Y, Lavine CL, Peng H, Zhu H, et al. Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant. bioRxiv. 2021. https://doi.org/10.1101/2021.08.17.456689.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, et al. Lowered sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021;596(7871):276–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saito A, Kimura I, Yamasoba D, Gerber PP. Altered TMPRSS2 utilization by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603:706–14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cele S, Jackson L, Khoury DS, Khan Okay, Moyo-Gwete T, Tegally H, et al. Omicron extensively however incompletely escapes Pfizer BNT162b2 neutralization. Nature. 2021;602:1–5.


    Google Scholar
     

  • Hui KPY, Ho JCW, Cheung M, Ng Okay, Ching RHH, Lai Okay, et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature. 2022;603:715–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singhal T. The emergence of omicron: difficult occasions are right here once more! Indian J Pediatr. 2022;89:490–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gralinski LE, Menachery VD. Return of the coronavirus: 2019-nCoV. Viruses. 2020;12:135.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal brokers. J Hosp Infect. 2020;104:246–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui L, Ren X, Wang J, Solar M. Synthesis of homogeneous carbon quantum dots by ultrafast dual-beam pulsed laser ablation for bioimaging. Mater Right this moment Nano. 2020;12: 100091.

    Article 

    Google Scholar
     

  • Huang L, Gu M, Wang Z, Tang TW, Zhu Z, Yuan Y, et al. Extremely environment friendly and fast inactivation of coronavirus on non-metal hydrophobic laser-induced graphene in gentle situations. Adv Funct Mater. 2021;31:2101195.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang N, Ferhan AR, Yoon BK, Jackman JA, Cho N-J, Majima T. Chemical design rules of next-generation antiviral floor coatings. Chem Soc Rev. 2021;50:9741–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hadidi M, Bigham A, Saebnoori E, Hassanzadeh-Tabrizi SA, Rahmati S, Alizadeh ZM, et al. Electrophoretic-deposited hydroxyapatite-copper nanocomposite as an antibacterial coating for biomedical functions. Surf Coat Technol. 2017;321:171–9.

    Article 
    CAS 

    Google Scholar
     

  • Ansari M, Bigham A, Ahangar HA. Tremendous-paramagnetic nanostructured CuZnMg combined spinel ferrite for bone tissue regeneration. Mater Sci Eng C. 2019;105: 110084.

    Article 
    CAS 

    Google Scholar
     

  • Bigham A, Aghajanian AH, Allahdaneh S, Hassanzadeh-Tabrizi SA. Multifunctional mesoporous magnetic Mg2SiO4–CuFe2O4 core–shell nanocomposite for simultaneous bone most cancers remedy and regeneration. Ceram Int. 2019;45:19481–21988.

    Article 
    CAS 

    Google Scholar
     

  • Vincent M, Duval RE, Hartemann P, Engels-Deutsch M. Contact killing and antimicrobial properties of copper. J Appl Microbiol. 2018;124:1032–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Warnes SL, Little ZR, Keevil CW. Human coronavirus 229E stays infectious on frequent contact floor supplies. MBio. 2015;6:e01697-e1715.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Champagne V, Sundberg Okay, Helfritch D. Kinetically deposited copper antimicrobial surfaces. Coatings. 2019;9:257.

    Article 
    CAS 

    Google Scholar
     

  • Behzadinasab S, Chin A, Hosseini M, Poon L, Ducker WA. A floor coating that quickly inactivates SARS-CoV-2. ACS Appl Mater Interfaces. 2020;12:34723–7. https://doi.org/10.1021/acsami.0c11425.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das Jana I, Kumbhakar P, Banerjee S, Gowda CC, Kedia N, Kuila SK, et al. Copper nanoparticle-graphene composite-based clear floor coating with antiviral exercise in opposition to influenza virus. ACS Appl Nano Mater. 2020;4(1):352–62.

    Article 

    Google Scholar
     

  • Liang L, Ahamed A, Ge L, Fu X, Lisak G. Advances in antiviral materials growth. ChemPlusChem. 2020;85:2105–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salleh A, Naomi R, Utami ND, Mohammad AW, Mahmoudi E, Mustafa N, et al. The potential of silver nanoparticles for antiviral and antibacterial functions: a mechanism of motion. Nanomaterials. 2020;10:1566.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balagna C, Perero S, Percivalle E, Nepita EV, Ferraris M. Virucidal impact in opposition to coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceram. 2020;1: 100006.

    Article 
    CAS 

    Google Scholar
     

  • Bigham A, Foroughi F, Motamedi M, Rafienia M. Multifunctional nanoporous magnetic zinc silicate-ZnFe2O4 core-shell composite for bone tissue engineering functions. Ceram Int. 2018;44:11798–806.

    Article 
    CAS 

    Google Scholar
     

  • Bigham A, Salehi AOM, Rafienia M, Salamat MR, Rahmati S, Raucci MG, et al. Zn-substituted Mg2SiO4 nanoparticles-incorporated PCL-silk fibroin composite scaffold: a multifunctional platform in the direction of bone tissue regeneration. Mater Sci Eng C. 2021;127: 112242.

    Article 
    CAS 

    Google Scholar
     

  • Korant BD, Kauer JC, Butterworth BE. Zinc ions inhibit replication of rhinoviruses. Nature. 1974;248:588–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Learn SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The function of zinc in antiviral immunity. Adv Nutr. 2019;10:696–710.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghaffari H, Tavakoli A, Moradi A, Tabarraei A, Bokharaei-Salim F, Zahmatkeshan M, et al. Inhibition of H1N1 influenza virus an infection by zinc oxide nanoparticles: one other rising software of nanomedicine. J Biomed Sci. 2019;26:1–10.

    Article 
    CAS 

    Google Scholar
     

  • Hodek J, Zajícová V, Lovětinská-Šlamborová I, Stibor I, Müllerová J, Weber J. Protecting hybrid coating containing silver, copper and zinc cations efficient in opposition to human immunodeficiency virus and different enveloped viruses. BMC Microbiol. 2016;16:1–12.

    Article 

    Google Scholar
     

  • El-Megharbel SM, Alsawat M, Al-Salmi FA, Hamza RZ. Using of (Zinc oxide nano-spray) for disinfection in opposition to “sars-cov-2” and testing its organic effectiveness on some biochemical parameters throughout (covid-19 pandemic)—“zno nanoparticles have antiviral exercise in opposition to (sars-cov-2).” Coatings. 2021;11:388.

    Article 
    CAS 

    Google Scholar
     

  • Kim J, Lee SK, Lee J, Kim H, Kim NH, Lee CH, et al. ZnO nanowire-based early detection of SARS-CoV-2 antibody responses in asymptomatic sufferers with COVID-19. Adv Mater Interfaces. 2022;9:2102046.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nunez FA, Castro ACH, de Oliveira VL, Lima AC, Oliveira JR, de Medeiros GX, et al. Electrochemical immunosensors primarily based on zinc oxide nanorods for detection of antibodies in opposition to SARS-CoV-2 spike protein in convalescent and vaccinated people. ACS Biomater Sci Eng. 2022;9:458–73.

    Article 
    PubMed 

    Google Scholar
     

  • Habibi-Yangjeh A, Asadzadeh-Khaneghah S, Feizpoor S, Rouhi A. Evaluation on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: can we win in opposition to pathogenic viruses? J Colloid Interface Sci. 2020;580:503–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dell’Edera M, Porto CL, De Pasquale I, Petronella F, Curri ML, Agostiano A, et al. Photocatalytic TiO2-based coatings for environmental functions. Catal Right this moment. 2021;380:62–83.

    Article 

    Google Scholar
     

  • Moongraksathum B, Chien M-Y, Chen Y-W. Antiviral and antibacterial results of silver-doped TiO2 ready by the peroxo sol–gel methodology. J Nanosci Nanotechnol. 2019;19:7356–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shakeri A, Yip D, Badv M, Imani SM, Sanjari M, Didar TF. Self-cleaning ceramic tiles produced through secure coating of TiO2 nanoparticles. Supplies (Basel). 2018;11:1003.

    Article 
    PubMed 

    Google Scholar
     

  • Nakano R, Hara M, Ishiguro H, Yao Y, Ochiai T, Nakata Okay, et al. Broad spectrum microbicidal exercise of photocatalysis by TiO2. Catalysts. 2013;3:310–23.

    Article 
    CAS 

    Google Scholar
     

  • Rao G, Brastad KS, Zhang Q, Robinson R, He Z, Li Y. Enhanced disinfection of Escherichia coli and bacteriophage MS2 in water utilizing a copper and silver loaded titanium dioxide nanowire membrane. Entrance Environ Sci Eng. 2016;10:1–9.

    Article 
    CAS 

    Google Scholar
     

  • Park GW, Cho M, Cates EL, Lee D, Oh B-T, Vinjé J, et al. Fluorinated TiO2 as an ambient light-activated virucidal floor coating materials for the management of human norovirus. J Photochem Photobiol B Biol. 2014;140:315–20.

    Article 
    CAS 

    Google Scholar
     

  • Sinclair TR, Patil A, Raza BG, Reurink D, den Hengel SK, Rutjes SA, et al. Cationically modified membranes utilizing covalent layer-by-layer meeting for antiviral functions in ingesting water. J Membr Sci. 2019;570:494–503.

    Article 

    Google Scholar
     

  • Klibanov AM. Completely microbicidal supplies coatings. J Mater Chem. 2007;17:2479–82.

    Article 
    CAS 

    Google Scholar
     

  • Borrego JJ, Cornax R, Preston DR, Farrah SR, McElhaney B, Bitton G. Growth and software of latest positively charged filters for restoration of bacteriophages from water. Appl Environ Microbiol. 1991;57:1218–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao J, Solar S-P, Zhu W-P, Chung T-S. Chelating polymer modified P84 nanofiltration (NF) hole fiber membranes for prime environment friendly heavy metallic elimination. Water Res. 2014;63:252–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiliket G, Le SD, Moules V, Rosa-Calatrava M, Lina B, Valleton JM, et al. A brand new materials for airborne virus filtration. Chem Eng J. 2011;173:341–51.

    Article 
    CAS 

    Google Scholar
     

  • Gelman F, Lewis Okay, Klibanov AM. Drastically reducing the titer of waterborne bacteriophage PRD1 by publicity to immobilized hydrophobic polycations. Biotechnol Lett. 2004;26:1695–700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haldar J, An D, de Cienfuegos LA, Chen J, Klibanov AM. Polymeric coatings that inactivate each influenza virus and pathogenic micro organism. Proc Natl Acad Sci. 2006;103:17667–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines in opposition to infectious ailments. Entrance Immunol. 2018;9:2224.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dykman LA. Gold nanoparticles for preparation of antibodies and vaccines in opposition to infectious ailments. Knowledgeable Rev Vaccines. 2020;19:465–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma X, Zou F, Yu F, et al. Nanoparticle vaccines primarily based on the receptor binding area (RBD) and heptad repeat (HR) of SARS-CoV-2 elicit sturdy protecting immune responses. Immunity. 2020;53:1315–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamb YN. BNT162b2 mRNA COVID-19 vaccine: first approval. Rev Medication. 2021;81:495–501.

    CAS 

    Google Scholar
     

  • Wallace M, et al. The advisory committee on immunization practices’ interim suggestion to be used of Pfizer-BioNTech COVID-19 vaccine in adolescents aged 12–15 years—United States, Might 2021. Morb Mortal Wkly Rep. 2021;70:749–52.

    Article 
    CAS 

    Google Scholar
     

  • Klimek L, Novak N, Hamelmann E, et al. Extreme allergic reactions after COVID-19 vaccination with the Pfizer/BioNTech vaccine in Nice Britain and USA: place assertion of the German allergy societies: medical Affiliation of German Allergologists (AeDA), German Society for Allergology and Medical Immunology (DGAKI) and Society for Pediatric Allergology and Environmental Medication (GPA). Allergo J Int. 2021;30:51–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hatziantoniou S, Maltezou HC, Tsakris A. Anaphylactic reactions to mRNA COVID-19 vaccines: a name for additional examine. Vaccine. 2021;39:2605–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noor R. Developmental standing of the potential vaccines for the mitigation of the COVID-19 pandemic and a give attention to the effectiveness of the Pfizer-BioNTech and moderna mRNA vaccines. Curr Clin Microbiol Rep. 2021;8:1–8.


    Google Scholar
     

  • Folegatti PM, Ewer KJ, Aley PK, et al. Security and immunogenicity of the ChAdOx1 nCoV-19 vaccine in opposition to SARS-CoV-2: a preliminary report of a section 1/2, single-blind, randomised managed trial. Lancet. 2020;396:467–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang YF, Solar C, Zhuang Z, et al. Speedy growth of SARS-CoV-2 spike protein receptor-binding area self-assembled nanoparticle vaccine candidates. ACS Nano. 2021;15:2738–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McKay PF, Hu Okay, Blakney AK, et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces excessive neutralizing antibody titers in mice. Nat Commun. 2020;11:3523.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng C, Hou X, Yan J, et al. Leveraging mRNA sequences and nanoparticles to ship SARS-CoV-2 antigens in vivo. Adv Mater. 2020;32:2004452.

    Article 
    CAS 

    Google Scholar
     

  • Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D. Nanoparticle-based vaccines in opposition to respiratory viruses. Entrance Immunol. 2019;10:22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu M, Wang R, Nie G. Functions of nanomaterials as vaccine adjuvants. Hum Vaccines Immunother. 2014;10:2761–74.

    Article 

    Google Scholar
     

  • He Y, Hara H, Núñez G. Mechanism and regulation of NLRP3 inflammasome activation. Tendencies Biochem Sci. 2016;41:1012–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scharf B, Clement CC, Wu XX, Morozova Okay, Zanolini D, Follenzi A, et al. Annexin A2 binds to endosomes following organelle destabilization by particulate put on particles. Nat Commun. 2012;3:1–10.

    Article 

    Google Scholar
     

  • Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, et al. The NALP3 inflammasome is concerned within the innate immune response to amyloid-β. Nat Immunol. 2008;9:857–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vicente S, Diaz-Freitas B, Peleteiro M, Sanchez A, Pascual DW, Gonzalez-Fernandez A, et al. A polymer/oil primarily based nanovaccine as a single-dose immunization strategy. PLoS ONE. 2013;8: e62500.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sawaengsak C, Mori Y, Yamanishi Okay, Mitrevej A, Sinchaipanid N. Chitosan nanoparticle encapsulated hemagglutinin-split influenza virus mucosal vaccine. AAPS PharmSciTech. 2014;15:317–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopes AM, Apolinário AC, Valenzuela-Oses JK, Costa JS, Pessoa A, Barbosa LR. Nanostructures for protein drug supply. Biomater Sci. 2016;4:205–18.

    Article 
    PubMed 

    Google Scholar
     

  • Degobert G, Aydin D. Lyophilization of nanocapsules: instability sources, formulation and course of parameters. Pharmaceutics. 2021;13:1112.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneider CS, Xu Q, Boylan NJ, Chisholm J, Tang BC, Schuster BS, et al. Nanoparticles that don’t adhere to mucus present uniform and long-lasting drug supply to airways following inhalation. Sci Adv. 2017;3: e1601556.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang H, Yan M, Yu Q, Yang Q. Traits of nasal-associated lymphoid tissue (NALT) and nasal absorption capability in hen. PLoS ONE. 2013;8: e84097.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marasini N, Skwarczynski M, Toth I. Intranasal supply of nanoparticle-based vaccines. Ther Deliv. 2017;8:151–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gomes AC, Mohsen M, Bachmann MF. Harnessing nanoparticles for immunomodulation and vaccines. Vaccines. 2017;5:6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dowling DJ, Scott EA, Scheid A, Bergelson I, Joshi S, Pietrasanta C, et al. Toll-like receptor 8 agonist nanoparticles mimic immunomodulating results of the reside BCG vaccine and improve neonatal innate and adaptive immune responses. J Allergy Clin Immunol. 2017;140:1339–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raghuwanshi D, Mishra V, Suresh MR, Kaur Okay. A easy strategy for enhanced immune response utilizing engineered dendritic cell focused nanoparticles. Vaccine. 2012;30:7292–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lynn GM, Laga R, Darrah PA, Ishizuka AS, Balaci AJ, Dulcey AE, et al. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that improve vaccine immunogenicity. Nat Biotechnol. 2015;33:1201–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rauf A, Abu-Izneid T, Khalil AA, Hafeez N, Olatunde A, Rahman M, et al. Nanoparticles in medical trials of COVID-19: an replace. Int J Surg. 2022;104: 106818.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anselmo AC, Mitragotri S. Nanoparticles within the clinic: an replace put up COVID-19 vaccines. Bioeng Transl Med. 2021;6: e10246.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenthal PJ. The significance of diagnostic testing throughout a viral pandemic: early classes from novel coronavirus illness (CoVID-19). Am J Trop Med Hyg. 2020;102:915.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pokhrel P, Hu C, Mao H. Detecting the coronavirus (COVID-19). ACS Sens. 2020;5:2283–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mokhtarzadeh A, Eivazzadeh-Keihan R, Pashazadeh P, Hejazi M, Gharaatifar N, Hasanzadeh M, et al. Nanomaterial-based biosensors for detection of pathogenic virus. TrAC Tendencies Anal Chem. 2017;97:445–57.

    Article 
    CAS 

    Google Scholar
     

  • Yuan X, Yang C, He Q, Chen J, Yu D, Li J, et al. Present and perspective diagnostic methods for COVID-19. ACS Infect Dis. 2020;6:1998–2016.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shetti NP, Mishra A, Bukkitgar SD, Basu S, Narang J, Raghava Reddy Okay, et al. Typical and nanotechnology-based sensing strategies for SARS coronavirus (2019-nCoV). ACS Appl Bio Mater. 2021;4:1178–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed SR, Kang SW, Oh S, Lee J, Neethirajan S. Chiral zirconium quantum dots: a brand new class of nanocrystals for optical detection of coronavirus. Heliyon. 2018;4: e00766.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo F, Lengthy C, Wu Z, Xiong H, Chen M, Zhang X, et al. Purposeful silica nanospheres for delicate detection of H9N2 avian influenza virus primarily based on immunomagnetic separation. Sens Actuators B Chem. 2020;310: 127831.

    Article 
    CAS 

    Google Scholar
     

  • Zheng L, Wei J, Lv X, Bi Y, Wu P, Zhang Z, et al. Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles. Biosens Bioelectron. 2017;91:46–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo Z, Chen L, Liang C, Wei Q, Chen Y, Wang J. Porous carbon movies adorned with silver nanoparticles as a delicate SERS substrate, and their software to virus identification. Microchim Acta. 2017;184:3505–11.

    Article 
    CAS 

    Google Scholar
     

  • Tran TL, Nguyen TT, Tran TTH, Tran QT, Mai AT. Detection of influenza A virus utilizing carbon nanotubes area impact transistor primarily based DNA sensor. Phys E Low-dimens Syst Nanostruct. 2017;93:83–6.

    Article 
    CAS 

    Google Scholar
     

  • Zehbe I, Hacker GW, Su H, Hauser-Kronberger C, Hainfeld JF, Tubbs R. Delicate in situ hybridization with catalyzed reporter deposition, streptavidin-nanogold, and silver acetate autometallography: detection of single-copy human papillomavirus. Am J Pathol. 1997;150:1553.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elahi N, Kamali M, Baghersad MH. Latest biomedical functions of gold nanoparticles: a evaluate. Talanta. 2018;184:537–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA. Floor plasmon resonance in gold nanoparticles: a evaluate. J Phys Condens Matter. 2017;29: 203002.

    Article 
    PubMed 

    Google Scholar
     

  • Moitra P, Alafeef M, Dighe Okay, Frieman MB, Pan D. Selective naked-eye detection of SARS-CoV-2 mediated by N gene focused antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano. 2020;14:7617–27. https://doi.org/10.1021/acsnano.0c03822.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alfassam HA, Nassar MS, Almusaynid MM, Khalifah BA, Alshahrani AS, Almughem FA, et al. Growth of a colorimetric device for SARS-CoV-2 and different respiratory viruses detection utilizing sialic acid fabricated gold nanoparticles. Pharmaceutics. 2021;13:502.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bagheri M, Validi M, Gholipour A, Makvandi P, Sharifi E. Chitosan nanofiber biocomposites for potential wound therapeutic functions: antioxidant exercise with synergic antibacterial impact. Bioeng Transl Med. 2022;7: e10254. https://doi.org/10.1002/btm2.10254.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pilaquinga F, Morey J, Torres M, Seqqat R, Pina MDLN. Silver nanoparticles as a possible remedy in opposition to SARS-CoV-2: a evaluate. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13: e1707.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang G, Nanda J, Wang B, Chen G, Hallinan DT Jr. Self-assembly of enormous gold nanoparticles for surface-enhanced Raman spectroscopy. ACS Appl Mater Interfaces. 2017;9:13457–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zong C, Xu M, Xu L-J, Wei T, Ma X, Zheng X-S, et al. Floor-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem Rev. 2018;118:4946–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kozel TR, Burnham-Marusich AR. Level-of-care testing for infectious ailments: previous, current, and future. J Clin Microbiol. 2017;55:2313–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, Yi Y, Luo X, Xiong N, Liu Y, Li S, et al. Growth and medical software of a fast IgM-IgG mixed antibody check for SARS-CoV-2 an infection prognosis. J Med Virol. 2020;92:1518–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang C, Wen T, Shi F-J, Zeng X-Y, Jiao Y-J. Speedy detection of IgM antibodies in opposition to the SARS-CoV-2 virus through colloidal gold nanoparticle-based lateral-flow assay. ACS Omega. 2020;5:12550–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li D, Chen H, Gao X, Mei X, Yang L. Growth of basic strategies for detection of virus by engineering fluorescent silver nanoclusters. ACS Sens. 2021;6:613–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Jin R. New advances in atomically exact silver nanoclusters. ACS Mater Lett. 2019;1:482–9.

    Article 
    CAS 

    Google Scholar
     

  • Cao Q, Teng Y, Yang X, Wang J, Wang E. A label-free fluorescent molecular beacon primarily based on DNA-Ag nanoclusters for the development of versatile biosensors. Biosens Bioelectron. 2015;74:318–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chatterjee Okay, Sarkar S, Rao KJ, Paria S. Core/shell nanoparticles in biomedical functions. Adv Colloid Interface Sci. 2014;209:8–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karn-Orachai Okay, Sakamoto Okay, Laocharoensuk R, Bamrungsap S, Songsivilai S, Dharakul T, et al. Extrinsic surface-enhanced Raman scattering detection of influenza A virus enhanced by two-dimensional gold@ silver core–shell nanoparticle arrays. RSC Adv. 2016;6:97791–9.

    Article 
    CAS 

    Google Scholar
     

  • Smyrlaki I, Ekman M, Lentini A, de Sousa NR, Papanicolaou N, Vondracek M, et al. Large and fast COVID-19 testing is possible by extraction-free SARS-CoV-2 RT-PCR. Nat Commun. 2020;11:1–12.

    Article 

    Google Scholar
     

  • Mirza S, Ahmad MS, Shah MIA, Ateeq M. Magnetic nanoparticles: drug supply and bioimaging functions. In: Steel nanoparticles for drug supply and diagnostic functions. Amsterdam: Elsevier; 2019. p. 189–213.


    Google Scholar
     

  • Wu Okay, Su D, Liu J, Saha R, Wang J-P. Magnetic nanoparticles in nanomedicine: a evaluate of current advances. Nanotechnology. 2019;30: 502003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Z, Cui H, Music W, Ru X, Zhou W, Yu X. A easy magnetic nanoparticles-based viral RNA extraction methodology for environment friendly detection of SARS-CoV-2. bioRxiv. 2020. https://doi.org/10.1101/2020.02.22.961268.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen Q, Liang H, Tian J, Zhou C, Gao A, Wang D, et al. A magnetic nanoparticle labeled immunochromatography equipment for SARS-CoV-2 an infection prognosis. Nano Biomed Eng. 2020;12:325–30.

    Article 
    CAS 

    Google Scholar
     

  • Wu Okay, Liu J, Saha R, Su D, Krishna VD, Cheeran MC-J, et al. Magnetic particle spectroscopy for detection of influenza A virus subtype H1N1. ACS Appl Mater Interfaces. 2020;12:13686–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharifi E, Azami M, Kajbafzadeh A-M, Moztarzadeh F, Faridi-Majidi R, Shamousi A, et al. Preparation of a biomimetic composite scaffold from gelatin/collagen and bioactive glass fibers for bone tissue engineering. Mater Sci Eng C. 2016;59:533–41.

    Article 
    CAS 

    Google Scholar
     

  • Jagaran Okay, Singh M. Nanomedicine for covid-19: potential of copper nanoparticles. Biointerface Res Appl Chem. 2020;11:10716–28.

    Article 

    Google Scholar
     

  • Jha A, Jarvis H, Fraser C, Openshaw P. Respiratory syncytial virus. In: SARS, MERS different viral lung Infect. Lausanne: European Respiratory Society; 2016.


    Google Scholar
     

  • Valdez J, Bawage S, Gomez I, Singh SR. Facile and fast detection of respiratory syncytial virus utilizing metallic nanoparticles. J Nanobiotechnol. 2016;14:1–12.

    Article 

    Google Scholar
     

  • Jeelani PG, Mulay P, Venkat R, Ramalingam C. Multifaceted software of silica nanoparticles. A evaluate. SILICON. 2020;12:1337–54.

    Article 
    CAS 

    Google Scholar
     

  • Chaibun T, Puenpa J, Ngamdee T, Boonapatcharoen N, Athamanolap P, O’Mullane AP, et al. Speedy electrochemical detection of coronavirus SARS-CoV-2. Nat Commun. 2021;12:1–10.

    Article 

    Google Scholar
     

  • Wasfi A, Awwad F, Gelovani JG, Qamhieh N, Ayesh AI. COVID-19 detection through silicon nanowire field-effect transistor: setup and modeling of its perform. Nanomaterials. 2022;12:2638.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bamrungsap S, Apiwat C, Chantima W, Dharakul T, Wiriyachaiporn N. Speedy and delicate lateral move immunoassay for influenza antigen utilizing fluorescently-doped silica nanoparticles. Microchim Acta. 2014;181:223–30.

    Article 
    CAS 

    Google Scholar
     

  • Yang D, Li X, Meng D, Yang Y. Carbon quantum dots-modified ferrofluid for dispersive solid-phase extraction of phenolic compounds in water and milk samples. J Mol Liq. 2018;261:155–61.

    Article 
    CAS 

    Google Scholar
     

  • Bhamore JR, Jha S, Singhal RK, Park TJ, Kailasa SK. Facile inexperienced synthesis of carbon dots from Pyrus pyrifolia fruit for assaying of Al3+ ion through chelation enhanced fluorescence mechanism. J Mol Liq. 2018;264:9–16.

    Article 
    CAS 

    Google Scholar
     

  • Pourreza N, Ghomi M. Inexperienced synthesized carbon quantum dots from Prosopis juliflora leaves as a twin off-on fluorescence probe for sensing mercury (II) and chemet drug. Mater Sci Eng C. 2019;98:887–96.

    Article 
    CAS 

    Google Scholar
     

  • Li H, Kang Z, Liu Y, Lee S-T. Carbon nanodots: synthesis, properties and functions. J Mater Chem. 2012;22:24230–53.

    Article 
    CAS 

    Google Scholar
     

  • Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chemie Int Ed. 2010;49:6726–44.

    Article 
    CAS 

    Google Scholar
     

  • Tuerhong M, Yang XU, Xue-Bo YIN. Evaluation on carbon dots and their functions. Chin J Anal Chem. 2017;45:139–50.

    Article 

    Google Scholar
     

  • Liang X, Li N, Zhang R, Yin P, Zhang C, Yang N, et al. Carbon-based SERS biosensor: from substrate design to sensing and bioapplication. NPG Asia Mater. 2021;13:1–36.

    Article 
    CAS 

    Google Scholar
     

  • Tian J, Zhao H, Liu M, Chen Y, Quan X. Detection of influenza A virus primarily based on fluorescence resonance vitality switch from quantum dots to carbon nanotubes. Anal Chim Acta. 2012;723:83–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banerjee AN. Graphene and its derivatives as biomedical supplies: future prospects and challenges. Interface Focus. 2018;8:20170056.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eigler S, Hirsch A. Chemistry with graphene and graphene oxide—challenges for artificial chemists. Angew Chemie Int Ed. 2014;53:7720–38.

    Article 
    CAS 

    Google Scholar
     

  • Zheng P, Wu N. Fluorescence and sensing functions of graphene oxide and graphene quantum dots: a evaluate. Chem Asian J. 2017;12:2343–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palmieri V, Papi M. Can graphene participate within the battle in opposition to COVID-19? Nano Right this moment. 2020;33: 100883.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong S, Kim D-M, An S-Y, Kim DH, Kim D-E. Fluorometric detection of influenza viral RNA utilizing graphene oxide. Anal Biochem. 2018;561:66–9.

    Article 
    PubMed 

    Google Scholar
     

  • Gupta S, Murthy CN, Prabha CR. Latest advances in carbon nanotube primarily based electrochemical biosensors. Int J Biol Macromol. 2018;108:687–703.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anzar N, Hasan R, Tyagi M, Yadav N, Narang J. Carbon nanotube—a evaluate on synthesis, properties and plethora of functions within the area of biomedical science. Sens Int. 2020;1: 100003.

    Article 

    Google Scholar
     

  • Pinals RL, Ledesma F, Yang D, Navarro N, Jeong S, Pak JE, et al. Speedy SARS-CoV-2 spike protein detection by carbon nanotube-based near-infrared nanosensors. Nano Lett. 2021;21:2272–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strasfeld L, Chou S. Antiviral drug resistance: mechanisms and medical implications. Infect Dis Clin. 2010;24:809–33.

    Article 

    Google Scholar
     

  • Chaudhuri A, Kennedy PGE. Prognosis and remedy of viral encephalitis. Postgrad Med J. 2002;78:575–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu J-D, Meng W, Wang X-J, Wang H-CR. Broad-spectrum antiviral brokers. Entrance Microbiol. 2015;6:517.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zafar H, Raza F, Yousefiasl S. T-cell membrane-functionalized nanosystems for viral infectious ailments. Mater Chem Horiz. 2023;2:41–8.


    Google Scholar
     

  • Chakravarty M, Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv Transl Res. 2020;11:1–40.


    Google Scholar
     

  • Łoczechin A, Séron Okay, Barras A, Giovanelli E, Belouzard S, Chen YT, et al. Purposeful carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl Mater Interfaces. 2019;11:42964–74.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarkar PK, Das Mukhopadhyay C. Ayurvedic metallic nanoparticles may very well be novel antiviral brokers in opposition to SARS-CoV-2. Int Nano Lett. 2021;11:1–7.

    Article 

    Google Scholar
     

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, et al. Interplay of silver nanoparticles with HIV-1. J Nanobiotechnol. 2005;3:1–10.

    Article 

    Google Scholar
     

  • Morris D, Ansar M, Speshock J, Ivanciuc T, Qu Y, Casola A, et al. Antiviral and immunomodulatory exercise of silver nanoparticles in experimental RSV an infection. Viruses. 2019;11:732.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park S, Ko Y-S, Lee SJ, Lee C, Woo Okay, Ko G. Inactivation of influenza A virus through publicity to silver nanoparticle-decorated silica hybrid composites. Environ Sci Pollut Res. 2018;25:27021–30.

    Article 
    CAS 

    Google Scholar
     

  • Ravindran A, Chandrasekaran N, Mukherjee A. Research on differential conduct of silver nanoparticles in the direction of thiol containing amino acids. Curr Nanosci. 2012;8:141–9.

    Article 
    CAS 

    Google Scholar
     

  • Villeret B, Dieu A, Straube M, Solhonne B, Miklavc P, Hamadi S, et al. Silver nanoparticles impair retinoic acid-inducible gene I-mediated mitochondrial antiviral immunity by blocking the autophagic flux in lung epithelial cells. ACS Nano. 2018;12:1188–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Gusseme B, Sintubin L, Baert L, Thibo E, Hennebel T, Vermeulen G, et al. Biogenic silver for disinfection of water contaminated with viruses. Appl Environ Microbiol. 2010;76:1082–7.

    Article 
    PubMed 

    Google Scholar
     

  • Du T, Liang J, Dong N, Lu J, Fu Y, Fang L, et al. Glutathione-capped Ag2S nanoclusters inhibit coronavirus proliferation by means of blockage of viral RNA synthesis and budding. ACS Appl Mater Interfaces. 2018;10:4369–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang XX, Li CM, Huang CZ. Curcumin modified silver nanoparticles for extremely environment friendly inhibition of respiratory syncytial virus an infection. Nanoscale. 2016;8:3040–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small. 2009;5:1897–910.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen S, Hao X, Liang X, Zhang Q, Zhang C, Zhou G, et al. Inorganic nanomaterials as carriers for drug supply. J Biomed Nanotechnol. 2016;12:1–27.

    Article 
    PubMed 

    Google Scholar
     

  • Huang X, Li M, Xu Y, Zhang J, Meng X, An X, et al. Novel gold nanorod-based HR1 peptide inhibitor for Center East respiratory syndrome coronavirus. ACS Appl Mater Interfaces. 2019;11:19799–807.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, Yeom M, Lee T, Kim H-O, Na W, Kang A, et al. Porous gold nanoparticles for attenuating infectivity of influenza A virus. J Nanobiotechnol. 2020;18:1–11.

    Article 
    CAS 

    Google Scholar
     

  • Osminkina LA, Timoshenko VY, Shilovsky IP, Kornilaeva GV, Shevchenko SN, Gongalsky MB, et al. Porous silicon nanoparticles as scavengers of hazardous viruses. J Nanopart Res. 2014;16:1–10.

    Article 
    CAS 

    Google Scholar
     

  • Zhao M, Wu W, Su B. pH-controlled drug launch by diffusion by means of silica nanochannel membranes. ACS Appl Mater Interfaces. 2018;10:33986–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Lin Z, Gong G, Guo M, Xu T, Wang C, et al. Inhibition of H1N1 influenza virus-induced apoptosis by selenium nanoparticles functionalized with arbidol by means of ROS-mediated signaling pathways. J Mater Chem B. 2019;7:4252–62.

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Lin Z, Guo M, Xia Y, Zhao M, Wang C, et al. Inhibitory exercise of selenium nanoparticles functionalized with oseltamivir on H1N1 influenza virus. Int J Nanomed. 2017;12:5733.

    Article 
    CAS 

    Google Scholar
     

  • Kumar R, Nayak M, Sahoo GC, Pandey Okay, Sarkar MC, Ansari Y, et al. Iron oxide nanoparticles primarily based antiviral exercise of H1N1 influenza A virus. J Infect Chemother. 2019;25:325–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abo-Zeid Y, Ismail NSM, McLean GR, Hamdy NM. A molecular docking examine repurposes FDA authorised iron oxide nanoparticles to deal with and management COVID-19 an infection. Eur J Pharm Sci. 2020;153: 105465.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huo C, Xiao J, Xiao Okay, Zou S, Wang M, Qi P, et al. Pre-treatment with zirconia nanoparticles reduces irritation induced by the pathogenic H5N1 influenza virus. Int J Nanomed. 2020;15:661–74.

    Article 
    CAS 

    Google Scholar
     

  • Tu Z, Guday G, Adeli M, Haag R. Multivalent interactions between 2D nanomaterials and biointerfaces. Adv Mater. 2018;30:1–27.

    Article 

    Google Scholar
     

  • Ye S, Shao Okay, Li Z, Guo N, Zuo Y, Li Q, et al. Antiviral exercise of graphene oxide: how sharp edged construction and cost matter. ACS Appl Mater Interfaces. 2015;7:21571–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Music Z, Wang X, Zhu G, Nian Q, Zhou H, Yang D, et al. Virus seize and destruction by label-free graphene oxide for detection and disinfection functions. Small. 2015;11:1171–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y-N, Hsueh Y-H, Hsieh C-T, Tzou D-Y, Chang P-L. Antiviral exercise of graphene–silver nanocomposites in opposition to non-enveloped and enveloped viruses. Int J Environ Res Public Well being. 2016;13:430.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang XX, Li CM, Li YF, Wang J, Huang CZ. Synergistic antiviral impact of curcumin functionalized graphene oxide in opposition to respiratory syncytial virus an infection. Nanoscale. 2017;9:16086–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donskyi IS, Azab W, Cuellar-Camacho JL, Guday G, Lippitz A, Unger WES, et al. Functionalized nanographene sheets with excessive antiviral exercise by means of synergistic electrostatic and hydrophobic interactions. Nanoscale. 2019;11:15804–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin LC, Huang C, Yao B, Lin J, Agrawal A, Algaissi A, et al. Viromimetic STING agonist-loaded hole polymeric nanoparticles for secure and efficient vaccination in opposition to Center East respiratory syndrome coronavirus. Adv Funct Mater. 2019;29:1807616.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milewska A, Kaminski Okay, Ciejka J, Kosowicz Okay, Zeglen S, Wojarski J, et al. HTCC: broad vary inhibitor of coronavirus entry. PLoS ONE. 2016;11: e0156552.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aghamiri S, Talaei S, Ghavidel AA, Zandsalimi F, Masoumi S, Hafshejani NH, et al. Nanoparticles-mediated CRISPR/Cas9 supply: current advances in most cancers remedy. J Drug Deliv Sci Technol. 2020;56: 101533.

    Article 
    CAS 

    Google Scholar
     

  • Lee Okay, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, et al. Nanoparticle supply of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA restore. Nat Biomed Eng. 2017;1:889–901.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng Z, Li Z, Xu C, Guo B, Guo P. Folate-displaying exosome mediated cytosolic supply of siRNA avoiding endosome trapping. J Management Launch. 2019;311–312:43–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med. 2005;11(1):50–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu C-J, Huang H-W, Liu C-Y, Hong C-F, Chan Y-L. Inhibition of SARS-CoV replication by siRNA. Antivir Res. 2005;65:45–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeung M-L, Yao Y, Jia L, Chan JFW, Chan Okay-H, Cheung Okay-F, et al. MERS coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2. Nat Microbiol. 2016;1:1–8.

    Article 

    Google Scholar
     

  • Gu SH, Yu CH, Music Y, Kim NY, Sim E, Choi JY, et al. A Small interfering RNA lead focusing on RNA-dependent RNA-polymerase successfully inhibit the SARS-CoV-2 an infection in Golden Syrian hamster and Rhesus macaque. bioRxiv. 2020. https://doi.org/10.1101/2020.07.07.190967.

    Article 

    Google Scholar
     

  • Teng M, Yao Y, Nair V, Luo J. Newest advances of virology analysis utilizing CRISPR/Cas9-based gene-editing know-how and its software to vaccine growth. Viruses. 2021;13:779.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moses C, Kaur P. Functions of CRISPR methods in respiratory well being: coming into a brand new ‘pink pen’ period in genome modifying. Respirology. 2019;24:628–37.

    Article 
    PubMed 

    Google Scholar
     

  • Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, et al. RNA modifying with CRISPR-Cas13. Science (80-). 2017;358:1019–27.

    Article 
    CAS 

    Google Scholar
     

  • Li L, He Z-Y, Wei X-W, Gao G-P, Wei Y-Q. Challenges in CRISPR/CAS9 supply: potential roles of nonviral vectors. Hum Gene Ther. 2015;26:452–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho W, Zhang X-Q, Xu X. Biomaterials in siRNA supply: a complete evaluate. Adv Healthc Mater. 2016;5:2715–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khademhosseini A, Peppas NA. Micro-and nanoengineering of biomaterials for healthcare functions. 2013. https://onlinelibrary.wiley.com/doi/full/10.1002/adhm.201200444

  • Artiga Á, Serrano-Sevilla I, De Matteis L, Mitchell SG, Jesús M. Present standing and future views of gold nanoparticle vectors for siRNA supply. J Mater Chem B. 2019;7:876–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen F, Alphonse M, Liu Q. Methods for nonviral nanoparticle-based supply of CRISPR/Cas9 therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12: e1609.

    Article 
    PubMed 

    Google Scholar
     

  • Liu J, Chang J, Jiang Y, Meng X, Solar T, Mao L, et al. Quick and environment friendly CRISPR/Cas9 genome modifying in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. Adv Mater. 2019;31:1902575.

    Article 

    Google Scholar
     

  • Deng H, Huang W, Zhang Z. Nanotechnology primarily based CRISPR/Cas9 system supply for genome modifying: progress and prospect. Nano Res. 2019;12:2437–50.

    Article 
    CAS 

    Google Scholar
     

  • Mahmoodi Chalbatani G, Dana H, Gharagouzloo E, Grijalvo S, Eritja R, Logsdon CD, et al. Small interfering RNAs (siRNAs) in most cancers remedy: a nano-based strategy. Int J Nanomed. 2019;14:3111–28.

    Article 

    Google Scholar
     

  • Sohail MF, Hussain SZ, Saeed H, Javed I, Sarwar HS, Nadhman A, et al. Polymeric nanocapsules embedded with ultra-small silver nanoclusters for synergistic pharmacology and improved oral supply of Docetaxel. Sci Rep. 2018;8:1–11.

    Article 
    CAS 

    Google Scholar
     

  • Chen C-Okay, Huang P-Okay, Regulation W-C, Chu C-H, Chen N-T, Lo L-W. Biodegradable polymers for gene-delivery functions. Int J Nanomed. 2020;15:2131.

    Article 
    CAS 

    Google Scholar
     

  • Wang H-X, Music Z, Lao Y-H, Xu X, Gong J, Cheng D, et al. Nonviral gene modifying through CRISPR/Cas9 supply by membrane-disruptive and endosomolytic helical polypeptide. Proc Natl Acad Sci. 2018;115:4903–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang P, Zhang L, Xie Y, Wang N, Tang R, Zheng W, et al. Genome modifying for most cancers remedy: supply of Cas9 protein/sgRNA plasmid through a gold nanocluster/lipid core–shell nanocarrier. Adv Sci. 2017;4:1700175.

    Article 

    Google Scholar
     

  • Blanchard EL, Vanover D, Bawage SS, Tiwari PM, Rotolo L, Beyersdorf J, et al. Therapy of influenza and SARS-CoV-2 infections through mRNA-encoded Cas13a in rodents. Nat Biotechnol. 2021;39:717–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dabbagh A, Abu Kasim NH, Yeong CH, Wong TW, Abdul RN. Vital parameters for particle-based pulmonary supply of chemotherapeutics. J Aerosol Med Pulm Drug Deliv. 2018;31:139–54.

    Article 
    PubMed 

    Google Scholar
     

  • Thanki Okay, van Eetvelde D, Geyer A, Fraire J, Hendrix R, Van Eygen H, et al. Mechanistic profiling of the discharge kinetics of siRNA from lipidoid-polymer hybrid nanoparticles in vitro and in vivo after pulmonary administration. J Management Launch. 2019;310:82–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang W, Yang H, Kong X, Mohapatra S, San Juan-Vergara H, Hellermann G, et al. Erratum: Inhibition of respiratory syncytial virus an infection with intranasal siRNA nanoparticles focusing on the viral NS1 gene (Nature Medication 2005;11:56–62). Nat Med. 2005;11(2):233.

    Article 
    CAS 

    Google Scholar
     

  • Idris A, Davis A, Supramaniam A, Acharya D, Kelly G, Tayyar Y, et al. A SARS-CoV-2 focused siRNA-nanoparticle remedy for COVID-19. Mol Ther. 2021;29(7):2219–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Totura AL, Baric RS. SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Curr Opin Virol. 2012;2:264–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Medical options of sufferers contaminated with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olbei M, Hautefort I, Modos D, Treveil A, Poletti M, Gul L, et al. SARS-CoV-2 causes a distinct cytokine response in comparison with different cytokine storm-causing respiratory viruses in severely unwell sufferers. Entrance Immunol. 2021;12:381.

    Article 

    Google Scholar
     

  • Ryabkova VA, Churilov LP, Shoenfeld Y. Influenza an infection, SARS, MERS and COVID-19: cytokine storm—the frequent denominator and the teachings to be realized. Clin Immunol. 2020;223: 108652.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giménez E, Albert E, Torres I, Remigia MJ, Alcaraz MJ, Galindo MJ, et al. SARS-CoV-2-reactive interferon-γ-producing CD8+ T cells in sufferers hospitalized with coronavirus illness 2019. J Med Virol. 2021;93:375–82.

    Article 
    PubMed 

    Google Scholar
     

  • Davidson S, Maini MK, Wack A. Illness-promoting results of kind I interferons in viral, bacterial, and coinfections. J Interf Cytokine Res. 2015;35:252–64.

    Article 
    CAS 

    Google Scholar
     

  • Lei X, Dong X, Ma R, Wang W, Xiao X, Tian Z, et al. Activation and evasion of kind I interferon responses by SARS-CoV-2. Nat Commun. 2020;11:1–12.

    Article 

    Google Scholar
     

  • Zhang Q, Wang Y, Qi C, Shen L, Li J. Medical trial evaluation of 2019-nCoV remedy registered in China. J Med Virol. 2020;92:540–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levine MM. Monoclonal antibody remedy for Ebola virus illness. Mass Medical Soc. 2019;381(24):2365–6.


    Google Scholar
     

  • Di Gioacchino M, Petrarca C, Gatta A, Scarano G, Farinelli A, Della Valle L, et al. Nanoparticle-based immunotherapy: state-of-the-art and future views. Knowledgeable Rev Clin Immunol. 2020;16:513–25.

    Article 
    PubMed 

    Google Scholar
     

  • Shi Y, Lammers T. Combining nanomedicine and immunotherapy. Acc Chem Res. 2019;52:1543–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Irvine DJ, Hanson MC, Rakhra Okay, Tokatlian T. Artificial nanoparticles for vaccines and immunotherapy. Chem Rev. 2015;115:11109–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dykman LA, Khlebtsov NG. Gold nanoparticles in biology and medication: current advances and prospects. Acta Nat (aнглoязычнaя вepcия). 2011;3:34–55.

    CAS 

    Google Scholar
     

  • Yang Z, Ma Y, Zhao H, Yuan Y, Kim BYS. Nanotechnology platforms for most cancers immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12: e1590.

    Article 
    PubMed 

    Google Scholar
     

  • Lee M-Y, Yang J-A, Jung HS, Beack S, Choi JE, Hur W, et al. Hyaluronic acid–gold nanoparticle/interferon α complicated for focused remedy of hepatitis C virus an infection. ACS Nano. 2012;6:9522–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson JT, Keller S, Manganiello MJ, Cheng C, Lee C-C, Opara C, et al. pH-Responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. ACS Nano. 2013;7:3912–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sayour EJ, De Leon G, Pham C, Grippin A, Kemeny H, Chua J, et al. Systemic activation of antigen-presenting cells through RNA-loaded nanoparticles. Oncoimmunology. 2017;6: e1256527.

    Article 
    PubMed 

    Google Scholar
     

  • Roth GA, Saouaf OM, Smith AAA, Gale EC, Hernández MA, Idoyaga J, et al. Extended codelivery of hemagglutinin and a TLR7/8 agonist in a supramolecular polymer–nanoparticle hydrogel enhances efficiency and breadth of influenza vaccination. ACS Biomater Sci Eng. 2021;7:1889–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roma-Rodrigues C, Pombo I, Raposo L, Pedrosa P, Fernandes AR, Baptista PV. Nanotheranostics focusing on the tumor microenvironment. Entrance Bioeng Biotechnol. 2019;7:197.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madanayake NH, Rienzie R, Adassooriya NM. Nanoparticles in nanotheranostics functions. In: Nanotheranostics: functions and limitations. Cham: Springer; 2019. p. 19–40.

    Chapter 

    Google Scholar
     

  • Kushnir N, Streatfield SJ, Yusibov V. Virus-like particles as a extremely environment friendly vaccine platform: range of targets and manufacturing methods and advances in medical growth. Vaccine. 2012;31:58–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug supply, imaging, immunotherapy, and theranostic functions. Adv Drug Deliv Rev. 2020;156:214–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lam P, Steinmetz NF. Supply of siRNA therapeutics utilizing cowpea chlorotic mottle virus-like particles. Biomater Sci. 2019;7:3138–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lavatory LN, et al. Growth of Pink clover necrotic mosaic virus as a multifunctional nanoparticle. 2009. https://repository.lib.ncsu.edu/deal with/1840.16/4143

  • Kim H, Choi H, Bae Y, Kang S. Growth of target-tunable P22 VLP-based supply nanoplatforms utilizing bacterial superglue. Biotechnol Bioeng. 2019;116:2843–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beatty PH, Lewis JD. Cowpea mosaic virus nanoparticles for most cancers imaging and remedy. Adv Drug Deliv Rev. 2019;145:130–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee Y-T, Ko E-J, Lee Y, Kim Okay-H, Kim M-C, Lee Y-N, et al. Intranasal vaccination with M2e5x virus-like particles induces humoral and mobile immune responses conferring cross-protection in opposition to heterosubtypic influenza viruses. PLoS ONE. 2018;13: e0190868.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiller J, Lowy D. Explanations for the excessive efficiency of HPV prophylactic vaccines. Vaccine. 2018;36:4768–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Main findings and up to date advances in virus-like particle (VLP)-based vaccines. In: Seminars in immunology. London: Educational Press; 2017. p. 123–32.


    Google Scholar
     

  • Kanekiyo M, Wei C-J, Yassine HM, McTamney PM, Boyington JC, Whittle JRR, et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature. 2013;499:102–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanekiyo M, Bu W, Joyce MG, Meng G, Whittle JRR, Baxa U, et al. Rational design of an Epstein–Barr virus vaccine focusing on the receptor-binding website. Cell. 2015;162:1090–100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Y, Narum DL, Fleury S, Jennings G, Yadava A. Particle-based platforms for malaria vaccines. Vaccine. 2015;33:7518–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeevanandam J, Pal Okay, Danquah MK. Virus-like nanoparticles as a novel supply device in gene remedy. Biochimie. 2019;157:38–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu S, Yang J, Jia H, Zhou H, Chen J, Guo T. Virus spike and membrane-lytic mimicking nanoparticles for prime cell binding and superior endosomal escape. ACS Appl Mater Interfaces. 2018;10:23630–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shukla S, Steinmetz NF. Virus-based nanomaterials as positron emission tomography and magnetic resonance distinction brokers: from know-how growth to translational medication. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7:708–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Okay, Liu B, Yu B, Zhong W, Lu Y, Zhang J, et al. Advances within the growth of aptamer drug conjugates for focused drug supply. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9: e1438.

    Article 

    Google Scholar
     

  • Zou X, Wu J, Gu J, Shen L, Mao L. Utility of aptamers in virus detection and antiviral remedy. Entrance Microbiol. 2019;10:1462.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dzuvor C. Rethinking aptamers as nanotheranostic instruments for SARS-COV-2 and COVID-19 an infection. 2020.

  • Piyush R, Rajarshi Okay, Chatterjee A, Khan R, Ray S. Nucleic acid-based remedy for coronavirus illness 2019. Heliyon. 2020;6: e05007.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang KJ, Lee N-R, Yeo W-S, Jeong Y-J, Kim D-E. Isolation of inhibitory RNA aptamers in opposition to extreme acute respiratory syndrome (SARS) coronavirus NTPase/Helicase. Biochem Biophys Res Commun. 2008;366:738–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shum KT, Tanner JA. Differential inhibitory actions and stabilisation of DNA aptamers in opposition to the SARS coronavirus helicase. ChemBioChem. 2008;9:3037.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivanov KA, Thiel V, Dobbe JC, Van Der Meer Y, Snijder EJ, Ziebuhr J. A number of enzymatic actions related to extreme acute respiratory syndrome coronavirus helicase. J Virol. 2004;78:5619–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roh C, Jo SK. Quantitative and delicate detection of SARS coronavirus nucleocapsid protein utilizing quantum dots-conjugated RNA aptamer on chip. J Chem Technol Biotechnol. 2011;86:1475–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ford J, Goldstein T, Trahan S, Neuwirth A, Tatoris Okay, Decker S. A 3D-printed nasopharyngeal swab for COVID-19 diagnostic testing. 3D Print Med. 2020;6:1–7.

    Article 

    Google Scholar
     

  • Tai W, Zhang X, Drelich A, Shi J, Hsu JC, Luchsinger L, et al. A novel receptor-binding area (RBD)-based mRNA vaccine in opposition to SARS-CoV-2. Cell Res. 2020;30:932–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chakhalian D, Shultz RB, Miles CE, Kohn J. Alternatives for biomaterials to handle the challenges of COVID-19. J Biomed Mater Res A. 2020;108:1974–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleinstreuer N, Holmes A. Harnessing the ability of microphysiological methods for COVID-19 analysis. Drug Discov Right this moment. 2021;26:2496–501.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang Z, Kong N, Zhang X, Liu Y, Hu P, Mou S, et al. A materials-science perspective on tackling COVID-19. Nat Rev Mater. 2020;5:847–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yayehrad AT, Siraj EA, Wondie GB, Alemie AA, Derseh MT, Ambaye AS. May nanotechnology assist to finish the battle in opposition to COVID-19? Evaluation of present findings, challenges and future views. Int J Nanomed. 2021;16:5713–43.

    Article 

    Google Scholar
     

  • Melchor-Martínez EM, Torres Castillo NE, Macias-Garbett R, Lucero-Saucedo SL, Parra-Saldívar R, Sosa-Hernández JE. Fashionable world functions for nano-bio supplies: tissue engineering and COVID-19. Entrance Bioeng Biotechnol. 2021;9:1–16.

    Article 

    Google Scholar
     

  • Carson D, Jiang Y, Woodrow KA. Tunable launch of multiclass anti-HIV medication which can be water-soluble and loaded at excessive drug content material in polyester blended electrospun fibers. Pharm Res. 2016;33:125–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karagoz S, Kiremitler NB, Sarp G, Pekdemir S, Salem S, Goksu AG, et al. Antibacterial, antiviral, and self-cleaning mats with sensing capabilities primarily based on electrospun nanofibers adorned with ZnO nanorods and Ag nanoparticles for protecting clothes functions. ACS Appl Mater Interfaces. 2021;13:5678–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castro-Mayorga JL, Randazzo W, Fabra MJ, Lagaron JM, Aznar R, Sánchez G. Antiviral properties of silver nanoparticles in opposition to norovirus surrogates and their efficacy in coated polyhydroxyalkanoates methods. LWT Meals Sci Technol. 2017;79:503–10.

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles